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Abstract

Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins,
neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters,
the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine
metabolism between cell types in the same tissue (e.g. neuronal and glial cells) is often crucial for the proper function of the
tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by
physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is
highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap.
Here we report the development of Föster Resonance Energy Transfer (FRET) glutamine sensors based on improved cyan
and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP)1 and venus. These sensors were found to be
specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human
glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be
analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using
sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine
and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be
useful tools to analyze specificities of glutamine metabolism at the single-cell level.
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Introduction

Glutamine is essential as the precursor for other amino acids

such as glutamate, histidine, proline and arginine, as well as many

other important biological molecules such as proteins, nucleic

acids [1], amino sugars [2] and glutathione [3,4]. It is also

a preferred fuel for rapidly dividing cells such as enterocytes,

fibroblasts and lymphocytes [5,6], and it serves as an important

precursor for neurotransmitters glutamate and GABA [7,8,9,10].

Because glutamine occupies a central position in primary and

secondary metabolism, glutamine availability has a large impact

on anabolism of downstream molecules. For example, recent

studies using an epileptic model brain suggested that the

availability of glutamine influences the amount of synaptically

released glutamate [11,12]. Moreover, in addition to its roles as an

anabolic precursor, evidence suggests that glutamine has regula-

tory roles over many cellular functions such as cell swelling-

induced signaling [13] and apoptosis [14]. Recent studies suggest

that glutamine induces a drastic change in gene expression (,1%

of analyzed genes) in pancreatic b-cell lines [15], as well as when
administered as a dietary supplement. Therefore, the cellular

glutamine level has a large impact on cell physiology, through the

regulation of both glutamine-derived molecules, and glutamine-

controlled cellular functions.

The control of cellular glutamine levels is a very complex

process. The activity of glutamine synthetase, the enzyme that

synthesizes glutamine from glutamate and ammonium, is regulat-

ed by a wide range of mechanisms including allosteric regulation

by substrates [16], assembly of subunits [17] and transcriptional

regulation by glucocorticoids and b-catenin [18,19,20]. Glutamin-

ase and glutamine transporters such as system N and ASCT

transporters are subject to both transcriptional and post-transcrip-

tional regulation [21,22,23]. In addition to the environmental

regulation exerted by the above mechanisms, the regulation of

glutamine metabolism is highly cell-type specific. In the mamma-

lian liver, two separate cell types are involved in a sequential

glutamine degradation and synthesis; the cells in the periportal

region generate ammonium from glutamine to provide ammonia

necessary for the production of urea, whereas in the perivenous

hepatocyte, glutamine is synthesized by glutamine synthetase to

scavenge excess ammonia that escaped the urea cycle [24,25,26].

Cellular specialization of glutamine metabolism is also found in
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neuronal tissues of animals. Glutamate released from the neuronal

cells is taken up by the surrounding glial cells and converted into

glutamine, which is not a transmitter molecule. The synthesized

glutamine is then shuttled back to the neuron where it is degraded

into glutamate to replenish the neurotransmitter pool. This so-

called glutamine-glutamate shuttle is considered to be important in

sustaining neuronal activities [7,8].

Because of the multiple levels of regulation and the heterologous

functions of different cell types, it is not surprising that the

concentration of glutamine varies greatly between cell types. For

example, glutamine is found in high concenrations in oligoden-

drocytes and astrocytes (22 mM), but at much lower concentra-

tions in glutamatergic terminals (4–11 mM) [27]. Likewise, in

hepatocytes glutamine is reported to be 20 mM, but the

stimulation of glutaminase or glutamine transaminase leads to

a decrease of glutamine concentration by 80% and 30%,

respectively [28]. In cancerous cells with activated glutamine

catabolism, the glutamine concentration was found to be much

lower than in cells with a lower rate of glutamine catabolism [29].

Genetically encoded sensors targeted to a single cell type or to

a subcellular compartment would provide an alternative approach

to analyze the dynamic regulation of metabolites in a single cell. A

set of FRET sensors for glutamine has previously been reported,

and was successfully used to monitor glutamine concentrations in

plant cells [30]. However, these sensors were limited in the range

of glutamine concentration that can be detected due to relatively

low affinity (6.8 and 18.8 mM). Also, enhanced cyan- and yellow-

fluorescent protein (ECFP and EYFP) were used as the FRET

pair, which is difficult to multiplex with other FRET pairs. Here

we report an array of improved FRET-based glutamine sensors

based on the E.coli glutamine binding protein, glnH. The sensors

consist of a recently reported FRET pair, monomeric Teal

Fluorescent Protein (mTFP)1 and venus. Both mTFP1 and venus

have improved quantum efficiency and pH stability compared to

the more commonly used FRET donor, ECFP and EYFP [31,32].

Moreover, the mTFP1-venus FRET pair can be duplexed with

another pair, mAmetrine-tdTomato [33]. We demonstrate that

the glutamine uptake and efflux can be monitored using these

glutamine sensors, making it an attractive tool to analyze the

properties of transporters expressed in a given cell. The properties

of transporters such as substrate specificity and dependency on

sodium gradient could easily be monitored. In addition, using

sensors with different affinities, we show that a wide range of

cytosolic glutamine concentrations can be monitored.

Results and Discussion

FRET Glutamine Sensor Using mTFP1-Venus FRET Pair
Previously developed glutamine sensors using the CFP/YFP

FRET pair are not compatible with other protein-based FRET

pairs because of substantial excitation/emission spectra overlap

[34]. In addition, the excitation maxima of CFP (428 nm) is not

ideal for imaging using confocal microscopy. Recently, Ai et al.

reported an improved cyan fluorescent protein (FP) from coral,

mTFP1, which has higher quantum efficiency and improved pH

stability [31]. Moreover, two protein-based FRET pairs, mTFP1/

Citrine (enhanced Yellow FP) and mAmetrine/tdTomato are

spectrally orthogonal and therefore can be used for dual-FRET

measurement [35]. We examined whether glnH (accession:

NP_415332), the high affinity glutamine binding protein from

E.coli, could be converted into a FRET sensor using mTFP1 and

an improved yellow FP, venus [32].

The sites of attachment for the donor and acceptor molecules

influence FRET efficiency, because they influence both the

distance between fluorophores and dipole-dipole orientation.

The crystal structure of glnH in both the open and closed form

has been published previously [36,37]. One of the lobes of glnH

contains a large hairpin-like structure close to its N terminus,

which allows insertion of the FPs (Fig. 1A, the permissive position

is indicated in magenta). It has previously been demonstrated that

insertion of ECFP in the corresponding location in the glutamate

binding protein ybeJ, which is structurally related to glnH, does

not interfere with the binding of glutamate to the chimera protein

[38]. Therefore, we systematically tested combinations of these

three possible insertion sites for the donor and acceptor proteins

(Fig. 1B). For venus, it is known that terminal regions (an N-

terminal helix and a C-terminal coil) are not required for the

fluorescence [38]. Therefore, in addition to full-length venus,

a series of clones that had part of the N- and C- terminal amino

acids removed were used in order to find the optimal linker length.

Among the constructs examined, we found one functional

mTFP1/venus based glutamine sensor, named FLIPQ-

TV(mTFP/Venus) 1.0 (Fig. 1B). In this configuration, mTFP1

and venus are located in the same lobe, hence the conformational

change in the glnH domain is unlikely to induce a significant

change in the distance between the two FPs. However, the binding

of glutamine causes a shift of the second lobe, opening up a larger

space in the vicinity of C-terminus where the venus molecule is

fused (Fig.S1). Such a change is likely to increase the accessible

space that the venus protein can occupy due to the decrease in

sterical constraint, hence affecting the FRET efficiency between

the two FPs. In fact, a number of type II periplasmic binding

proteins, in which N- and C- termini are located in the same lobe,

can be converted into a functional FRET sensors when the two

FPs are fused on the N- and C- termini [38,39,40].

The emission from the donor and acceptor changed reciprocally

when glutamine was added, indicating that the binding of the

substrate is transduced to the change in FRET efficiency (Fig. 2A).

The change in FRET efficiency was concentration dependent.

The approximate Kd of this sensor (8.5661.4361028 M) was

consistent with the previously published affinities of glnH (161028

to 361027 M) (Table 1 and Fig. 2B) [40,41,42]. These results

indicate that glnH can be converted into a FRET sensor using the

mTFP1/venus FRET pair.

The FLIPQ-TV1.0 had very low FRET efficiency change upon

binding of glutamine (Fig. 2B, DR/R0=0.033). To further

improve the FRET efficiency change of FLIPQ-TV sensors,

linker sequences between the binding protein and fluorophores

were modified using a semi-high throughput approach. Linker

sequences at the N- and C- termini of mTFP1, and N- terminus of

venus were altered sequentially through random mutagenesis

(Fig. 3A and Fig.S2) to select for clones with an improved FRET

efficiency change. In order to avoid the potential saturation of the

sensors due to contamination by glutamine from bacterial lysate,

a version of the sensor that had,20 times lower affinity compared

to the sensor based on wild-type glnH (FLIPQ-TV_R75K, Table 1

and Fig. 4A) was used as the starting clone for the optimization.

In each round, .700 clones were screened for an improved

FRET efficiency change (details of mutagenesis and screening

procedures are described in Fig. S2.). The sequential improvement

yielded FLIPQ-TV3.0_R75K, which had .4 fold improvement

compared to FLIPQ-TV1.0_R75K(Fig. 3B and Fig.S2, DR/
R0= 0.26).

Affinity and Substrate Specificities of FLIPQ-TV3.0 Sensors
Reported physiological glutamine concentrations in the cytosol

vary significantly (22 mM oligodendrocytes and astrocytes, 4–

11 mM in glutametergic terminals, [27]. 20 mM in hepatocytes

FRET Glutamine Sensors for In Vivo Imaging
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[28], 2.7–2.8 mM in hippocampus [43]). In order to create sensors

that have a dynamic range at all physiological concentrations of

glutamine, targeted site-directed mutagenesis was performed.

Among the residues tested, R75, which forms a hydrogen bond

with the a-carboxyl group of glutamine [37], resulted in significant

changes in the affinity when mutated into K and M. Also, D157

which forms a hydrogen bond with a-amino group [37], when

mutated into N, resulted in a variant with a lower affinity (Fig.

S3A). In addition to the mutations in the binding pocket,

mutations in the residues located either at the perimeter of the

Figure 1. Configuration of a FRET glutamine sensor. (A) Open (cyan) [36] and closed (yellow, glutamine in the binding pocket is indicated in
red) [37] conformation of glnH, glutamine binding protein from E.coli. The position of the internal hairpin permissive to an insertion of FP is marked in
magenta. (B) Schematic representations of chimeric fusions between mTFP1, glnH and venus sequences.
doi:10.1371/journal.pone.0038591.g001

FRET Glutamine Sensors for In Vivo Imaging
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interdomain cleft (peristeric) or in the domain that undergoes

a significant local conformation change upon substrate binding

(allosteric) can cause changes in affinity [41]. Among such residues

identified by de Lorimier et al., Y86 (allosteric) and W220

(peristeric) altered the affinity when mutated into A (Fig. S3B).

The resulting clones, FLIPQ-TV3.0_R75K, R75M, D157N,

R75MY86A, and R75MW220A had Kd of 1.561026 M,

5.361025 M, 1.361024 M, and 1.661023, and 7.661023 M,

respectively (Fig. 4A, Table 1). These sensors were named FLIPQ-

TV3.0_1.5 m, 50 m, 100 m, 2 m, and 8 m (the numbers in names

were rounded off for the simplicity). The complete list of residues

that were tested for altered affinity can be found in Table S1.

The affinity of these sensors to similar amino acids has also been

tested. FLIPQ-TV3.0_1.5 m bound to glutamate and asparagine

A

B

Figure 2. Responses of FLIPQ-TV1.0 sensor to glutamine. (A) Emission spectra of the FLIPQ-TV1.0 sensor in the absence (black squares) or in
the presence of 1 mM glutamine (open squares). A.u. : arbitrary unit. (B) Concentration-dependent change of venus/mTFP1 peak intensity ratio. The
best fit to a single binding isotherm (R= Rmax - (Rmax-Rmin) x [L]/([Kd]+[L]), where R is ratio, Rmax and Rmin are the maximum and minimum ratios
respectively, and [L] is ligand concentration) is indicated.
doi:10.1371/journal.pone.0038591.g002

Table 1. Affinities of FLIPQ-TV3.0 point mutants.

Mutations in glnH Kd Rapo Rsat DR/R0

WT 85 nM 1.09 1.05 0.03

R75K 1.5 mM 1.23 0.90 0.26

R75M 50 mM 1.05 0.95 0.10

D157N 130 mM 1.34 0.99 0.26

R75MY86A 1.6 mM 1.29 1.13 0.12

R75MW220A 7.6 mM 1.14 1.01 0.11

doi:10.1371/journal.pone.0038591.t001

FRET Glutamine Sensors for In Vivo Imaging
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at concentrations higher than 1 mM and 10 mM, respectively

(Fig. 4B). The Kds to glutamate and asparagine could not be

reliably measured due to its low affinity, estimated to be .10 mM

in both cases. FLIPQ-TV3.0_50 m, 100 m, 2 m and 8 m did not

bind to glutamate, asparagine or aspartate at 10 mM concentra-

tions (Fig. 4B). From these results, we concluded that FLIPQ-

TV3.0 sensors are highly specific to glutamine.

pH Stability of FLIPQ-TV3.0 Sensors
MTFP1, in addition to its better quantum efficiency compared

to ECFP, is more stable at acidic pH (pKa 4.3) [31]. In order to

examine the pH stability of FLIPQ-TV3.0 sensors, emission

intensities in the pH range 5.25–8.0 were tested. FLIPQ-

TV3.0_1.5 m was found to be sensitive to acidic pH, with DR
declining sharply below pH 6.5. However, above pH 6.75, both

DR and emission intensities were fairly stable (Fig. 5). FLIPQ-

TV3.0_2 m and 8 m, on the other hand, maintained a reasonable

DR at more acidic pH, whereas DR declined at pH above 7.5.

FLIPQ-TV sensors were more pH-stable compared to a similar

chimeric protein that carries CFP in place of mTFP1 (Ahmad and

Okumoto, unpublished results). Since the cytosolic pH of

mammalian cells is considered to range between 7.0–7.4 [44],

we concluded that the sensor is suitable for use in the cytosol of

mammalian cells. The pH stability of these sensors makes them

more suited for detecting transport processes that accompany

cellular pH changes such as H+-symport, as in the case of system

N-transporters, which has been proposed to mediate both the

efflux and the uptake of glutamine [45].

Live-cell Imaging of Cellular Glutamine Using FLIPQ-
TV3.0 Sensors
In order to examine whether these FLIPQ-TV3.0 sensors

function in live cells, the sensors were expressed in the cytosol of

cos7 cells, a cell line that has been used for characterizing the

activities of exogenous amino acid transporters in previous studies

[46,47]. In addition, the sensors were also expressed in SK-Hep

cells, known to express a human neutral amino acid transporter

ASCT2 which transports glutamine [48,49]. FLIPQ-TV3.0

sensors were robustly expressed in the cytosol of both of the cell

lines. FRET efficiency changes of FLIPQ-TV3.0_ 1.5 m, 50 m,
100 m, 2 m and 8 m were tested by perfusing cells expressing an

Figure 3. Improvement of the FLIPQ-TV sensor through semi-high throughput screening. (A) Schematic representation of FLIPQ-TV
3.0_R75K sensor, in which linker sequences (indicated as Ln1–3) were sequentially altered through random mutagenesis. The linker sequence of the
resulting clone (FLIPQ-TV 3.0_R75K) is indicated. (b) Emission spectra of the FLIPQ-TV3.0_R75K sensor in the absence (black squares) or in the
presence of 1 mM glutamine (open squares).
doi:10.1371/journal.pone.0038591.g003
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individual sensor with external glutamine, ranging from 50 mM to

5 mM. In cos7 cells, responses of all of these sensors to external

glutamine applications were either undetectable or very weak and

not reproducible (Fig. S4A-C). This could be due to low uptake

capacity for glutamine relative to the activities of enzymes that

maintain the glutamine concentration in the cells. On the other

hand, a weak but reproducible response was observed in SK-Hep

cells expressing FLIPQ-TV_8 m sensor (Fig.S5).

The weak endogenous activity of glutamine uptake in cos7 cells

provides a suitable system to analyze the activity of exogenously

expressed transporters. Therefore, we expressed ASCT2, tagged

with a mCherry [50] in cos7 cells as a model of exogenous

glutamine transporter. The ASCT2-mCherry construct localized

mainly to the cytoplasm, consistent with previous reports [51,52]

(Fig. S6). When the FLIPQ-TV3.0_8 m was co-expressed with

ASCT2-mCherry, a venus/mTFP1 ratio change was observed in

Figure 4. Affinities and substrate specificities of FLIPQ-TV3.0 sensors. (A) Saturation curves of FLIPQ-TV3.0 sensors with altered affinities. (B)
Substrate specificities of FLIPQ-TV3.0_1.5 m (black), 50 m (hatched), 100 m (white), 2 m (horizontal stripes), and 8 m (gray) sensors to Gln, Glu, Asn and
Asp.
doi:10.1371/journal.pone.0038591.g004

FRET Glutamine Sensors for In Vivo Imaging
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the presence of extracellular glutamine, ranging between 40 mM
and 5 mM (Fig. 6A and B), indicating that glutamine taken up by

ASCT2 can be detected by the sensor expressed in the cytosol.

The decrease in venus/mTFP1 ratio through the course of

experiment is most likely due to the differential photobleaching of

the two fluorophores [53]. The ratio change was concentration-

dependent. A similar result was obtained using FLIPQ-

TV3.0_2 m sensor (Fig. S7A). In contrast, cos7 cells co-expressing

FLIPQ-TV3.0_1.5 m, which is expected to be saturated in live

cells due to its high affinity, did not respond to extracellular

glutamine (Fig. S7B).

Interestingly, FLIPQ-TV3.0_100 m also responded to the

addition of glutamine ranging from 1 mM to 625 mM, saturating

at lower concentrations (,125 mM external glutamine) compared

to the FLIPQ-TV3.0_2 m and 8 m sensors (Fig. 6C and D). This

indicates that under such conditions, the cytosolic concentration of

glutamine can fall down into the dynamic range of this sensor

(,100 mM if the concentration is down to the Kd of the sensor),

which is much lower than the range of cellular glutamine

concentrations reported so far (1–22 mM [27,54,55]). The

ASCT2 transporter is reported to be overexpressed in cancerous

cells [56], where it is assumed to have a role in meeting the

increased demand for glutamine in cancerous cells. Indeed, it has

been demonstrated that competitive inhibition of ASCT2-medi-

ated glutamine uptake by Ala, Ser and Thr inhibits the growth of

colon carcinoma [57] and hepatoma cell lines [58,59], and

accordingly, the possibility to target this transporter for pharma-

cological intervention has been suggested in the past [56,60]. Since

FLIPQ-TV3.0_100 m can report the decrease in glutamine

concentration into the sub-millimolar range, it would be possible

to utilize the sensor in combination with chemical or RNAi

libraries to identify a treatment that lowers cellular glutamine

concentrations. In addition, duplex imaging of cellular glutamine

concentration and the induction of apoptosis, using FLIPQ-TV

sensors and a sensor for apoptosis, mAmetrine-DEVD-tdTomato

[33] respectively, would offer an attractive method to correlate

cellular glutamine concentration and the induction of apoptosis

[61].

Characterization of Glutamine Transporter Properties
Using FLIPQ-TV Sensors
The cellular glutamine concentration stayed high after the

removal of extracellular glutamine, indicating that the cellular

metabolism is not sufficient to lower the level of glutamine to the

detection range of these sensors. However, the addition of small,

neutral amino acids such as Ala quickly reversed the cellular

glutamine concentration (Fig. 6 and Fig. S7A). ASCT2 is an

obligatory exchanger, and is able to mediate glutamine efflux in

the presence of other extracellular amino acids [62]. Therefore we

tested an array of amino acids for the ability to induce glutamine

efflux. Ala, Thr, Cys, Ser, and D-ser, which are recognized by

ASCT2, were able to induce glutamine efflux, whereas His, Pro,

and Lys did not promote glutamine efflux (Fig. 7). The transport of

glutamine was also dependent on extracellular sodium, consistent

with previous observations [48] (Fig. 8). Since all of these results

corroborate with the characteristics of ASCT2, we concluded that

FLIPQ-TV sensors can be utilized to monitor cytosolic concen-

trations of glutamine, and that they can be used to investigate

physiological parameters of the transporter, such as substrate

specificity and dependence on extracellular sodium. Since

genetically encoded sensors can be targeted to a single cell type

using appropriate promoters, it would be possible to utilize these

sensors to examine glutamine transport and metabolism in

a specific cell type in vivo. Such an experimental setup will be

particularly useful for tissues that consist of heterologous cell types

with distinct glutamine metabolism (i.e. glial cells and neurons).

For example, the molecular identity of the transporter that is

responsible for providing glutamine to neuronal cells is still

controversial in some cases [62,63]. Presumably genetically

encoded sensors could be utilized in combination with pharma-

cological techniques to analyze the transport system responsible

for glutamine uptake in the context of live tissue, or even in an

intact animal [64,65,66].

Figure 5. PH stability of FLIPQ-TV3.0_1.5 m (A), 2 m (B) and 8 m
(C) sensor. Venus/mTFP1 emission ratios were measured in MES-Tris
buffer with altered pH, in the absence (black squares) or in the presence
(open squares) of saturating concentrations of glutamine.
doi:10.1371/journal.pone.0038591.g005
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Materials and Methods

DNA Constructs
To construct FLIP-TV sensors, the coding sequence of E.coli

glutamine binding protein (glnH, accession NC_000913) without

the periplasmic leader sequence was amplified by PCR from

genomic DNA of E.coli K12 with BamHI and XhoI sites on the 59-

end and KpnI and HindIII sites on the 39-end respectively. Primers

used were 59- GAGGGATCCGCTCGAGGCAGGCTC-

GAAATTAGTTGTCGCGACGGA-

TACCGCCTTCGTTCCGTTTGAATTTAAACAGGGCGC-

CAAATATGTGGGCTTTGAC -39 (underlined sequence

indicates the SfoI site introduced for the insertion of mTFP1)

and 59- GAGAAGCTTGGGTACCTTTCGGTTCAGTACC-

GAACC -39. The resulting PCR product was cloned into the

BamHI/HindIII site of pRSET B vector (Invitrogen), producing

pRSET-glnH. The mTFP1 sequence with Eco47III sites on both

ends was amplified from pBAD/HisB-mTFP1 (generous gift from

Dr. Campbell) using primers 59– GAGAGCGCTGGTATGGT-

GAGCAAGGGCGAGGAGCTG –39 and 59- GAGAGCGC-

TACCGTACAGCTCGTCCATGCCGAGAGT -39. The result-

ing PCR product was digested with Eco47III and cloned into the

SfoI site of pRSET-glnH. The venus sequence with KpnI at the 59-

end and HindIII at the 39- was digested from pRSET-FLIPEWT

[40] and fused in-frame to the 39- end of the glnH sequence. The

resulting construct was named pRSET-FLIPQTV. Point mutants

were created by site-directed mutagenesis [67]. For the optimiza-

tion of linker sequences between the fluorophores and binding

protein, the following primers were used: 59-

GCCCTTGCTCACCATNNNNNNCTGTTTAAATTCAAAC

-39 (Fig. 3A, Ln1), 59- GTCAAAGCCCACA-

TATTTGGCGCTNNNCTTGTACAGCTCGTC -39 (Fig. 3A,

Ln2), and 59- CCCGGTGAA-

CAGCTCNNNNNNTTTCGGTTCAGTACC -39 (Fig. 3A,

Ln3).

A plasmid containing human ASCT2 (ATCC MGC 1387) was

purchased from the American Type Culture Collection (ATCC).

The ASCT2-monomeric Cherry (mCherry) fusion was made by PCR-

stitching. The ASCT2 sequence without the stop codon, followed

by a linker sequence was amplified using a forward primer ASCT2-

F: 59-GAGAAGATCTCGGTGCTTCCCATCATGGTGGCC-

GATCCTCCTCGAG -39 and reverse primer ASCT2-R: 59-
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individual cells measured in the same experiment. (B) The intensities of mTFP1 and venus channels in the experiment shown in (A). The values were
corrected for photobleaching and normalized to the baseline. (C) and (D) A similar experiment as in (A) and (B), performed with cos7 cells expressing
the FLIPQ-TV3.0_100 m sensor.
doi:10.1371/journal.pone.0038591.g006
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GGCGGGATCTCCTCCACCGCCCCCTCCCATGACT-

GATTCCTTCTCAGAGGC -39. The mCherry sequence was

amplified using a forward primer mCherry-F: 59-

GGGGGCGGTGGAGGAGATCCCGCCACCATGGTGAG-

CAAGGGCGAGGAGGAT -39 and a reverse primer mCherry-R:

59- GAGAGAATTCCTTACTTGTACAGCTCGTC-

CATGCCGCC -39. The underlined sequences represent a com-

plementary region between two fragments. The two PCR

fragments were extended in the second PCR cycle with ASCT2-

F and mCherry-R primers. The resulting ASCT2-mCherry fusion

fragment was digested with BglII and EcoRI, then cloned in

between BamHI and EcoRI sites in pENTR1A vector (Invitrogen).

The ASCT2-mCherry sequence was recombined into pcDNA3.2

V5-DEST vector (Invitrogen) using LR-clonase II, following the

manufacturer’s instruction.

A

B

Ala Ser Cys Thr D-ser Ala

Pro Lys His

Figure 7. Elimination of cellular glutamine through the ASCT2 transporter in the presence of external amino acids, visualized using
FLIPQ-TV3.0_8 m sensor. (A) Cytosolic glutamine is exported by the addition of extracellular Ala, Ser, Cys, Thr, and D-ser. Timepoints when
extracellular glutamine (red boxes) or other amino acids (blue boxes) were added to the perfusion media are indicated as boxes above the graph. (B)
Addition of Pro, Lys, His (filled boxes) does not alter cytosolic glutamine concentration, whereas the addition of Ala (blue boxes) promotes the export
of glutamine. Solid and dashed lines represent two individual cells measured in the same experiment. All amino acids were added at 5 mM external
concentrations.
doi:10.1371/journal.pone.0038591.g007
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Cell Cultures
Cos7 (ATCC CRL-1561) and SK-Hep (ATCC HTB-52) cells

were purchased from ATCC. Cells were cultured in Dulbeccos

Modified Eagles Medium supplemented with 5% cosmic calf

serum, 100 U/ml penicillin, and 100 U/ml streptomycin. Cells

were cultured at 37uC under an atmosphere of 5% CO2. For

imaging, cells were plated on an 8-well chamber with glass bottom,

coated with poly-L-lysine. Transfection was performed using

Lipofectamine 2000 (Invitrogen). For transfecting cells, 400 ng of

FLIPQ-TV constructs and 1.2 mg of ASCT2-mCherry construct/well
(100 mm2) were used.

High-throughput Protein Purification
BL21 (DE3) gold (Stratagene) colonies expressing randomly

mutagenized FLIPQ-TV sensors were cultured in 2 ml of SB

medium in 96 well plates. Cells were lysed with a sonicator

equipped with a 96-pin tip, and purified using 96 well Ni-NTA

columns (Qiagen). Emission spectra for each sample in the

A

B

Figure 8. Responses of cos7 cells co-expressing the FLIPQ-TV3.0_8 m sensor and ASCT2-mCherry to external glutamine in the
absence (A) or in the presence of 13.4 mM (,10% of normal Hank’s buffer) of extracellular sodium. Timepoints when 5 mM
extracellular glutamine (red box) or 5 mM Ala (blue box) are indicated as boxes above the graph. Solid and dashed lines represent two individual cells
measured in the same experiment.
doi:10.1371/journal.pone.0038591.g008

FRET Glutamine Sensors for In Vivo Imaging

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e38591



presence and absence of glutamine were measured with excitation

at 450 nm using a plate reader (Synergy4, BioTek), and clones

with larger changes in mTFP1 and venus peaks (494 and 535 nm

respectively) were kept for further analysis.

In vitro Characterization of FLIPQ Sensors
Bacterial expression constructs for FLIPQ sensors were in-

troduced into E.coli BL21(DE3) Gold (Stratagene), and the

expressed sensor proteins were purified using Ni-NTA columns

as described in [68]. Ligand titration curves were obtained by

using a microplate reader (Synergy 4, BioTek), with excitation at

450 nm and emission at 490 nm and 535 nm for mTFP1 and

venus, respectively. To determine the Kd of each FLIPQTV

sensor, sensor protein was mixed with different concentrations of

glutamine in 20 mM HEPES buffer, pH 7.0, and venus/mTFP1

ratio was measured. The Kd was determined by fitting the

saturation curve to a single site binding isoterm: S= (r-rapo)/(rsat –

rapo)= [L]/([Kd]+[L]), where S is saturation, [L] is ligand concen-

tration, r is ratio, rapo is the ratio without ligand, rsat is the ratio at

saturation. Saturation curves were obtained from at least three

independent protein preparations.

In vivo Imaging of Cell Cultures
Cells were imaged 36–72 hrs post-transfection using an

epifluorescence microscope (IX81, Olympus) with appropriate

filters (mTFP1 excitation: 455/10, mTFP1 emission: 495/30,

venus excitation: 470/24, venus emission: 535/30, mCherry

excitation: 560/40, mCherry emission: 630/75). The cells were

perfused with Hank’s balanced saline solution (HBSS), supple-

mented with 25 mM HEPES and 4.2 mM sodium bicarbonate,

pH 7.35. Prior to the time-course experiments, the cells were

perfused with 5 mM Ala for 2 min to lower the concentration of

intracellular glutamine, then washed briefly with HBSS. The

images were collected and analyzed using appropriate software

(Slidebook, 3I). For testing transporter activities in Na+ - free

buffer, sodium components in HBSS were replaced with choline,

and the cells were incubated for 15 min in this choline-based

buffer prior to perfusion with amino acids.

Supporting Information

Figure S1 The surface views of glnH in open- and closed- forms.

(A) Alignment between the open- (blue, 1GGG) and closed- (beige,

1WDN) structures, shown in ribbon diagrams. Glutamine

molecule in the cleft is represented as ball-and-stick. C-termini,

where the venus protein is fused in FLIPQ-TV1.0 is marked in

magenta. (B) and (C) The surface views of the open- (B) and closed

(C) structures, superimposed on the ribbon diagram shown in (A).

Note the large change in spatial constraint in the vicinity of C-

termini (represented in magenta).

(TIF)

Figure S2 Optimization of FLIPQ-TV sensors. The linkers

(Ln1–3) were iteratively mutagenized, and clones representing

individual mutagenesis events were screened for an improved DR/

R0. The number of clones screened on each step, and DR/R0 of

each generation of sensors are indicated.

(EPS)

Figure S3 Residues that were altered to produce affinity

mutants. (A) Ball-and-stick representation of the glutamine

molecule in the cleft and residues in the cleft likely to form

hydrogen bonds with the glutamine. (B) The location of Tyr86 and

Trp220 that are mutated in FLIPQ-TV3.0_2 m and 8 m.

(EPS)

Figure S4 Cos7 cells expressing FLIPQ-TV3.0_100 m (A), 2 m

(B), 8 m (c) sensors perfused with extracellular glutamine. The cells

were perfused with HEPES-buffered Hank’s buffer. Timepoints

when extracellular glutamine (red) and 5 mM Ala (blue) were

added to the perfusion media are indicated as boxes above the

graph. Solid and dashed lines represent two individual cells

measured in the same experiment.

(EPS)

Figure S5 A SK-Hep cell expressing FLIPQ-TV3.0_8 m sensor

perfused with extracellular glutamine. Timepoints when 5 mM

glutamine (red) or 5 mM Ala (blue) were added to the perfusion

media are indicated as boxes above the graph.

(EPS)

Figure S6 Cos7 cells co-expressing ASCT2-mCherry fusion

(red) and FLIPQ-TV3.0_8 m (green). ASCT2 signal is mostly

found on the endomembrane, whereas FLIPQ-TV3.0_8 m is

distributed throughout the cytosol.

(EPS)

Figure S7 In vivo glutamine measurement using FLIPQ-

TV3.0_2 m sensor. (A) Venus/mTFP1 ratio of cos7 cells co-

expressing FLIPQ-TV3.0_2 m sensor and hASCT2-mCherry.

The cells were perfused with HEPES-buffered Hank’s buffer.

Timepoints when extracellular glutamine or alanine (5 mM) were

added to the perfusion media are indicated as red and blue boxes

above the graph. Solid and dashed lines represent two individual

cells measured in the same experiment. (B) The intensities of

mTFP1 and venus channels in the experiment shown in (A). (C)

and (D) Venus/mTFP1 ratio and intensities of mTFP1 and venus

channels of cos7 cells co-expressing FLIPQ-TV3.0_1.5 m sensor

and hASCT2-mCherry. Timepoints when extracellular glutamine

and alanine (5 mM) were added are indicated as in (A).

(TIF)

Table S1 A complete list of mutations in glnH that were tested

for altered affinity.

(DOCX)
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