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Abstract

Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins,
neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters,
the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine
metabolism between cell types in the same tissue (e.g. neuronal and glial cells) is often crucial for the proper function of the
tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by
physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is
highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap.
Here we report the development of Foster Resonance Energy Transfer (FRET) glutamine sensors based on improved cyan
and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP)1 and venus. These sensors were found to be
specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human
glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be
analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using
sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine
and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be
useful tools to analyze specificities of glutamine metabolism at the single-cell level.
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Introduction glutamine level has a large impact on cell physiology, through the
regulation of both glutamine-derived molecules, and glutamine-

Glutamine is essential as the precursor for other amino acids controlled cellular functions.

such as glutamate, histidine, proline and arginine, as well as many The control of cellular glutamine levels is a very complex

process. The activity of glutamine synthetase, the enzyme that
synthesizes glutamine from glutamate and ammonium, is regulat-
ed by a wide range of mechanisms including allosteric regulation
by substrates [16], assembly of subunits [17] and transcriptional
regulation by glucocorticoids and B-catenin [18,19,20]. Glutamin-
ase and glutamine transporters such as system N and ASCT
transporters are subject to both transcriptional and post-transcrip-
tional regulation [21,22,23]. In addition to the environmental
regulation exerted by the above mechanisms, the regulation of
glutamine metabolism is highly cell-type specific. In the mamma-
lian liver, two separate cell types are involved in a sequential
glutamine degradation and synthesis; the cells in the periportal
region generate ammonium from glutamine to provide ammonia
necessary for the production of urea, whereas in the perivenous
hepatocyte, glutamine is synthesized by glutamine synthetase to
scavenge excess ammonia that escaped the urea cycle [24,25,26].
Cellular specialization of glutamine metabolism is also found in

other important biological molecules such as proteins, nucleic
acids [1], amino sugars [2] and glutathione [3,4]. It is also
a preferred fuel for rapidly dividing cells such as enterocytes,
fibroblasts and lymphocytes [5,6], and it serves as an important
precursor for neurotransmitters glutamate and GABA [7,8,9,10].

Because glutamine occupies a central position in primary and
secondary metabolism, glutamine availability has a large impact
on anabolism of downstream molecules. For example, recent
studies using an epileptic model brain suggested that the
availability of glutamine influences the amount of synaptically
released glutamate [11,12]. Moreover, in addition to its roles as an
anabolic precursor, evidence suggests that glutamine has regula-
tory roles over many cellular functions such as cell swelling-
induced signaling [13] and apoptosis [14]. Recent studies suggest
that glutamine induces a drastic change in gene expression (~1%
of analyzed genes) in pancreatic B-cell lines [15], as well as when
administered as a dietary supplement. Therefore, the cellular
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neuronal tissues of animals. Glutamate released from the neuronal
cells is taken up by the surrounding glial cells and converted into
glutamine, which is not a transmitter molecule. The synthesized
glutamine is then shuttled back to the neuron where it is degraded
into glutamate to replenish the neurotransmitter pool. This so-
called glutamine-glutamate shuttle is considered to be important in
sustaining neuronal activities [7,8].

Because of the multiple levels of regulation and the heterologous
functions of different cell types, it is not surprising that the
concentration of glutamine varies greatly between cell types. For
example, glutamine is found in high concenrations in oligoden-
drocytes and astrocytes (22 mM), but at much lower concentra-
tions in glutamatergic terminals (4-11 mM) [27]. Likewise, in
hepatocytes glutamine is reported to be 20 mM, but the
stimulation of glutaminase or glutamine transaminase leads to
a decrease of glutamine concentration by 80% and 30%,
respectively [28]. In cancerous cells with activated glutamine
catabolism, the glutamine concentration was found to be much
lower than in cells with a lower rate of glutamine catabolism [29].

Genetically encoded sensors targeted to a single cell type or to
a subcellular compartment would provide an alternative approach
to analyze the dynamic regulation of metabolites in a single cell. A
set of FRET sensors for glutamine has previously been reported,
and was successfully used to monitor glutamine concentrations in
plant cells [30]. However, these sensors were limited in the range
of glutamine concentration that can be detected due to relatively
low affinity (6.8 and 18.8 mM). Also, enhanced cyan- and yellow-
fluorescent protein (ECFP and EYFP) were used as the FRET
pair, which is difficult to multiplex with other FRET pairs. Here
we report an array of improved FRET-based glutamine sensors
based on the E.coli glutamine binding protein, glnH. The sensors
consist of a recently reported FRET pair, monomeric Teal
Fluorescent Protein (mTFP)1 and venus. Both mTFP1 and venus
have improved quantum efficiency and pH stability compared to
the more commonly used FRET donor, ECFP and EYFP [31,32].
Moreover, the mTFP1-venus FRET pair can be duplexed with
another pair, mAmetrine-tdTomato [33]. We demonstrate that
the glutamine uptake and efflux can be monitored using these
glutamine sensors, making it an attractive tool to analyze the
properties of transporters expressed in a given cell. The properties
of transporters such as substrate specificity and dependency on
sodium gradient could easily be monitored. In addition, using
sensors with different affinities, we show that a wide range of
cytosolic glutamine concentrations can be monitored.

Results and Discussion

FRET Glutamine Sensor Using mTFP1-Venus FRET Pair

Previously developed glutamine sensors using the CFP/YFP
FRET pair are not compatible with other protein-based FRET
pairs because of substantial excitation/emission spectra overlap
[34]. In addition, the excitation maxima of CFP (428 nm) is not
ideal for imaging using confocal microscopy. Recently, Ai et al.
reported an improved cyan fluorescent protein (FP) from coral,
m'TFP1, which has higher quantum efficiency and improved pH
stability [31]. Moreover, two protein-based FRET pairs, mTFP1/
Citrine (enhanced Yellow FP) and mAmetrine/tdTomato are
spectrally orthogonal and therefore can be used for dual-FRET
measurement [35]. We examined whether glnH (accession:
NP_415332), the high affinity glutamine binding protein from
E.coli, could be converted into a FRET sensor using mTFP1 and
an improved yellow FP, venus [32].

The sites of attachment for the donor and acceptor molecules
influence FRET efficiency, because they influence both the
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distance between fluorophores and dipole-dipole orientation.
The crystal structure of gInH in both the open and closed form
has been published previously [36,37]. One of the lobes of glnH
contains a large hairpin-like structure close to its N terminus,
which allows insertion of the I'Ps (Fig. 1A, the permissive position
is indicated in magenta). It has previously been demonstrated that
insertion of ECFP in the corresponding location in the glutamate
binding protein ybeJ, which is structurally related to gIlnH, does
not interfere with the binding of glutamate to the chimera protein
[38]. Therefore, we systematically tested combinations of these
three possible insertion sites for the donor and acceptor proteins
(Fig. 1B). For venus, it is known that terminal regions (an N-
terminal helix and a C-terminal coil) are not required for the
fluorescence [38]. Therefore, in addition to full-length venus,
a series of clones that had part of the N- and C- terminal amino
acids removed were used in order to find the optimal linker length.
Among the constructs examined, we found one functional
mTFP1/venus based glutamine sensor, named FLIPO-
TV(mTEFP/Venus) 1.0 (Fig. 1B). In this configuration, mTFP1
and venus are located in the same lobe, hence the conformational
change in the gInH domain is unlikely to induce a significant
change in the distance between the two I'Ps. However, the binding
of glutamine causes a shift of the second lobe, opening up a larger
space in the vicinity of C-terminus where the venus molecule is
fused (Fig.S1). Such a change is likely to increase the accessible
space that the venus protein can occupy due to the decrease in
sterical constraint, hence affecting the FRET efficiency between
the two IPs. In fact, a number of type II periplasmic binding
proteins, in which N- and C- termini are located in the same lobe,
can be converted into a functional FRET sensors when the two
FPs are fused on the N- and C- termini [38,39,40].

The emission from the donor and acceptor changed reciprocally
when glutamine was added, indicating that the binding of the
substrate is transduced to the change in FRET efficiency (Fig. 2A).
The change in FRET efficiency was concentration dependent.
The approximate A of this sensor (8.56+1.43x10™% M) was
consistent with the previously published affinities of glnH (1x10~*
to 3x1077 M) (Table 1 and Fig. 2B) [40,41,42]. These results
indicate that glnH can be converted into a FRET sensor using the
mTFP1/venus FRET pair.

The FLIPQ-TV1.0 had very low FRET efficiency change upon
binding of glutamine (Fig. 2B, AR/R;=0.033). To further
improve the FRET efficiency change of FLIPQ-TV sensors,
linker sequences between the binding protein and fluorophores
were modified using a semi-high throughput approach. Linker
sequences at the N- and C- termini of mTFP1, and N- terminus of
venus were altered sequentially through random mutagenesis
(Fig. 3A and Fig.S2) to select for clones with an improved FRET
efficiency change. In order to avoid the potential saturation of the
sensors due to contamination by glutamine from bacterial lysate,
a version of the sensor that had ~20 times lower affinity compared
to the sensor based on wild-type glnH (FLIPQ-TV_R75K, Table 1
and Fig. 4A) was used as the starting clone for the optimization.

In each round, >700 clones were screened for an improved
FRET efficiency change (details of mutagenesis and screening
procedures are described in Fig. S2.). The sequential improvement
yielded FLIPQ-TV3.0_R75K, which had >4 fold improvement
compared to FLIPQ-TV1.0_R75K(Fig. 3B and Fig.S2, AR/
R() = 026)

Affinity and Substrate Specificities of FLIPQ-TV3.0 Sensors

Reported physiological glutamine concentrations in the cytosol
vary significantly (22 mM oligodendrocytes and astrocytes, 4—
11 mM in glutametergic terminals, [27]. 20 mM in hepatocytes
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Figure 1. Configuration of a FRET glutamine sensor. (A) Open (cyan) [36] and closed (yellow, glutamine in the binding pocket is indicated in
red) [37] conformation of glnH, glutamine binding protein from E.coli. The position of the internal hairpin permissive to an insertion of FP is marked in
magenta. (B) Schematic representations of chimeric fusions between mTFP1, ginH and venus sequences.

doi:10.1371/journal.pone.0038591.g001

[28], 2.7-2.8 mM 1n hippocampus [43]). In order to create sensors changes in the affinity when mutated into K and M. Also, D157

that have a dynamic range at all physiological concentrations of =~ which forms a hydrogen bond with o-amino group [37], when
glutamine, targeted site-directed mutagenesis was performed. mutated into N, resulted in a variant with a lower affinity (Fig.
Among the residues tested, R75, which forms a hydrogen bond S3A). In addition to the mutations in the binding pocket,
with the a-carboxyl group of glutamine [37], resulted in significant mutations in the residues located either at the perimeter of the
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Figure 2. Responses of FLIPQ-TV1.0 sensor to glutamine. (A) Emission spectra of the FLIPQ-TV1.0 sensor in the absence (black squares) or in
the presence of 1 mM glutamine (open squares). A.u. : arbitrary unit. (B) Concentration-dependent change of venus/mTFP1 peak intensity ratio. The

best fit to a single binding isotherm (R=Rax -

respectively, and [L] is ligand concentration) is indicated.
doi:10.1371/journal.pone.0038591.g002

Table 1. Affinities of FLIPQ-TV3.0 point mutants.

Mutations in ginH Kd Rapo Rsat AR/Ro
WT 85 nM 1.09 1.05 0.03
R75K 1.5 uM 1.23 0.90 0.26
R75M 50 uM 1.05 0.95 0.10
D157N 130 uM 1.34 0.99 0.26
R75MY86A 1.6 mM 1.29 1.13 0.12
R75MW220A 7.6 mM 1.14 1.01 0.11

doi:10.1371/journal.pone.0038591.t001

@ PLoS ONE | www.plosone.org

(Rmax-Rmin) X [LI/([Kd]+[L]), where R is ratio, Rmax and R are the maximum and minimum ratios

interdomain cleft (peristeric) or in the domain that undergoes
a significant local conformation change upon substrate binding
(allosteric) can cause changes in affinity [41]. Among such residues
identified by de Lorimier ¢ al, Y86 (allosteric) and W220
(peristeric) altered the affinity when mutated into A (Fig. S3B).
The resulting clones, FLIPQ-TV3.0_R75K, R75M, DI57N,
R75MY86A, and R75MW220A had Ad of 1.5x107°M,
5.3x107° M, 1.3x10°" M, and 1.6x1072 and 7.6x107°% M,
respectively (Fig. 4A, Table 1). These sensors were named FLIPO-
TV3.0_1.5 p, 50 p, 100 p, 2 m, and 8 m (the numbers in names
were rounded off for the simplicity). The complete list of residues
that were tested for altered affinity can be found in Table S1.
The affinity of these sensors to similar amino acids has also been
tested. FLIPQ-TV3.0_1.5 p bound to glutamate and asparagine
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Figure 3. Improvement of the FLIPQ-TV sensor through semi-high throughput screening. (A) Schematic representation of FLIPQ-TV
3.0_R75K sensor, in which linker sequences (indicated as Ln1-3) were sequentially altered through random mutagenesis. The linker sequence of the
resulting clone (FLIPQ-TV 3.0_R75K) is indicated. (b) Emission spectra of the FLIPQ-TV3.0_R75K sensor in the absence (black squares) or in the

presence of T mM glutamine (open squares).
doi:10.1371/journal.pone.0038591.g003

at concentrations higher than 1 mM and 10 mM, respectively
(Fig. 4B). The Ads to glutamate and asparagine could not be
reliably measured due to its low affinity, estimated to be >10 mM
in both cases. FLIPQ-TV3.0_50 p, 100 p, 2 m and 8 m did not
bind to glutamate, asparagine or aspartate at 10 mM concentra-
tions (Fig. 4B). From these results, we concluded that FLIPQ-
TV3.0 sensors are highly specific to glutamine.

pH Stability of FLIPQ-TV3.0 Sensors

MTFPI1, in addition to its better quantum efficiency compared
to ECFP, is more stable at acidic pH (pAa 4.3) [31]. In order to
examine the pH stability of FLIPQ-TV3.0 sensors, emission
intensities in the pH range 5.25-8.0 were tested. FLIPQ-
TV3.0_1.5 p was found to be sensitive to acidic pH, with AR
declining sharply below pH 6.5. However, above pH 6.75, both
AR and emission intensities were fairly stable (Fig. 5). FLIPQ-
TV3.0_2 m and 8 m, on the other hand, maintained a reasonable
AR at more acidic pH, whereas AR declined at pH above 7.5.
FLIPOQ-TV sensors were more pH-stable compared to a similar
chimeric protein that carries CFP in place of mTFP1 (Ahmad and
Okumoto, unpublished results). Since the cytosolic pH of

@ PLoS ONE | www.plosone.org

mammalian cells is considered to range between 7.0-7.4 [44],
we concluded that the sensor is suitable for use in the cytosol of
mammalian cells. The pH stability of these sensors makes them
more suited for detecting transport processes that accompany
cellular pH changes such as H*-symport, as in the case of system
N-transporters, which has been proposed to mediate both the
efflux and the uptake of glutamine [45].

Live-cell Imaging of Cellular Glutamine Using FLIPQ-
TV3.0 Sensors

In order to examine whether these FLIPQ-TV3.0 sensors
function in live cells, the sensors were expressed in the cytosol of
cos7 cells, a cell line that has been used for characterizing the
activities of exogenous amino acid transporters in previous studies
[46,47]. In addition, the sensors were also expressed in SK-Hep
cells, known to express a human neutral amino acid transporter
ASCT?2 which transports glutamine [48,49]. FLIPQ-TV3.0
sensors were robustly expressed in the cytosol of both of the cell
lines. FRET efficiency changes of FLIPQ-TV3.0_ 1.5 u, 50 p,
100 p, 2 m and 8 m were tested by perfusing cells expressing an
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Figure 4. Affinities and substrate specificities of FLIPQ-TV3.0 sensors. (A) Saturation curves of FLIPQ-TV3.0 sensors with altered affinities. (B)
Substrate specificities of FLIPQ-TV3.0_1.5 p (black), 50 p (hatched), 100 p (white), 2 m (horizontal stripes), and 8 m (gray) sensors to GIn, Glu, Asn and

Asp.
doi:10.1371/journal.pone.0038591.9g004

individual sensor with external glutamine, ranging from 50 UM to
5 mM. In cos7 cells, responses of all of these sensors to external
glutamine applications were either undetectable or very weak and
not reproducible (Fig. S4A-C). This could be due to low uptake
capacity for glutamine relative to the activities of enzymes that
maintain the glutamine concentration in the cells. On the other
hand, a weak but reproducible response was observed in SK-Hep
cells expressing FLIPQ-TV_8 m sensor (Fig.S5).

@ PLoS ONE | www.plosone.org

The weak endogenous activity of glutamine uptake in cos7 cells
provides a suitable system to analyze the activity of exogenously
expressed transporters. Therefore, we expressed ASCT?2, tagged
with a mCherry [50] in cos7 cells as a model of exogenous
glutamine transporter. The ASCT2-mCherry construct localized
mainly to the cytoplasm, consistent with previous reports [51,52]
(Fig. S6). When the FLIPQ-TV3.0_8 m was co-expressed with
ASCT2-mCherry, a venus/mTFP1 ratio change was observed in
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the presence of extracellular glutamine, ranging between 40 uM
and 5 mM (Fig. 6A and B), indicating that glutamine taken up by
ASCT?2 can be detected by the sensor expressed in the cytosol.
The decrease in venus/mTFPl ratio through the course of
experiment is most likely due to the differential photobleaching of
the two fluorophores [53]. The ratio change was concentration-
dependent. A similar result was obtained using FLIPO-
TV3.0_2 m sensor (Fig. S7A). In contrast, cos7 cells co-expressing
FLIPO-TV3.0_1.5 p, which is expected to be saturated in live

@ PLoS ONE | www.plosone.org
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cells due to its high affinity, did not respond to extracellular
glutamine (Fig. S7B).

Interestingly, FLIPQ-TV3.0_100 p also responded to the
addition of glutamine ranging from 1 UM to 625 UM, saturating
at lower concentrations (~125 UM external glutamine) compared
to the FLIPQ-TV3.0_2 m and 8 m sensors (Fig. 6C and D). This
indicates that under such conditions, the cytosolic concentration of
glutamine can fall down into the dynamic range of this sensor
(~100 uM 1if the concentration is down to the Ad of the sensor),
which is much lower than the range of cellular glutamine
concentrations reported so far (1-22 mM [27,54,55]). The
ASCT?2 transporter is reported to be overexpressed in cancerous
cells [56], where it is assumed to have a role in meeting the
increased demand for glutamine in cancerous cells. Indeed, it has
been demonstrated that competitive inhibition of ASCT2-medi-
ated glutamine uptake by Ala, Ser and Thr inhibits the growth of
colon carcinoma [57] and hepatoma cell lines [58,59], and
accordingly, the possibility to target this transporter for pharma-
cological intervention has been suggested in the past [56,60]. Since
FLIPQ-TV3.0_100 p can report the decrease in glutamine
concentration into the sub-millimolar range, it would be possible
to utilize the sensor in combination with chemical or RNAi
libraries to identify a treatment that lowers cellular glutamine
concentrations. In addition, duplex imaging of cellular glutamine
concentration and the induction of apoptosis, using FLIPQ-TV
sensors and a sensor for apoptosis, mAmetrine-DEVD-tdTomato
[33] respectively, would offer an attractive method to correlate
cellular glutamine concentration and the induction of apoptosis

[61].

Characterization of Glutamine Transporter Properties
Using FLIPQ-TV Sensors

The cellular glutamine concentration stayed high after the
removal of extracellular glutamine, indicating that the cellular
metabolism is not sufficient to lower the level of glutamine to the
detection range of these sensors. However, the addition of small,
neutral amino acids such as Ala quickly reversed the cellular
glutamine concentration (Fig. 6 and Iig. S7A). ASCT2 is an
obligatory exchanger, and is able to mediate glutamine efflux in
the presence of other extracellular amino acids [62]. Therefore we
tested an array of amino acids for the ability to induce glutamine
efflux. Ala, Thr, Cys, Ser, and D-ser, which are recognized by
ASCT?2, were able to induce glutamine efflux, whereas His, Pro,
and Lys did not promote glutamine efflux (Fig. 7). The transport of
glutamine was also dependent on extracellular sodium, consistent
with previous observations [48] (Fig. 8). Since all of these results
corroborate with the characteristics of ASCT2, we concluded that
FLIPQ-TV sensors can be utilized to monitor cytosolic concen-
trations of glutamine, and that they can be used to investigate
physiological parameters of the transporter, such as substrate
specificity and dependence on extracellular sodium. Since
genetically encoded sensors can be targeted to a single cell type
using appropriate promoters, it would be possible to utilize these
sensors to examine glutamine transport and metabolism in
a specific cell type @ vivo. Such an experimental setup will be
particularly useful for tissues that consist of heterologous cell types
with distinct glutamine metabolism (i.e. glial cells and neurons).
For example, the molecular identity of the transporter that is
responsible for providing glutamine to neuronal cells is still
controversial in some cases [62,63]. Presumably genetically
encoded sensors could be utilized in combination with pharma-
cological techniques to analyze the transport system responsible
for glutamine uptake in the context of live tissue, or even in an
intact animal [64,65,66].
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doi:10.1371/journal.pone.0038591.g006

Materials and Methods

DNA Constructs

To construct FLIP-TV sensors, the coding sequence of E.coli
glutamine binding protein (glnH, accession NC_000913) without
the periplasmic leader sequence was amplified by PCR from
genomic DNA of E.coli K12 with BamHI and Xhol sites on the 5'-
end and Apnl and HindlII sites on the 3'-end respectively. Primers
used were 5'-  GAGGGATCCGCTCGAGGCAGGCTC-
GAAATTAGTTGTCGCGACGGA-
TACCGCCTTCGTTCCGTTTGAATTTAAACAGGGCGC-
CAAATATGTGGGCTTTGAC  -3"  (underlined  sequence
indicates the Sfol site introduced for the insertion of mTFPI)
and 5- GAGAAGCTTGGGTACCTTTCGGTTCAGTACC-
GAACC -3'. The resulting PCR product was cloned into the
BamH1/ Hindl11 site of pRSET B vector (Invitrogen), producing
pRSET-glnH. The mTFP1 sequence with Eco4 7111 sites on both
ends was amplified from pBAD/HisB-mTFP1 (generous gift from
Dr. Campbell) using primers 5'— GAGAGCGCTGGTATGGT-
GAGCAAGGGCGAGGAGCTG 3" and 5'- GAGAGCGC-
TACCGTACAGCTCGTCCATGCCGAGAGT -3'. The result-

@ PLoS ONE | www.plosone.org

ing PCR product was digested with Fco47II1 and cloned into the
Sfol site of pRSET-gIlnH. The venus sequence with Apnl at the 5'-
end and HindlIl at the 3'- was digested from pRSET-FLIPEWT
[40] and fused in-frame to the 3'- end of the glnH sequence. The
resulting construct was named pRSET-FLIPQTYV. Point mutants
were created by site-directed mutagenesis [67]. For the optimiza-
tion of linker sequences between the fluorophores and binding
protein,  the  following  primers  were  used:  5'-
GCCCTTGCTCACCATNNNNNNCTGTTTAAATTCAAAC
-3’ (Fig. 3A, Lnl), 5'- GTCAAAGCCCACA-
TATTTGGCGCTNNNCTTGTACAGCTCGTC -3" (Fig. 3A,
Ln2), and 5'- CCCGGTGAA-
CAGCTCNNNNNNTTTCGGTTCAGTACC -3" (Fig. 3A,
Ln3).

A plasmid containing human ASCT2 (ATCC MGC 1387) was
purchased from the American Type Culture Collection (ATCC).
The ASCT2-monomeric Cherry (mCherry) fusion was made by PCR-
stitching. The ASCT2 sequence without the stop codon, followed
by a linker sequence was amplified using a forward primer ASC72-
F: 5'-GAGAAGATCTCGGTGCTTCCCATCATGGTGGCC-
GATCCTCCTCGAG -3" and reverse primer ASCT2-R: 5'-
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Figure 7. Elimination of cellular glutamine through the ASCT2 transporter in the presence of external amino acids, visualized using
FLIPQ-TV3.0_8 m sensor. (A) Cytosolic glutamine is exported by the addition of extracellular Ala, Ser, Cys, Thr, and D-ser. Timepoints when
extracellular glutamine (red boxes) or other amino acids (blue boxes) were added to the perfusion media are indicated as boxes above the graph. (B)
Addition of Pro, Lys, His (filled boxes) does not alter cytosolic glutamine concentration, whereas the addition of Ala (blue boxes) promotes the export
of glutamine. Solid and dashed lines represent two individual cells measured in the same experiment. All amino acids were added at 5 mM external

concentrations.
doi:10.1371/journal.pone.0038591.g007

GGCGGGATCTCCTCCACCGCCCCCTCCCATGACT-
GATTCCTTCTCAGAGGC -3'. The mCherry sequence was
amplified  using a  forward  primer  mCherny-F:  5'-
GGGGGCGGTGGAGGAGATCCCGCCACCATGGTGAG-
CAAGGGCGAGGAGGAT -3" and a reverse primer mCherry-R:
5'- GAGAGAATTCCTTACTTGTACAGCTCGTC-
CATGCCGCC -3'. The underlined sequences represent a com-
plementary region between two fragments. The two PCR

@ PLoS ONE | www.plosone.org

fragments were extended in the second PCR cycle with ASCT2-
F and mCherry-R primers. The resulting ASCT2-mCherry fusion
fragment was digested with Bglll and EcoRI, then cloned in
between BamHI and EcoRI sites in pENTRIA vector (Invitrogen).
The ASCT2-mCherry sequence was recombined into pcDNA3.2
V5-DEST vector (Invitrogen) using LR-clonase II, following the
manufacturer’s instruction.
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Figure 8. Responses of cos7 cells co-expressing the FLIPQ-TV3.0_8 m sensor and ASCT2-mCherry to external glutamine in the
absence (A) or in the presence of 13.4 mM (~10% of normal Hank’s buffer) of extracellular sodium. Timepoints when 5 mM
extracellular glutamine (red box) or 5 mM Ala (blue box) are indicated as boxes above the graph. Solid and dashed lines represent two individual cells

measured in the same experiment.
doi:10.1371/journal.pone.0038591.9g008

Cell Cultures

Cos7 (ATCC CRL-1561) and SK-Hep (ATCC HTB-52) cells
were purchased from ATCC. Cells were cultured in Dulbeccos
Modified Eagles Medium supplemented with 5% cosmic calf
serum, 100 U/ml penicillin, and 100 U/ml streptomycin. Cells
were cultured at 37°C under an atmosphere of 5% CO,. For
imaging, cells were plated on an 8-well chamber with glass bottom,
coated with poly-L-lysine. Transfection was performed using
Lipofectamine 2000 (Invitrogen). For transfecting cells, 400 ng of
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10

FLIPQ-TV constructs and 1.2 ug of ASCT2-mCherry construct/well
(100 mm?) were used.

High-throughput Protein Purification

BL21 (DE3) gold (Stratagene) colonies expressing randomly
mutagenized FLIPQ-TV sensors were cultured in 2 ml of SB
medium in 96 well plates. Cells were lysed with a sonicator
equipped with a 96-pin tip, and purified using 96 well Ni-NTA
columns (Qiagen). Emission spectra for each sample in the
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presence and absence of glutamine were measured with excitation
at 450 nm using a plate reader (Synergy4, BioTek), and clones
with larger changes in mTFP1 and venus peaks (494 and 535 nm
respectively) were kept for further analysis.

In vitro Characterization of FLIPQ Sensors

Bacterial expression constructs for FLIPQ sensors were in-
troduced into F.coli BL21(DE3) Gold (Stratagene), and the
expressed sensor proteins were purified using Ni-NTA columns
as described in [68]. Ligand titration curves were obtained by
using a microplate reader (Synergy 4, BioTek), with excitation at
450 nm and emission at 490 nm and 535 nm for mTFP1 and
venus, respectively. To determine the Ad of each FLIPQTV
sensor, sensor protein was mixed with different concentrations of
glutamine in 20 mM HEPES buffer, pH 7.0, and venus/mTFP1
ratio was measured. The Ad was determined by fitting the
saturation curve to a single site binding isoterm: = (r-r,,,)/(r —
Tapo) = [L]/([£d)+[L]), where § is saturation, [Z] is ligand concen-
tration, 7 is ratio, 7, is the ratio without ligand, 7, is the ratio at
saturation. Saturation curves were obtained from at least three
independent protein preparations.

In vivo Imaging of Cell Cultures

Cells were imaged 36-72 hrs post-transfection using an
epifluorescence microscope (IX81, Olympus) with appropriate
filters mTTFP1 excitation: 455/10, mTFP1 emission: 495/30,
venus excitation: 470/24, venus emission: 535/30, mCherry
excitation: 560/40, mCherry emission: 630/75). The cells were
perfused with Hank’s balanced saline solution (HBSS), supple-
mented with 25 mM HEPES and 4.2 mM sodium bicarbonate,
pH 7.35. Prior to the time-course experiments, the cells were
perfused with 5 mM Ala for 2 min to lower the concentration of
mtracellular glutamine, then washed briefly with HBSS. The
images were collected and analyzed using appropriate software
(Slidebook, 3I). For testing transporter activities in Na® - free
buffer, sodium components in HBSS were replaced with choline,
and the cells were incubated for 15 min in this choline-based
buffer prior to perfusion with amino acids.

Supporting Information

Figure S1 The surface views of gInH in open- and closed- forms.
(A) Alignment between the open- (blue, 1GGG) and closed- (beige,
IWDN) structures, shown in ribbon diagrams. Glutamine
molecule in the cleft is represented as ball-and-stick. C-termini,
where the venus protein is fused in FLIPQ-TV1.0 is marked in
magenta. (B) and (C) The surface views of the open- (B) and closed
(C) structures, superimposed on the ribbon diagram shown in (A).
Note the large change in spatial constraint in the vicinity of C-
termini (represented in magenta).

(TIF)

Figure 82 Optimization of FLIPQ-TV sensors. The linkers
(Ln1-3) were iteratively mutagenized, and clones representing
individual mutagenesis events were screened for an improved AR/
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Ro. The number of clones screened on each step, and AR/Rq of
each generation of sensors are indicated.

(EPS)

Figure 83 Residues that were altered to produce affinity
mutants. (A) Ball-and-stick representation of the glutamine
molecule in the cleft and residues in the cleft likely to form
hydrogen bonds with the glutamine. (B) The location of Tyr86 and
Trp220 that are mutated in FLIPQ-TV3.0_2 m and 8 m.

(EPS)

Figure 84 Cos7 cells expressing FLIPQ-TV3.0_100 p (A), 2 m
(B), 8 m (c) sensors perfused with extracellular glutamine. The cells
were perfused with HEPES-buffered Hank’s buffer. Timepoints
when extracellular glutamine (red) and 5 mM Ala (blue) were
added to the perfusion media are indicated as boxes above the
graph. Solid and dashed lines represent two individual cells
measured in the same experiment.

(EPS)

Figure 85 A SK-Hep cell expressing FLIPQ-TV3.0_8 m sensor
perfused with extracellular glutamine. Timepoints when 5 mM
glutamine (red) or 5 mM Ala (blue) were added to the perfusion
media are indicated as boxes above the graph.

(EPS)

Figure 86 Cos7 cells co-expressing ASCT2-mCherry fusion
(red) and FLIPQ-TV3.0_8 m (green). ASCT?2 signal is mostly
found on the endomembrane, whereas FLIPQ-TV3.0_8 m is
distributed throughout the cytosol.

(EPS)

Figure S7 In uviwo glutamine measurement using FLIPQ-
TV3.0_2 m sensor. (A) Venus/mTFP1 ratio of cos7 cells co-
expressing FLIPQ-TV3.0_2 m sensor and hASCT2-mCherry.
The cells were perfused with HEPES-buffered Hank’s buffer.
Timepoints when extracellular glutamine or alanine (5 mM) were
added to the perfusion media are indicated as red and blue boxes
above the graph. Solid and dashed lines represent two individual
cells measured in the same experiment. (B) The intensities of
mTFP1 and venus channels in the experiment shown in (A). (C)
and (D) Venus/mTFP1 ratio and intensities of mTFP1 and venus
channels of cos7 cells co-expressing FLIPQ-TV3.0_1.5 p sensor
and hASCT2-mCherry. Timepoints when extracellular glutamine
and alanine (5 mM) were added are indicated as in (A).

(TIF)

Table S1 A complete list of mutations in gInH that were tested
for altered affinity.
DOCX)

Author Contributions

Conceived and designed the experiments: KG JTH AA SO. Performed the
experiments: KG JTH VS AA DW SO. Analyzed the data: KG JTH VS
AA DW SO. Contributed reagents/materials/analysis tools: SO. Wrote
the paper: SO.

4. Roth E, Ochler R, Manhart N, Exner R, Wessner B, et al. (2002) Regulative
potential of glutamine-relation to glutathione metabolism. Nutrition 18: 217
221.

. Curi R, Newsholme P, Pithon-Curi TC, Pires-de-Melo M, Garcia C, et al.
(1999) Metabolic fate of glutamine in lymphocytes, macrophages and
neutrophils. Braz J Med Biol Res 32: 15-21.

6. Wiren M, Magnusson KE, Larsson J (1998) The role of glutamine, serum and

energy factors in growth of enterocyte-like cell lines. Int J Biochem Cell Biol 30:
1331-1336.

o

June 2012 | Volume 7 | Issue 6 | 38591



29.

30.

31.

32.

33.

34.

37.

. Barnett NL, Pow DV, Robinson SR (2000) Inhibition of Muller cell glutamine

synthetase rapidly impairs the retinal response to light. Glia 30: 64-73.

. Pow DV, Robinson SR (1994) Glutamate in some retinal neurons is derived

solely from glia. Neuroscience 60: 355-366.

. Rothstein JD, Tabakoff B (1984) Alteration of Striatal Glutamate Release after

Glutamine-Synthetase Inhibition. Journal of Neurochemistry 43: 1438-1446.

. Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M, Aschner M (2011) Roles of

glutamine in neurotransmission. Neuron glia biology: 1-14.

. Bacci A, Sancini G, Verderio C, Armano S, Pravettoni E, et al. (2002) Block of

glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform
activity in hippocampus. Journal of Neurophysiology 88: 2302-2310.

. Tani H, Bandrowski AE, Parada I, Wynn M, Huguenard JR, et al. (2007)

Modulation of epileptiform activity by glutamine and system A transport in
a model of post-traumatic epilepsy. Neurobiol Dis 25: 230-238.

. Lavoinne A, Meisse D, Quillard M, Husson A, Renouf S, et al. (1998)

Glutamine and regulation of gene expression in rat hepatocytes: the role of cell
swelling. Biochimie 80: 807-811.

. Fuchs BC, Bode BP (2006) Stressing out over survival: glutamine as an apoptotic

modulator. J Surg Res 131: 26-40.

. Corless M, Kiely A, McClenaghan NH, Flatt PR, Newsholme P (2006)

Glutamine regulates expression of key transcription factor, signal transduction,
metabolic gene, and protein expression in a clonal pancreatic beta-cell line.

J Endocrinol 190: 719-727.

. Tate SS, Meister A (1971) Regulation of rat liver glutamine synthetase:

activation by alpha-ketoglutarate and inhibition by glycine, alanine, and
carbamyl phosphate. Proc Natl Acad Sci U S A 68: 781-785.

. Denman RB, Wedler FC (1984) Association-dissociation of mammalian brain

glutamine synthetase: effects of metal ions and other ligands. Arch Biochem
Biophys 232: 427-440.

. Laping NJ, Nichols NR, Day JR, Johnson SA, Finch CE (1994) Transcriptional

control of glial fibrillary acidic protein and glutamine synthetase in vivo shows
opposite responses to corticosterone in the hippocampus. Endocrinology 135:
1928-1933.

. Vardimon L, Ben-Dror I, Havazelet N, Fox LE (1993) Molecular control of

glutamine synthetase expression in the developing retina tissue. Dev Dyn 196:

276-282.

. Gebhardt R, Baldysiak-Figiel A, Krugel V, Ueberham E, Gaunitz F (2007)

Hepatocellular expression of glutamine synthetase: an indicator of morphogen
actions as master regulators of zonation in adult liver. Prog Histochem
Cytochem 41: 201-266.

. Curthoys NP, Watford M (1995) Regulation of glutaminase activity and

glutamine metabolism. Annu Rev Nutr 15: 133-159.

. Gu S, Villegas CJ, Jiang JX (2005) Differential regulation of amino acid

transporter SNAT3 by insulin in hepatocytes. J Biol Chem 280: 26055-26062.

. Palmada M, Speil A, Jeyaraj S, Bohmer C, Lang F (2005) The serine/threonine

kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2.
Biochemical and Biophysical Research Communications 331: 272-277.
Haussinger D (1986) Regulation of hepatic ammonia metabolism: the
intercellular glutamine cycle. Advances in enzyme regulation 25: 159-180.

. Haussinger D (1987) Hepatic glutamine metabolism. Beitrage zu Infusionsther-

apie und klinische Ernahrung 17: 144-157.

5. Watford M, Chellaraj V, Ismat A, Brown P, Raman P (2002) Hepatic glutamine

metabolism. Nutrition 18: 301-303.

. Fonnum F (1993) Regulation of the synthesis of the transmitter glutamate pool.

Prog Biophys Mol Biol 60: 47-57.

. Haussinger D, Soboll S, Meijer AJ, Gerok W, Tager JM, et al. (1985) Role of

plasma membrane transport in hepatic glutamine metabolism. European journal
of biochemistry/FEBS 152: 597-603.

Kung HN, Marks JR, Chi JT Glutamine synthetase is a genetic determinant of
cell type-specific glutamine independence in breast epithelia. PLoS Genet 7:
€1002229.

Yang H, Bogner M, Stierhof YD, Ludewig U (2010) H*-independent glutamine
transport in plant root tips. PLoS One 5: ¢8917.

Ai HW, Henderson JN, Remington SJ, Campbell RE (2006) Directed evolution
of a monomeric, bright and photostable version of Clavularia cyan fluorescent
protein: structural characterization and applications in fluorescence imaging.
Biochemical Journal 400: 531-540.

Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, et al. (2002) A variant of
yellow fluorescent protein with fast and efficient maturation for cell-biological
applications. Nature Biotechnology 20: 87-90.

Ai HW, Hazelwood KL, Davidson MW, Campbell RE (2008) Fluorescent
protein FRET pairs for ratiometric imaging of dual biosensors. Nature Methods
5: 401-403.

Yang H, Bogner M, Stierhof YD, Ludewig U (2010) H-independent glutamine
transport in plant root tips. PLoS One 5: e8917.

. Ai HW, Hazelwood KL, Davidson MW, Campbell RE (2008) Fluorescent

protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5:
401-403.

5. Hsiao CD, Sun Y], Rose J, Wang BC (1996) The crystal structure of glutamine-

binding protein from Escherichia coli. J Mol Biol 262: 225-242.

Sun Y], Rose J, Wang BC, Hsiao CD (1998) The structure of glutamine-binding
protein complexed with glutamine at 1.94 A resolution: comparisons with other
amino acid binding proteins. ] Mol Biol 278: 219-229.

@ PLoS ONE | www.plosone.org

12

38.

39.

40.

41.

42.

43.

44.

46.

47.

48.

49.

50.

51.

52.

53.

54.

56.

57.

58.

59.

60.

61.

62.

63.

64.

FRET Glutamine Sensors for In Vivo Imaging

Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, et al. (2005)
Construction and optimization of a family of genetically encoded metabolite
sensors by semirational protein engineering. Protein Sci 14: 2304-2314.

Gu H, Lalonde S, Okumoto S, Looger LL, Scharff-Poulsen AM, et al. (2006) A
novel analytical method for in vivo phosphate tracking. FEBS Lett 580: 5885
5893.

Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, et al. (2005)
Detection of glutamate release from neurons by genetically encoded surface-
displayed FRET nanosensors. Proc Natl Acad Sci U S A 102: 8740-8745.

de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, et al. (2002)
Construction of a fluorescent biosensor family. Protein Sci 11: 2655-2675.
Weiner JH, Furlong CE, Heppel LA (1971) A binding protein for L-glutamine
and its relation to active transport in E. coli. Arch Biochem Biophys 142: 715
717.

Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002)
Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia
43: 703-710.

Bright GR, Fisher GW, Rogowska J, Taylor DL (1987) Fluorescence ratio
imaging microscopy: temporal and spatial measurements of cytoplasmic pH.

The Journal of cell biology 104: 1019-1033.

. Chaudhry FA, Krizaj D, Larsson P, Reimer RJ, Wreden C, et al. (2001)

Coupled and uncoupled proton movement by amino acid transport system N.
Embo Journal 20: 7041-7051.

Mizoguchi K, Cha SH, Chairoungdua A, Kim DK, Shigeta Y, et al. (2001)
Human cystinuria-related transporter: localization and functional characteriza-
tion. Kidney international 59: 1821-1833.

Hayashi M, Otsuka M, Morimoto R, Hirota S, Yatsushiro S, et al. (2001)
Differentiation-associated Na+-dependent inorganic phosphate cotransporter
(DNPI) is a vesicular glutamate transporter in endocrine glutamatergic systems.
The Journal of biological chemistry 276: 43400-43406.

Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional
characterization of a system ASC-like Na+-dependent neutral amino acid
transporter. Journal of Biological Chemistry 271: 14883-14890.

Fuchs BC, Perez JC, Suctterlin JE, Chaudhry SB, Bode BP (2004) Inducible
antisense RNA targeting amino acid transporter ATB0/ASCT2 elicits apoptosis
in human hepatoma cells. American journal of physiology Gastrointestinal and
liver physiology 286: G467-478.

Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, et al.
(2004) Improved monomeric red, orange and yellow fluorescent proteins derived
from Discosoma sp red fluorescent protein. Nature Biotechnology 22: 1567
1572.

Lim J, Lorentzen KA, Kistler J, Donaldson PJ (2006) Molecular identification
and characterisation of the glycine transporter (GLYT1) and the glutamine/
glutamate transporter (ASCT2) in the rat lens. Experimental eye research 83:
447-455.

Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, et al. (2007)
Functional and molecular analysis of D-serine transport in retinal Muller cells.
Experimental eye research 84: 191-199.

Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent
proteins. Nature Methods 2: 905-909.

Fafournoux P, Demigne C, Remesy C, Lecam A (1983) Bidirectional Transport
of Glutamine across the Cell-Membrane in Rat-Liver. Biochemical Journal 216:
401-408.

Ottersen OP, Zhang N, Walberg I (1992) Metabolic compartmentation of
glutamate and glutamine: morphological evidence obtained by quantitative
immunocytochemistry in rat cerebellum. Neuroscience 46: 519-534.

Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LATI1 in
cancer: Partners in crime? Seminars in Cancer Biology 15: 254-266.

Pawlik TM, Souba WW, Sweeney TJ, Bode BP (2000) Phorbol esters rapidly
attenuate glutamine uptake and growth in human colon carcinoma cells. Journal
of Surgical Research 90: 149-155.

Bode BP, Reuter N, Conroy JL, Souba WW (1998) Protein kinase C regulates
nutrient uptake and growth in hepatoma cells. Surgery 124: 260-267.

Bode BP, Fuchs BC, Hurley BP, Conroy JL, Suetterlin JE, et al. (2002)
Molecular and functional analysis of glutamine uptake in human hepatoma and
liver-derived cells. American Journal of Physiology-Gastrointestinal and Liver
Physiology 283: G1062-G1073.

Nakanishi T, Tamai I (2011) Solute Carrier Transporters as Targets for Drug
Delivery and Pharmacological Intervention for Chemotherapy. Journal of
Pharmaceutical Sciences 100: 3731-3750.

Paquette JC, Guerin PJ, Gauthier ER (2005) Rapid induction of the intrinsic
apoptotic pathway by L-glutamine starvation. Journal of Cellular Physiology
202: 912-921.

Broer A, Brookes N, Ganapathy V, Dimmer KS, Wagner CA, et al. (1999) The
astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux.
Journal of Neurochemistry 73: 2184-2194.

Conti F, Melone M (2006) The glutamine commute: lost in the tube?
Neurochemistry international 48: 459-464.

Tian L, Hires SA, Mao T, Huber D, Chiappe ME, et al. (2009) Imaging neural
activity in worms, flies and mice with improved GCaMP calcium indicators.
Nature Methods 6: 875-881.

Seclig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, et al. (2010) Two-
photon calcium imaging from head-fixed Drosophila during optomotor walking
behavior. Nature Methods 7: 535-540.

June 2012 | Volume 7 | Issue 6 | 38591



FRET Glutamine Sensors for In Vivo Imaging

66. Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW (2010) Functional 68. Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in
imaging of hippocampal place cells at cellular resolution during virtual living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci U S A 99: 9846
navigation. Nature neuroscience 13: 1433-1440. 9851.

67. Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific
mutagenesis without phenotypic selection. Methods in Enzymology 154: 367
382.

@ PLoS ONE | www.plosone.org 13 June 2012 | Volume 7 | Issue 6 | 38591



