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Abstract

The last decades have seen an increasing interest in modeling collective animal behavior. Some studies try to reproduce as
accurately as possible the collective dynamics and patterns observed in several animal groups with biologically plausible,
individual behavioral rules. The objective is then essentially to demonstrate that the observed collective features may be the
result of self-organizing processes involving quite simple individual behaviors. Other studies concentrate on the objective of
establishing or enriching links between collective behavior researches and cognitive or physiological ones, which then
requires that each individual rule be carefully validated. Here we discuss the methodological consequences of this
additional requirement. Using the example of corpse clustering in ants, we first illustrate that it may be impossible to
discriminate among alternative individual rules by considering only observational data collected at the group level. Six
individual behavioral models are described: They are clearly distinct in terms of individual behaviors, they all reproduce
satisfactorily the collective dynamics and distribution patterns observed in experiments, and we show theoretically that it is
strictly impossible to discriminate two of these models even in the limit of an infinite amount of data whatever the accuracy
level. A set of methodological steps are then listed and discussed as practical ways to partially overcome this problem. They
involve complementary experimental protocols specifically designed to address the behavioral rules successively,
conserving group-level data for the overall model validation. In this context, we highlight the importance of maintaining a
sharp distinction between model enunciation, with explicit references to validated biological concepts, and formal
translation of these concepts in terms of quantitative state variables and fittable functional dependences. Illustrative
examples are provided of the benefits expected during the often long and difficult process of refining a behavioral model,
designing adapted experimental protocols and inversing model parameters.
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Introduction

Collective animal behaviors have generated an increasing

number of studies over the past decade [1–3]. These phenomena

can be observed at all living scales, from bacteria colonies [4] to

bird flocks [5], fish schools [6,7], insect societies [8,9] or herds of

gregarious vertebrates [10,11]. These collective behaviors are

typically governed by self-organized processes resulting from many

direct or stigmergic interactions between individuals and they

generally lead to the formation of dynamical patterns whose

temporal and spatial characteristic lengths are much larger than

the typical range of individual interactions [12–14]. Understand-

ing how interactions between individuals control collective

behaviors is a challenging problem for a growing research

community in biology and statistical physics [15–18]. Indeed this

is a required condition to establish a continuous causal link from

studies dealing with the neural and cognitive basis of individual

behavior and studies dealing with collective behaviors in which

these neuronal or cognitive processes are involved (e.g. [19–22]).

Addressing these interactions starts with the enunciation of

presumed sets of behavioral rules that are inspired by and

confronted to experimental observations. These sets of rules that

define the suggested behavioral model are most commonly of

statistical nature: Individual behavioral mechanisms are charac-

terized by the individual’s probabilities to perform a given action

(e.g. changing its own direction of motion in a given time interval)

or their probabilities to undergo a transition from a state A to a

state B [23–25], many of them depending on external stimuli (e.g.

information about conspecifics and environment). In methodolog-

ical terms, a very demanding task is that of maintaining as sharp a

distinction as possible between the behavioral model, enunciated

as a given combination of biological concepts, and its formal

translation into mathematical expressions that may not be unique

as it depends on the retained set of quantitative state variables and

involves fittable functional dependences for each statistical

response to stimuli. Only when this distinction is made can the

model be criticized for its biological pertinence and the formal

translation for its rigor. In this sense, establishing that the model is

compatible with the corpus of knowledge in neurosciences, animal

cognition and behavior and with available observational data is

one issue; using observational data to fit the functional
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dependences is quite a different one, although both issues are

commonly addressed using the very same statistical techniques as

far as observational data are concerned.

Historically, the second issue was left aside in a first approach to

the understanding of the mechanisms underlying collective

phenomena. The objective was to demonstrate that the diversity

and complexity of the behavioral patterns observed in swarms,

flocks, schools and crowds may result from relatively simple

interactions between the individuals [2,26,27]. It was therefore

sufficient to build biologically meaningful behavioral models and

check, using numerical simulations, that these behaviors led to

dynamical patterns qualitatively similar to the addressed ones

[10,28–30]. This first step was essential as a justification of the

forthcoming long term researches toward more quantitative

assessments. It has permitted, in particular, to test alternative

hypotheses about the behavioral mechanisms taking part in a

given collective behavior. However, one of the essential conclu-

sions was also that very different individual mechanisms may

reproduce similar collective phenomena. For instance, [31] and

[32] have both proposed models for the clustering of objects by

ants moving at random in a two-dimensional space. In both

models an unloaded ant encountering an object on its path picks it

up with a probability pp. In [31] pp depends on the number of

objects encountered during a given preceding time interval (which

is a rough indication of the object density in the neighborhood),

whereas in [32] unloaded ants pick up every object encountered

(pp~1). Despite this important difference, [32] highlights that the

clustering dynamics of both models are qualitatively the same and

close to the experimental observations.

Although this first historical phase is far from being over

(numerous qualitative or semi-quantitative studies are still today

offering very useful conceptual contributions), an increasing

number of recent studies use quantitative approaches in which

macroscopic quantities are measured at the group scale in order to

characterize the collective dynamics. These measurements have

permitted to carefully fit the functional dependences so that the

observed collective patterns were quantitatively reproduced [33–

35]. These more detailed explorations have essentially confirmed

the previous conclusions, in particular that with adequate fits,

biologically different models at the individual scale are able to

reproduce the same collective dynamics, even from a rigorously

quantitative point of view.

A very strong consequence of such observations was to establish

that it was biologically meaningful to think in terms of

renormalization groups, universality classes and asymptotic theory

for all studies concerning the dynamics of collective patterns (as

was already established for macroscopic physics [36,37]). This led

to numerous research efforts toward the identification of minimum

behavioral models associated to some of the most challenging

collective behaviors, in particular with respect to fish schools and

bird flocks [16,28,29]. However, in the context of theoretical

biology, these efforts are only relevant to the understanding of the

collective behavior itself, closing the door to the above mentioned

neural and cognitive direct connections. Researchers dealing with

minimum behavioral models do not claim that the considered

animals actually follow minimal rules; they state that a given

collective pattern dynamics is best described with a behavioral

model that may serve as a reference for all analyses at the

collective scale. The parameters of these reference models may

then be defined as effective parameters that are related to neuronal

and cognition details. But how they are related is not an issue : two

distinct sets of individual behavioral rules leading to the same

effective parameters are indeed the very same model at the

collective scale. From this point of view, the fact that we observe it

to be impossible to discriminate between them using collective

measurements only is a validation of effective parameter

approaches and nothing like a practical difficulty.

Researchers equally involved in the understanding of collective

dynamics in animals may as well conclude from the same facts that

further observational data are required as soon as they are

interested in the analysis of individual behaviors at the level of

details of neuronal and cognitive processes for a particular species

in a given (ecological) context. However, choosing an adequate

experimental protocol to decipher between alternative models

often proves to be a very difficult task. For instance, a model of the

formation of the dominance order in social wasps based on

threshold reinforcement has first been experimentally verified

from dominance behaviors measured at the individual scale

[38,39]. However, some years later, the same authors questioned

the occurrence of this reinforcement mechanism because the

empirical data may as well be explained by preexisting differences

among individuals [40]. The available experimental behavioral

data were therefore not discriminative, even at the individual scale.

All this illustrates that we are still today at the stage of

methodological reflections and regularly have to go back to quite

basic questions: When attempting to identify components of the

individual behavior, what are the respective roles of collective

observational data and more specific experimental protocols in

terms of model validation and function / parameter estimation?

Are there criteria that can guide the design of an experimental

protocol? The aim of this paper is to address these questions in the

particular case where laboratory experiments can be designed

providing observational data that are fully independent of the

initial collective observations. This means that we leave aside the

more difficult question of designing individual observation

protocols based on the very same experiments (or field observa-

tions) as those allowing collective quantitative measurements. We

start from a published experimental study on object clustering in

ants. Six different individual behavioral models are constructed,

with rules in terms of statistical responses to the relevant stimuli,

that all reproduce satisfyingly the collective patterns. It is then

theoretically established that two of these models, despite being

clearly distinct in terms of individual behaviors, cannot be

discriminated using collective scale observational data, whatever

their accuracy and amount. We then address the methodological

questions associated to the design of additional individual-based

experimental protocols, as well as the use of the corresponding

data for model validation and inversion of free parameters. A

sequence of methodological steps is proposed and practically

illustrated using the same object clustering example and the

expected benefits are discussed.

Results

Identical Collective Pattern Dynamics with Distinct
Individual Behaviors

Object clustering in Messor sancta. We will tackle all

methodological issues with the help of a simple example of

collective animal behavior: object clustering in the ant Messor sancta

[41] (see Fig. 1). In this example, the objects clustered by the ants

are corpses of their dead conspecifics (note that social insects, and

in particular ants, are also known to build clusters of many other

kinds of objects, e.g. brood [42], seeds [43,44], sand pellets [45]

and leafs fragments [46]). The spatial structures result from

dynamics in which the behavior of each ant is indirectly influenced

by its conspecifics by way of the result of their activity. One of the

features of this collective phenomenon is that the behaviors can be

studied under controlled laboratory conditions at two different
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scales, that of an individual and that of the resulting clusters. The

experiments reported in [41] were carried out in circular arenas

(see Fig. 1A). As the objects (the ant corpses) are initially

distributed homogeneously along the arena wall and as the ants

exhibit a strong tendency to follow the inner wall of the arena, the

whole clustering process takes place within a small band along

these walls. When the ants are given access to the arena, they

preferentially move along the walls, pick up objects at some places

and deposit them elsewhere. After a few hours several small piles,

regularly distributed in space, can be observed. The bigger piles

grow at the expense of the smaller ones, that have completely

disappeared by the end of the experiment (see Fig. 1B). Therefore

the measured mean number of piles (see Fig. 1C and Fig. 1D) rises

first up to a peak after ca. 2 hours (about 11 and 25 piles,

respectively, for the small and high object density configurations),

then decreases and finally reaches a quasi-stationary number at the

end of the experiment (after 50 hours, about 3 and 4–5 piles,

respectively).

All the reported attempts to model such object clustering

behaviors start with the assumption that no significant chemical

marking process is at work (no pheromone deposition), that direct

interactions between individuals play a neglectable role and that

ants move according to a constant speed diffusion random walk

[31,32,41,47]. Clustering is then the result of a competition

between the homogenizing potential of diffusion and the

stimulation / inhibition of object picking up and deposition by

the perceived local density of objects g~
N

S
, where N is the

number of objects in a perception area S around the ant.

Three model ingredients and their cognitive

significance. Even if we take these modeling choices for

granted (their discussion is not the purpose of the present

contribution), numerous questions remain widely open. For the

purpose of a brief illustration, we will play in this section with three

behavioral concepts: we will question the influence of the

perceived object density, the importance of inter-individual

variability, and the role of individual temporal correlation.

The influence of the perceived object density targets the shape

of the stimulus-response function, namely what the ants react to.

As far as corpses are concerned, Anderson [47] explicitly asked:

‘‘But what if an ant regards a group of two or more ants as a

processed pile and perceives a single dead ant as something

qualitatively different – perhaps as an unprocessed ant that just

happened to die on that spot?’’. It is generally admitted that

deposition behavior is favored by the local object density, but does

it also affect the picking up behavior? In such a context, the model

interpretation would be about whether there is some distinct

information processing dedicated to object perception or not.

Object density could well favor local deposition simply due to

mechanical constraints because it is harder to carry an object

through a cluster of objects. It is known for instance that ants can

build walls of rocks by just reacting to obstacles [32] or mounds by

randomly depositing their load [48], in which case there is little

need for sophisticated cognitive processes. Yet, some other species

display an added complexity for nest wall building, with

individuals coordinating the choices of material they fetch on

independent forays [49].

The inter-individual variability would refer to different activity

levels among workers, which is well-known in social insects as

division of labor [50,51]. Division of labor and task partitioning in

social insects are often cited as major features of their ecological

success as they are reputed to increase colony efficiency because

specialized workers can become superior in performance for their

task [52–54] (although this is controversial [55]). In the context of

necrophoric behavior, it can also allow the colony to keep waste-

workers and waste piles away from vital resources (e.g. fungus

garden) in order to reduce contamination risks [56,57]. The

division of labor can stem from genetic bases [58,59] but strongly

depends on colony size and needs as well as to workers’ age

[51,60,61] and physiological state [62]. Such differentiated objects

handling activity was introduced in the model by assuming inter-

individual variability, i.e. their picking up and deposition statistics

depend on an activity level a that is constant in time but differs for

each ant. The activity level could for instance be related to age or

any kind of genetic or epigenetic factors. Inter-individual

variability could play a significant role if the activity level

distribution is wide enough for significantly modifying the picking

up and deposition statistics compared to that of a population with

all individuals reacting the same.

Finally, individual temporal correlation refers to some kind of

memory effect, i.e. the behavioral decision (e.g. deposition) is

affected by the time elapsed since the last behavioral decision (e.g.

picking-up). Such reference to a memory effect has been recently

suggested for the necrophoric behavior in Myrmica rubia [63]. A

memoryless behavior would not exhibit temporal correlation, i.e.

the behavioral response at time t would only depend on what is

perceived by the ant at that time, and this is generally assumed

implicitly in behavioral models based on stimulus-response

functions. Note that such a memoryless model would not exclude

learning processes or individual experience for specialized

individuals [64,65] as they could still be accounted for by adapting

the parameters of the stimulus-response function itself. However,

since we are interested only in memory effects of the same

magnitude as the time scale of the collective phenomenon, we

rather chose to test a true memory effect modelled by a decreasing

propensity to pick-up or deposit as the time elapses: the longer the

time an ant has been carrying an object, the less reactive it will be

to local density, as if it would explore longer for a higher density to

compensate for the increasing effort made to reach it.

Distinct models leading to comparable (or identical)

clustering dynamics. The Methods section indicates how

these three behavioral components are combined to produce six

different models. The point is that all six models allow functional

fits that make them quantitatively compatible with the available

data on clustering dynamics (cf. Fig. 2), although they strongly

differ in terms of cognitive implications as far as the interpretation

of picking up and deposition behaviors are concerned.

At this stage, further investigations to identify the most relevant

individual model would most commonly start by looking for more

detailed quantitative measurements on the basis of the same

observed clustering dynamic. In addition to the temporal evolution

of the number of piles, one may analyze the distribution of inter-

cluster distances, of cluster sizes (number of clustered objects),

cluster dimensions, etc., hoping that these distributions could be

characterized with enough statistical accuracy to exclude some of

the six models. However, one may easily think of numerous cases

in which the required accuracy would be so high that no

experimental protocol would allow it to be reached. It is for

instance impossible, from macroscopic observations of gaseous

properties, to discriminate between two molecules having different

collision cross-sections if these different ‘‘interaction behaviors’’

lead to the same values of viscosity and conductivity. However, in

our illustration example this point can be made even more explicit

than in the frame of the asymptotic theory, in particular without

any restriction to a macroscopic limit: we proved indeed

theoretically that it is strictly impossible to discriminate between

models 3 and 5 (picking up behavior independent of the perceived

object density g), or between models 4 and 6 (picking up behavior

inhibited by g), whatever the amount and the accuracy of the
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information acquired from the observed object displacements, in

particular whatever the observation scale. The extended proof is

given in the Methods section, but its principle is quite simple:

N The picking up probability is the same for each individual ant

in models 5 and 6 (no inter-individual variability), whereas it

depends on the activity level in models 3 and 4 (inter-

individual variability), but the activity level distributions are

such that the population average value of the picking up

probability of model 3 equals that of model 5, and that of

model 4 equals that of model 6. Each object is therefore picked

up with the same temporal statistics within each model pair.

N The probability of still carrying an object decreases exponen-

tially as a function of time in models 3 and 4 (no temporal

correlation), whereas it decreases non-exponentially in models

5 and 6 (temporal correlation), but the survival curves in

models 5 and 6 are such that, when integrated over the whole

population, they lead to the same deposition statistics as those

of models 3 and 4 respectively.

Figure 1. Clustering experiments. Objects are uniformly distributed along the border of a 50 cm diameter circular arena. Ants enter the arena
spontaneously from below, mounting along a wood stick through the hole in the arena center. Two different initial one-dimensional densities are
used: 127 and 255 objects per meter. The duration of each experiment is 50 hours. Fig. A and Fig. B correspond respectively to the beginning and the
end of a high density experiment. Fig. C and Fig. D display the time series of the number of piles (mean + s.d.) for the low and the high density
experiments, respectively. Piles are defined as follows: Two neighboring objects are considered to belong to the same cluster if the distance between
them is less than 1 mm. A cluster constitutes a pile if it contains at least 6 objects. In [41] another circular arena with a 25 cm diameter was also used
(with the same low and high initial densities). For the purpose of the methodological illustration in the first part of the results section only the large
arena is used, but the model built in the second part of the results section is compatible with all observations, including the ones in small arenas (see
Fig. 6).
doi:10.1371/journal.pone.0038588.g001
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N For each object, the picking up and deposition statistics

resulting from the whole population are therefore rigorously

identical within each model pair, meaning that the models

cannot be discriminated by the observation of object

displacements alone, whatever the accuracy level.

The conclusion would be the same even if the living ants could

be followed and their behavior statistically analyzed during the

clustering experiments, provided that a single ant could not be

tracked long enough for its individual statistics to be characterized

independently from the other ants. Otherwise the activity level

distribution could indeed be observed and models could be

discriminated. The crucial alternative is therefore the access or not

to the details of the individual ant behavior.

A Methodological Approach to the Identification of
Individual Behavioral Rules

Individual versus collective scale modeling. The preced-

ing examples were meant as an introduction to the methodological

questions raised by the objective of not only modeling the

collective dynamics, but also learning about the involved

individual behaviors with enough details and confidence to allow

fruitful contributions to cognitive and physiological biological

research. The literature emphasizes the fact that details of the

individual behaviors are widely irrelevant to the understanding of

numerous emerging collective behaviors, which legitimates that

solid theoretical conclusions can be drawn without deep references

to the physiological and cognitive abilities of the considered

species. But the same fact translates into strong practical difficulties

as soon as ‘‘details’’, from a collective point of view, may

correspond to such significant biological differences as with or

without inter-individual variability and with or without short time

memory usage. We even formally established (see above) the

existence of configurations that rigorously exclude the discrimina-

tion of two different biological interpretations from observations of

emerging structures, whatever the temporal and spatial observa-

tion scales: the emergence statistics can be strictly identical with

two behavioral models that are very distinct in terms of cognitive

implications. We therefore face the question of looking at other

observables than those defined for the purpose of collective

modeling, using the same available experimental data, or

implementing new experimental protocols specifically designed

for the purpose of individual behavior modeling.

First of all, it may be useful to note that the distinction is quite

subtle. There is nothing like a pure collective scale reasoning on

one side, versus pure individual scale reasoning on the other. The

question still remains the understanding of the collective behavior,

which means that:

N we are only addressing the components of the individual

behavior that impact the collective features,

N the individual model is only fully validated when it can be

shown that the corresponding perceptions and actions are

sufficient to reproduce the addressed collective patterns.

The only difference from a pure collective scale reasoning is that

we try to add the argument that the identified individual behavior

is not only sufficient to reproduce the collective dynamics, but that

it is indeed at work in the considered species. There could be ways

to fully distinguish individual studies from collective ones if it were

established that collective modeling would systematically lead to

the identification of effective parameters that would summarize the

effects of a potentially wide diversity of possible individual features.

Individual behavior modeling could therefore take the effective

parameters as their unique basis and the question would only be to

understand which one, among all possible behaviors, is responsible

for the observed effective parameter value in the considered

species. This would be a complete parallel with, for instance,

gaseous kinetics where fluid dynamics deals, at the hydrodynamic

limit (the collective scale), with the question of how effective

parameters such as viscosity and conductivity impact the flow

dynamics, whereas quantum molecular physics deals, separately,

with the question of how specific molecular structures and

properties give rise to the observed viscosity and conductivity

values. This may appear to be meaningful as far as bird flocks and

fish schools are concerned, but the preceding object clustering

examples are sufficient to demonstrate that individual models that

are indistinguishable at the collective scale do not systematically

Figure 2. Clustering dynamics predicted by the six different models. Figs. A and B indicate the time series of the number of piles for models
1–6 compared to the experimental data (mean + s.d.) in the low and high density settings, respectively. The predictions of all the models are
compatible with the experimental observations. Moreover, the predictions of model 5 are rigorously identical to those of model 3, and the
predictions of model 6 are identical to those of model 4.
doi:10.1371/journal.pone.0038588.g002
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refer to identical effective parameters in a common collective

model. A strict separation between individual and collective

studies is therefore hard to maintain.

Altogether: i) we need to go further than designing a valid

collective model; ii) the additionally required information may not

be accessible from collective observables; iii) the collective

experimental data remain the material used for the final validation

of the proposed individual model. At this stage, two approaches

can be retained or combined: either the same experimental

protocol (or field observations) are used and new observables are

defined with the objective of closely characterizing the individual

properties, or independent protocols are designed. We concentrate

hereafter on the design of independent protocols, which may be

considered as the easier approach (when possible) in the sense that:

i) there is no ambiguity associated to the fact that the same data

are used both for parametric quantification of the retained

individual model and for final validation in terms of emerging

collective features; ii) the involved different behavioral components

can be addressed separately by designing experimental protocols

dedicated to the characterization of a single component. We can

think for instance of separate dedicated protocols for the

movement of ants, for picking up and for deposition, whereas

the initial object clustering experiments involve the three actions

simultaneously. We argue hereafter that when designing these

protocols, strong benefits can be expected from the effort of

distinguishing the following successive methodological steps:

1. enunciation of a behavioral model (or several alternative ones);

2. model translation into fully quantitative terms involving the

choice of well defined state variables and stimuli;

3. validation and parametric inversion of the behavioral compo-

nents that can be characterized independently of all other

components, or one by one in an adequate sequence;

4. coupled validation and parametric inversion of the remaining

components;

5. confrontation of model predictions to the available observa-

tional data collected at the collective level.

The end of the present section is devoted to the explicit

development and the illustration of each of these steps successively.

1. Model enunciation. The qualitative discussion of the

behavioral model is the step at which most of the biological

reasoning takes place. The term model is therefore to be understood

as an argued representation of the individual behavior as far as its

influence on the collective dynamics is concerned. We will come

back to this point in the discussion section, in particular to the fact

that experimental protocols aiming at the detailed characterization

of individual behaviors are designed with the idea of validating or

invalidating one or several alternative behavioral models, and that

an explicit statement of such initial orientations helps clarifying the

subsequent cognitive and physiological debates. Here we only

illustrate this first step with the example of [41] in which a

literature review and preliminary experimental explorations led to

the following model enunciation:

N Individuals have identical behaviors (no inter-individual

variability).

N Direct inter-individual interactions play no role in the object

clustering process.

N Indirect inter-individual interactions by way of pheromone

deposition play no role in the object clustering process.

N Ants are always moving, speed changes play no role in the

object clustering process and actions such as direction changes,

picking up and deposition are instantaneous.

N Thigmotactism is so strong that ants remain strictly in a

narrow band close to the arena border.

N Objects never overlap.

N Objects are only perceived in the immediate vicinity of the ant,

and this perception corresponds to an antenna contact and/or

a visual perception, both having similar ranges (of the order of

a few millimeters).

N Object perception leads to the estimation of the local object

density via an indirect measure of the number of objects in the

perception area.

N Although object perception is very local, it could be claimed

that the individual has access to more complete information

concerning the object field if it kept a memory of the objects it

encountered along its trajectory: the retained model states that

such a memorization process is not at work and that, at each

instant, the ant behavior is only influenced by current local

perception.

Some of these statements do not appear explicitly in the four

pages format of [41], but are all extracted from the broader,

partially unpublished, underlying investigations.

2. Quantitative translation. Complete model translation

into quantitative terms requires arbitrary choices to be made for

state variables and stimuli that cannot be deduced as direct

consequences of the model once it has been enunciated. Arbitrary

refers here to cognitive reasoning: if there were cognitive

motivations for the quantitative definition of some state variables

and stimuli, they should be part of the model itself and should be

enunciated and justified in the preceding step. This does not

exclude motivated arguments toward the choice of a given state

variable (or stimulus) rather than another meaningful one, in

particular for practical reasons related to experimental observation

or to any forthcoming formal derivation. Our object clustering

example provides various illustrations of the typical meanings of

such required arbitrary choices. Quantitative translation of ant

movement is the simplest of these illustrations: the only enunciated

related properties are that ants remain close to the circular arena

border, that speed changes are insignificant, and that direction

changes are instantaneous, which is translated into the fact that ant

locations are reduced to a lineic abscissa along the arena perimeter

and that ant velocity is either clockwise or counterclockwise

oriented, with a constant speed. This means in particular that the

details of the thigmotactic behavior are left aside and that only its

overall effects are quantified. On the experimental level further

detailed definitions were required in order to measure the abscissa

and the orientation of each ant. A first ant location was identified

using the center of the head and was projected on the perimeter;

the orientation of the movement was then defined using the

difference between the successive abscissa values corresponding to

two successive frames, etc.; but this belongs to the measurement

protocol and not to the model translation itself. More subtle but

very well established is the translation of the fact that ants do not

use any memorization process for the considered actions. We

already mentioned the quantitative translation of this assumption

in the preceding section when describing the model examples in

which the assumption was made that no temporal correlation

occurred. The fact that the enunciated model excludes any

significant effect of memorization, combined with the assumption

that direction changes, picking up and deposition are instanta-

neous, translates indeed into the statistical property that whatever
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occurs after a given time t is statistically uncorrelated to any

preceding action or perception. This allows Markovian formula-

tions to be used, which leads in the present case to exponential

survival probabilities such as those of Tab. 1 for the states of

traveling clockwise, traveling counterclockwise and carrying an

object. Practically speaking, this means that the actions of

changing direction and depositing an object are fully quantitatively

described by two functions of the object perception stimulus g: the

direction change frequency nc(g) and the deposition frequency

nd (g), or alternatively the average time before direction change

(the direction change mean free time) tc(g)~
1

nc(g)
and the

average time before deposition (the deposition mean free time)

td (g)~
1

nd (g)
. An essential point here is that no arbitrary choice

was made for this translation: frequencies can be preferred to

mean free times or vice versa, but the translation of a memoryless

behavior with instantaneous actions is fundamentally unique,

whereas the level of detail that was retained for the quantitative

representation of location and movement was very much arbitrary.

Let us give a last translation example with the definition of the

object perception stimulus g in [41]: this definition is arbitrary but

is motivated by the objective of simplifying formal derivations, in

particular in view of a linear stability analysis of the initial phase of

clustering. Object perception is widely unknown or is only

accessed very indirectly. A consequence is that it is difficult to

make a meaningful choice for g. Do we have to account for visual

blocking of an object by a closer one? Should we opt for a strict

counting of the number of objects in the perception area, or should

we think of an indirect measure of the local object density? What is

the shape of the perception area? Again, if one of these questions

could be addressed with a satisfactory level of confidence, the

answer would be given during the model enunciation phase. As

such answers are not available or were not available at the time of

[41], the freedom in the translation process is large and the choices

must be motivated by other types of reasoning. The final, reported

choice was the following: The perception area is a square of size

2dp around the ant location. One side of the square is parallel to

the arena border, whose curvature is assumed negligible for such

local perception reasoning. Each object has a square shape of size

d. One of its sides is either in contact with the arena border or in

contact with the external side of another square object, which

allows that clusters extend several times d away from the arena

border (see Fig. 3). A first definition of a perception stimulus g2D is

then the sum of all the perceived object fractions divided by the

perception area, that is to say g2D~

PN
i~1

si

d2

4d2
p

where N is the

number of perceived objects and si is the surface of the i-th object

that lies within the perception area. This definition is strongly

related to the measure of a surface object density. The fact that

perceived objects that lie across the perception area border

contribute via a fraction of their surface ensures that this perceived

surface density is continuous in space. Such a choice had three

significant practical consequences:

N g2D could be used in studies where ants were followed along

their detailed two dimensional trajectories, independently of

the question of simplifying the final representation of ant

location and velocity in terms of perimetric abscissa and

clockwise or counterclockwise orientation.

N The extension of the work reported in [41] toward two

dimensional object clustering modeling was straightforward

when attempting to analyze clustering experiments for which

objects were initially spread uniformly on the total surface of

the arena instead of being aligned along the perimeter.

N The fact that this surface density is continuous allowed the

later meaningful use of macroscopic reacto-diffusive approx-

imate models for theoretical analyses of cluster emergence and

cluster selection.

But these practical advantages have the drawback that g2D

cannot be evaluated using the retained state variable for position

(the perimetric abscissa). Indeed, two ants having the same

perimetric abscissa s, but located at two different distances x1 and

x2 to the border, perceive two different values g2D(s,x1) and

g2D(s,x2) of the surface object density. It was finally chosen to

define the object perception stimulus g at a given perimetric

abscissa as the average value of g2D(s,x), for a uniform

distribution of x between 0 and the distance D(s) of the external

side of the farthest clustered object (see Fig. 3):

Figure 3. Definition of the object perception stimulus. The grey area represents the objects distributed along the arena border and the dashed
square the perception range of an ant at perimetric abscissa s and distance x to the border of the arena. The dashed grey area represents the
fractions of the objects perceived by the ant (which corresponds to g2D(s,x) in the text). When defining the perception stimulus at perimetric
abscissa s, without knowing the distance to the border x (one-dimensional modeling), g(s) is defined as the average of all values of g2D(s,x) when x
is uniformly distributed between 0 and the distance D(s) of the external side of the farthest clustered object.
doi:10.1371/journal.pone.0038588.g003
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g(s)~
1

D(s)

ðD(s)

0

g2D(s,x)dx:

With this definition, g can still be interpreted as a surface object

density and it inherits the continuity features of g2D which allows

the efficient use of approximate reacto-diffusive models, now for

the one dimensional analysis of cluster emergence and cluster

selection along the perimeter. These features were intensively used

in the research reported in [41], in particular via linear stability

analysis of reacto-diffusive forms of the one dimensional model

that predicted a critical value of the initial object density below

which no clustering occurred, a property that was later confirmed

experimentally and was interpreted as a strong validation of the

overall modeling approach. Altogether, a quite complex choice

was made for the definition of g. Some of its features are quite

arbitrary from a cognitive point of view, but they rigorously reflect

the two essential cognitive properties enunciated in the perception

model: its limited range and its graduality. This choice was also

guided by the subsequent formal derivations, leading to experi-

mental explorations and theoretical conclusions that would have

been difficult to reach with less refined definitions.

3. Uncoupled validations and parametric

inversions. Once the model is fully translated into quantitative

terms, dedicated experimental protocols can be designed in order

to validate successively each of the behavioral components of the

model and determine the remaining free parameters (e.g. the

perception range dp and the object size d in the preceding

translation examples) as well as the remaining free functional

dependences (e.g. the dependence on the object perception

stimulus of the direction change frequency and the deposition

frequency, that is to say the functions nc(g) and nd (g)). At this

stage, a detailed biological knowledge of the considered species is

again required in order to evaluate the feasibility of such dedicated

experiments and to make sure that the behaviors in the intended

experiments will be identical to those at work in the initial

collective conditions. In [41], the first of these experiments

consisted in introducing a single ant in the empty arena, following

it during its thigmotactic behavior along the arena border and

measuring the successive time intervals spent in the clockwise or

counterclockwise direction. This allowed to check that the

corresponding survival curve was indeed exponential, which

validated the memoryless and instantaneous turning assumptions,

and to measure the direction change frequency as the inverse of

the average value of the measured time intervals. Very similar is

the experiment in which a single object carrying ant was followed

in the empty arena leading to the evaluation of deposition

frequency. Fig. 4 illustrates the kind of fitting qualities that are

typical of such validation and inversion exercises in the most

successful cases.

4. Coupled validations and parametric inversions. But

less favorable conditions than those described in the previous

paragraph (3.) are very commonly encountered as soon as the

components of the behavioral model cannot be easily isolated. It is

indeed often concluded that even the most sophisticated experi-

mental protocols lead to quantitative measurements that corre-

spond to the combination of several elementary behaviors, which

means that the validation exercise is likely to be much less

convincing and that one may expect to find several distinct

solutions in the inversion process. Somehow, as soon as dedicated

experiments address high levels of complexity (e.g. when several

behaviors are involved in an intricate manner), we are back to the

methodological difficulties associated to the collective observations:

several distinct models can be convincingly fitted to the available

observations. In most cases this difficulty is unavoidable, but

attempts can be made to lower it as much as possible: experiments

can be repeated in order to reduce statistical uncertainties, new

protocols can be designed to help distinguishing between several

identified inversion solutions, and, maybe more importantly, the

inversion procedure itself can be gradually modified so that the

components of the model are discussed separately, even if they

cannot be fully isolated. When such attempts are successful, the

complexity level can be significantly reduced and, instead of only

presenting the final result as one possible solution of the

simultaneous inversion of all the involved components of the

behavioral model, the elementary behaviors can be addressed one

after the other, even if this requires to make simplification

assumptions. The solution is then presented as one proposed

solution based on arguments that are open to debate and can be

validated or rejected using additional experiments. The point that

we try to make here is that coupled inversion procedures are not

pure technical exercises, except when so many complementary

experimental data are available that only one solution is

acceptable. The existence of a solution only confirms that the

model is meaningful considering the statistical uncertainties of the

available observations. Retaining one among the commonly large

number of possible solutions for free parameters and free

functional dependences is always a choice, and is therefore open

to further biological discussions and further dedicated experi-

ments.

The above presented validation and parametric inversion

examples concerned the particular case where no object was

perceived and led to the estimation of direction change and

deposition frequencies nc(g~0) and nd (g~0) in an uncoupled

manner. But the next reported validation and inversion exercise in

[41] involves simultaneously ant movement, object picking up and

object deposition. Without entering into all the details of this

coupled inversion example, let us use it to illustrate the kind of

procedures that may lead to the identification of one among the

multiple inversion solutions. The corresponding experimental

protocol consisted in the artificial gathering of objects into clusters

of controlled shape and size. The measured statistics were those of

the result of the overall interaction with the cluster, in particular

the probability that the ant leaves the cluster in the object-carrying

or non-carrying state, knowing its state when first perceiving the

cluster. During the time of such a cluster encounter:

N the ant perceives continuously varying values of the perception

stimulus g (weak values when first perceiving the cluster and

strong values when in the center of the cluster);

N the ant may change several times its orientation and may

successively deposit its object and pick up another one several

times before leaving.

This means that the inversion exercise addresses the whole nc(g)
and nd (g) functional dependences, and involves them simulta-

neously together with the picking up probabilities. The first choice

that was made consisted in attempting to find an inversion solution

in which the movement was not affected by the perceived object

density, which translates into the fact that the direction change

frequency is fixed to nc(g)~nc(0). This choice was motivated by

qualitative observations indicating that the movement of ants is

little affected by the presence of objects. But this indication

remained highly questionable as it was not confirmed by

quantitative measurements and was not sustained by any kind of

previous behavioral knowledge (otherwise it would have been part

of the model enunciation): it was only indirectly and weakly
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validated by the fact that inversion was still possible, fitting only

the other remaining free functional dependences. Another choice

took the form of an a priori assumption that could be validated a

posteriori: it was assumed that object picking up probabilities were

so small that when an ant deposits an object on a cluster, it

systematically leaves the cluster without picking up a new object.

This allowed to decouple the deposition from picking up behaviors

when analyzing all observations corresponding to an ant carrying

an object when first encountering the cluster: in such cases the ant

could either leave the cluster without depositing, or deposit the

object and leave the cluster, but no picking up was involved.

Furthermore, as movement was already fixed, only the deposition

frequency remained unknown and the inversion became of the

uncoupled type. The dependence on g of the deposition frequency

could therefore be studied independently. Once the function nd (g)
known, the other observations could be employed (i.e. those in

which the ant was free when first encountering the cluster) to study

the picking up probabilities, using the now fixed movement and

deposition behaviors. Then the a priori assumption (no picking up

after deposition) could be validated by re-processing the deposition

inversion (without neglecting picking up, using the obtained

picking up probabilities) and checking that the same nd

dependence was found. The inversion was therefore held step by

step: movement was fixed arbitrarily, deposition was characterized

using a subset of the observations for which picking up could be

assumed to play a neglectable role, and (with fixed movement and

deposition statistics) picking up was then characterized as the last

remaining behavior using the fully coupled observations. A last

essential point is the way functional dependences were inverted.

Characterizing the deposition frequency, for instance, means

indeed that a full functional dependence needs to be determined.

There are many approaches to this difficult question in the inverse

problems literature, but in all cases a formal dependence is fixed in

advance with free parameters to be fitted. When a large amount of

accurate experimental data is available, the formal dependence

can be very little constraining, as when using high degree splines or

wavelets, but when the available observations are sparse and

statistically quite uncertain, the formal dependence is a significant

choice. In [41] the deposition frequency was given the following

shape:

nd (g)~nd (g~0)z
a1g

a2zg

in which a1 and a2 were free parameters. A least squares

procedure was then used to check that this shape was compatible

with the observed cluster interaction statistics, and to evaluate a1

and a2. Fig. 5 illustrates the result of this least squares procedure

and also displays two alternative results obtained with distinct

formal dependence choices, in order to illustrate the degree of

freedom that one faces under such validation and inversion

conditions.

5. Confrontation to collective observations. Whatever the

level of confidence of the overall inversion procedure, the last step

consists in confronting model predictions to observations of the

collective behavior we actually want to explain. From the start, we

only discussed methodological approaches in which the behavioral

model could be entirely validated (and the free parameters

determined) using dedicated experiments, meaning experiments

that are independent of the initially addressed collective scale

experiments. When this is the case, no further fit is required before

running the final simulations and checking that the emerging

collective behaviors compare satisfactorily with observations. This

independence is a strong guarantee against the remaining

weaknesses of the preceding model validation procedures and

more generally against the difficulties illustrated in the first part of

the results section: the more parameters remain to be fitted using

the collective scale experiments, the less one is indeed protected

against the risk of matching the collective behaviors with little

confidence in the cognitive and physiological pertinence of the

corresponding behavioral model. The object clustering example

that we used for illustration throughout this methodological

Figure 4. Parametric inversions for the direction change and deposition frequencies in the empty arena. A) The survival curve of the
proportion of ants still not having changed their direction (n~78 trajectories) is compatible with an exponential fit Pc~ exp½{nc(g~0)t�, validating
the memoryless and instantaneous turn assumptions and leading to the direction change frequency nc(g~0)~0:085+0:008s{1 (mean + s.e.),
x2~15, df~8, p~0:06. B) The survival curve of the proportion of ants still not having deposited the object they loaded at time t~0 in the empty
arena (n~127 trajectories) is also compatible with an exponential fit Pd~ exp½{nd (g~0)t� and leads to the deposition frequency
nd (g~0)~0:012+0:001s{1, x2~12, df~7, p~0:09. The black line represents the exponential fit and the dashed lines the 95% confidence interval.
The x2-values correspond to a chi-squared test for goodness of fit as described in [72] (pp. 131–137).
doi:10.1371/journal.pone.0038588.g004
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description led to the very satisfactory final simulations reported in

Fig. 6, with only one single additional parameter fit: the number of

ants in the arena, that was very much fluctuating during each

experiment, and which only influenced the time scale of the

clustering process, but not the shape of the temporal evolution of

the mean number of clusters.

Discussion

What are the expected benefits of distinguishing the above

presented methodological steps in an explicit manner? The object

clustering example used throughout this paper should already be

sufficient to argue that a first benefit is a clear listing of all those

among the reported choices that are related to biological and

cognitive reasoning and can be discussed as such (from the model

enunciation to the design of experimental protocols and even to

parts of the inversion procedure), in opposition to technical acts

that are only criticizable in terms of formal or statistical pertinence

and rigor (from quantitative model translation to statistical

inversion). An immediate consequence is the highlighting of both

the strongest and weakest components of the proposed behavioral

model. In the context of collective animal behavior, no model

proposition will ever be reported if it does not at least partially

reproduce the collective scale observations. Collective scale

predictive power is therefore a minimal requirement but is not

Figure 5. Parametric inversion for the deposition frequency. A) Functional dependence of the deposition frequency on the perception
stimulus. B) Fit of the deposition frequency to the experimental deposition probabilities (mean + s.e.) on clusters of several sizes. The plain curve in A

corresponds to the formal dependence retained in [41] (nd (g)~nd (g~0)z
a1g

a2zg
, with a1~3:2s{1 and a2~6:105m

{2
, x2~0:56, df~4, p~0:97). The

dashed curve is a linear fit (nd (g)~nd (g~0)zag with a~4:7:10{6m2s{1 , x2~0:43, df~5, p~0:99), very close to the previous formal dependence for
small values of the perception stimulus. C) An alternative functional dependence of the deposition frequency on the perception stimulus, in which
the deposition frequency is very low for small values of the perception stimulus and constant for values higher than a threshold corresponding to

two objects entirely in the perception area. D) Adjustment of C to the experimental deposition probabilities (nd (g)~nd (g~0)zb1
g

g2

� �b2

if gvg2 and

nd (g)~nd (g~0)zb1 else, with g2~2:5:104m{2 , b1~0:34s{1 and b2~2:5, x2~3:41, df~3, p~0:33). The grey circles correspond to the experimental
data (mean + s.e.) and the x2-values to a weighted least squares procedure.
doi:10.1371/journal.pone.0038588.g005
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sufficient in the above defined context. Strengths and weaknesses

of elementary behavior representations are therefore judged in

terms of individual scale predictive power and their cognitive

significance. The less solidly established behaviors will hopefully be

further investigated experimentally or will motivate further

explorations of the literature on cognitive and behavioral

processes, but the most established ones, when made explicit,

are likely to serve as starting points for other biological researches,

even outside the research field of collective animal behaviors.

More broadly speaking, some kind of clarification effort is

undoubtedly required if a modeling attempt claims to be more

of a contribution to cognitive research than the six model

examples of the first part of the results section. However, as we

tried to point out all along the present paper, the distinction is

commonly very subtle. First because it is hard to design

experiments that allow to address the elementary behaviors

independently or successively; second, because the number of

possible experimental replications is often quite limited, the sample

sizes are small, the statistical inversion procedures are weakly

constrained, which means that even when making strong efforts

toward explorations on the individual scale, multiple inversion

solutions are available and the criticisms formulated in the second

part of the results section apply here also, at least partially.

An example of strong validation mentioned above was that of

the temporal decorrelation assumption in [41]. More precisely,

both the temporal decorrelation assumption and the absence of

inter-individual variability assumption were strongly validated.

Although we did not mention it in the results section, the

experimental results reported in Fig. 4 were indeed obtained by

gathering the data corresponding to several tens of distinct ants.

The observed linear shape of the logarithmic scale survival

function over several decades is therefore a solid guarantee that

both memorization and inter-individual variability play a neglect-

able role. But we saw that the conclusions reached concerning the

influence of the perceived object density on the movement, picking

up and deposition actions are much weaker. We already illustrated

in Figs. 5A and B the fact that two different functional forms led to

satisfactory inversion solutions. These two forms are close in most

Figure 6. Comparison with experimental data of the collective dynamics predicted by the finally retained model (that of the dashed
curve in Figs. 5A and B). Figs. A and B correspond to the experiments in the big arena, and Figs. C and D to those in the small arena, with low and
high object densities, respectively (see Fig. 1). The grey + correspond to the experimental data (mean + s.d.) and the plain curves to the model
predictions. The fitted number of ants in the arena is 50.
doi:10.1371/journal.pone.0038588.g006
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of the relevant g range, where nd (g) increases linearly. However

Figs. 5C and D display a third inversion solution where nd (g) is

quasi constant for small values of g until enough objects are

perceived for a positive feedback to appear. The only motivations

for not retaining this possible inversion solution are that no

complementary information is available indicating that a mini-

mum stimulus intensity is required for a behavioral response to

occur, and that the linear form is simpler. These are two very weak

arguments. However, even if the details require further investiga-

tions, the whole study remains a solid argument in favor of the

statement that deposition is significantly stimulated by object

perception and that this mechanism is essential in the spatial self-

organization of objects. The objective of raising our understanding

of individual behavior is therefore reached and the considerable

remaining uncertainties associated to the object perception

stimulus only reflect the limited knowledge that we presently have

of the way an ant perceives its immediate environment and the

way it processes the gathered information.

Along the same line of assessing what can or cannot be

considered a reliable result, modeling ant movement in [41] has a

quite different status that brings us back to the question of

introducing effective parameters. The time decorrelation assump-

tion and the instantaneous direction change assumption imply

indeed rigorously that any type of detailed two dimensional

thigmotactic movement leads to exponentially distributed one

dimensional free times the way we defined them. The clockwise

and counterclockwise direction change frequency nc plays

therefore the role of an effective parameter in the one dimensional

model that can encompass a wide variety of possible ways in which

two dimensional movement of ants is affected by the arena border.

As a matter of fact, the question of modeling the details of the

thigmotactic behavior was therefore not addressed in [41], and this

was only possible, without weakening the analysis of the picking up

and deposition behaviors, because the role of nc as a meaningful

effective movement parameter could be established on a rigorous

theoretical basis during the quantitative translation step. This

approach lowered significantly the complexity level of the one

dimensional object clustering analysis of [41], but it could not be

extended, in any straightforward manner, to the analysis of two

dimensional clustering or even three dimensional construction

behaviors: outside the particular one dimensional case, thigmo-

tactism interacts so closely with picking up and deposition that no

convincing conclusion can be reached with regard to the two

dimensional morphogenesis mechanisms without increasing our

level of understanding of the thigmotactic behavioral details.

Up to this point, we concentrated the discussion on clarifying

the exposition of the results of a behavioral modeling attempt, in

particular pointing out the parts of the final model that have been

established with enough confidence to be considered as useful

contributions to cognitive and biological research despite the

difficulties intrinsically associated to the collective behavior

modeling context. However, the strongest benefit of explicitly

distinguishing the above presented methodological steps is

certainly elsewhere: it is a strong support and helps avoiding

confusion during the process of setting up the model in an

interactive manner with experimental design and inversion

attempts, including all kinds of back and forth modeling strategies.

Parts of the representation of the individual behavior may indeed

change status, during the investigation process, according to the

success or failure of their experimental validation and character-

ization procedures. And depending on their status, the argumen-

tative requirement changes significantly. Solid cognitive arguments

are required when the considered behavior is chosen to be

presented as part of the initial model enunciation, whereas these

requirements vanish (and are replaced by only the statistical rigor

of the inversion procedures) when the same behavior has the status

of an arbitrary choice during the quantitative translation step. A

very illustrative example of such back and forth modeling

strategies and of their associated methodological requirements is

the cockroach aggregation model described in [24]. In the course

of this analysis a first experimental protocol led to the measure-

ment of the survival function corresponding to the time

cockroaches remain stopped before starting a new movement. It

appeared without any ambiguity that the survival was not

exponential, which led to a first conclusion that the time

decorrelation assumption could not be part of the model

enunciation despite of its established validity for several other

behaviors with the same species. The memory usage representa-

tion was then limited to a simple fit of the survival curve, with the

only constraint that the fit be statistically acceptable. This had

obviously a quite limited value in terms of cognitive and

behavioral interpretation. But later in the investigation it was

noted that two kinds of stopping behaviors were at work (a resting

stop and a vigilance stop) and that the previous survival function

was not exponential because it was the combination of two distinct

exponential survival curves. From this observation, the behavioral

model enunciation was modified and the temporal decorrelation

assumption came back in, together with the detailed definition of

the two stopping behaviors. Consequently, the argumentation

requirements changed drastically. It was not only required to

check experimentally that the two stopping behaviors, when

considered separately, had exponentially shaped survival func-

tions. It was required, above all, that the two introduced stops be

closely confronted to the behavioral literature, that solid

arguments be put forward to justify such a distinction as far as

this particular species was concerned, and that the criteria used to

identify the stopping type in the experiments (essentially the

antenna activity) be accurately defined in accordance with the

formulated behavioral arguments. Changing the model enuncia-

tion therefore strongly modified the type and amount of efforts

required in both the theoretical and experimental fields, with the

consequence that the cognitive conclusion of [24] had a much

broader significance and could be exposed with a higher level of

confidence.

Such very common trial and error modeling practices make it

obviously difficult to preserve the rigor required to get a final

model with any further significance than the ability to reproduce

the observed collective behaviors. From this point of view, a

constant reference to a detailed methodological frame is undeni-

ably very helpful. What is known in the relevant behavioral

literature? What are the required observations and measurements,

considering the cognitive assumptions to be validated? What are

the required replication numbers considering the statistical

inversions to be performed? The answers to these questions

change several times during any detailed investigation, and the

above presented methodological framework should help in

identifying the most significant of these changes, as consequences

of gradual modifications of the model enunciation. There is

therefore at least one very practical benefit to be expected: a

reduction of the length and complexity of experimental campaigns

thanks to a more accurate anticipation of the required biological

and statistical argumentations.

We think that such methodological considerations can be of

practical help in a broad context of collective behavior studies, but

only wherever it is possible to design specific experimental

protocols for exploring the pertinence of the suggested individual

behavior components ( specific meaning that they are independent

of the collective scale observations). Object clustering in ants meets
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such requirements and was used here for the sake of illustrative

coherence, but numerous other examples could have played a

similar role. Recent studies have indeed been reported that rely

implicitly on the approach that is explicitly developped in the

present paper. They investigated various collective phenomena,

for instance cockroach aggregation [24], fish swarms [66], sheep

herds [67] or human crowds [68–70].

Methods

In the first part of the results section we have mentioned six

models leading to identical collective pattern dynamics. In each

model, unloaded ants are assumed to be distributed uniformly

along the border of the arena and their lineic density is constant in

time. As it is further assumed that objects do not overlap, the

uniformity of the unloaded ant distribution implies that all objects

are encountered with the same rate. The picking up behavior is

therefore entirely characterized by the probability p(g) to pick up

an encountered object as a function of the perceived density g at

the object location (p also depends on the activity level a, and is

noted p(g,a), when inter-individual variability is accounted for).

After picking up an object, the loaded ant moves in all six models

according to a one-dimensional diffusion random walk (charac-

terized by a constant walking speed v along the arena’s border and

a constant rate
1

tU

at which U-turns occur). The six models differ

by the choices made for each model in terms of inter-individual

variability, temporal correlation, and picking up/deposition depen-

dence on perceived object density g. The deposition statistics is

entirely characterized by the survival probability T(t) (the

probability that the ant carries the object longer than t) that

depends on the perceived density along the path, i.e. on g(t’) at each

time t’ in the ½0,t� interval (T(t) also depends on a, and is denoted

T(t,a), when inter-individual variability is accounted for). Inter-

individual variability is characterized by the probability density

function of the activity level f (a). In all the six models, the

deposition behavior is stimulated by g. In model 1, the picking up

behavior does not depend on g, there is no inter-individual

variability and no individual temporal correlation: this implies that

T decreases exponentially with time. Model 2 differs from model 1

only by the fact that the picking up behavior is inhibited by g.

Models 3 and 4 are identical to models 1 and 2, respectively, except

that they involve inter-individual variability for the picking up and

deposition behaviors: T decreases also exponentially with time for

each individual, but the decrease rate depends on the activity level a.

Models 5 and 6 are also identical to models 1 and 2, respectively,

except that they involve temporal correlation for the deposition

behavior, and therefore T decreases non-exponentially with time.

The parameter values and functional dependences for p(g) or

p(g,a), T(t) or T(t,a), and f (a) for each model are listed in Tab. 1.

Fig. 7 illustrates that the retained parameter values exclude that the

survival probability in models 5 and 6 be fitted with any equivalent

exponential law. The conclusion is strictly identical when consid-

ering the integration over the whole ant population of the survival

probability in models 3 and 4. This confirms that temporal

correlation is indeed significant in models 5 and 6, and that inter-

individual variability is significant in models 3 and 4 (the population

average behavior cannot be replaced by that of a uniform

population with an equivalent constant activity level).

The theoretical establishment of the indistinguishability of the

models with inter-individual variability (models 3 and 4, where

T~ exp ({S)) from those with temporal correlations (models 5

and 6, where T~{M ’(S)) is based on the following mathemat-

ical properties of inverse gaussian distributions [71] (see the

caption of Tab. 1 for the complete definitions of S, M and f ):

M(S)~

ðz?

0

exp ({aS)f (a)da leading to

{M ’(S)~

ðz?

0

a exp ({aS)f (a)da ð1Þ

and

ðz?

0

af (a)da~1: ð2Þ

In model 5, when an ant encounters an object it picks it up with a

probability p5 that is independent of g (unlike in Table 1 we

temporarily introduce subscripts to make a distinction between

models). In model 3, the picking up probability depends on a
according to p3(a)~ap5. Eq. 2 leads to

p5~

ðz?

0

p3(a)f3(a)da: ð3Þ

The population average value of the picking up probability of

model 3 equals therefore that of model 5, which implies that each

object is picked up with the same temporal statistics in models 3

and 5. When considering models 4 and 6 the only difference is that

picking up probabilities depend on g but the proof is the same with

p6(g)~

ðz?

0

p4(g,a)f4(a)da: ð4Þ

Very similarly, Eq. 1 leads to

p5T5(t)~

ðz?

0

p3(a)T3(t,a)f3(a)da ð5Þ

and

Figure 7. Significance of inter-individual variabilities and
temporal correlations. The survival probabilities T(S) of models 5
or 6 (also to be interpreted as the population average of the survival
probabilities of models 3 or 4) compared to an exponential fit
corresponding to small S values (short time depositions). The extinction
coefficient of the exponential is a~M ’’(0)~1z 1

w.

doi:10.1371/journal.pone.0038588.g007
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p6(g)T6(t)~

ðz?

0

p4(g,a)T4(t,a)f4(a)da: ð6Þ

As all ants follow the same statistical moves, the product p T(t)
reflects the object’s spatial transition statistics, i.e. the probability

density function corresponding to an object being picked up at a given

location and deposited at another given one. The derivative with time

of T(t) is indeed proportional to the carrying time probability density

function and is translated into the distribution of deposition locations

via the diffusion random walk statistics. Eqs. 5 and 6 establish

therefore that the spatial distribution of deposition locations are strictly

identical in models 3 and 5, as well as in models 4 and 6.
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Table 1. Parameter values and functional dependences for the six models of object clustering behavior.

Functional forms Parameter values

Model 1 foooxg p~p? independent of g

T(t)~exp({S(t)) g?~1:3:105m{2 p?~0:02

t(t)~
t?

g?

g(t)

� �c

if g(t)ƒg?

tmin if g(t)wg?

8<
:

t min~6:3:10{2s t?~0:22 s

c~3=2

Model 2 fooxxg picking up inhibition

p(g)~
p? if gƒg?

p?
g?

g
if gwg?

8<
:

g?~5:103m{2 p?~0:1

T(t)~exp({S(t)) b~105s m{2

t(t)~
b

g(t)

Model 3 fxooxg inter-individual variability p(a)~ap? independent of g

T(t,a)~exp({S(t,a)) g?~1:3:105m{2 p?~0:02

tmin~6:3:10{2s t?~0:44 s

t(t; a)~

1

a
t?

g?

g(t)

� �c

if g(t)ƒg?

1

a
tmin if g(t)wg?

8>><
>>:

c~3=2 w~0:02

Model 4 fxoxxg picking up inhibition &
inter-individual variability p(g,a)~

ap? if gƒg?

ap?
g?

g
if gwg?

8<
:

g?~5:103m{2 p?~0:1

T(t,a)~exp({S(t,a))

t(t; a)~
1

a

b

g(t)

b~2:105 s m{2 w~0:02

Model 5 foxoxg temporal correlation p~p? independent of g

T(t)~{M ’(S(t)) g?~1:3:105m{2 p?~0:02

t(t)~
t?

g?

g(t)

� �c

if g(t)ƒg?

tmin if g(t)wg?

8<
:

t�m�i�n~6:3:10{2s t?~0:44 s

c~3=2 w~0:02

Model 6 foxxxg temporal correlation
& inter-individual variability p(g)~

p? if gƒg?

p?
g?

g
if gwg?

8<
:

g?~5:103m{2 p?~0:1

T(t)~{M ’(S(t))

t(t)~
b

g(t)

b~2:105 s m{2 w~0:02

The code in curly brackets indicates, for each model, whether inter-individual variability, temporal correlation, picking up inhibition by g or deposition stimulation by g
occur (x) or not (o). The six models only differ by the functional dependences of the probability p(g) that an ant picks up an encountered object on the perceived
density g, and of the survival probability T(t) that a loaded ant carries the object longer than time t on t (or p(g,a) and T(t,a), where a is the ant’s activity level, when
inter-individual variability is accounted for). For models 3 and 4, the activity levels are distributed according to an inverse gaussian distribution:

f (a)~

ffiffiffiffiffiffiffiffiffiffi
w

2pa3

r
exp {

w

2

(a{1)2

a

" #
. For models 5 and 6, temporal correlation is significant: T decreases as the opposite of the derivative of a Malkmus transmittivity

function M(S)~ exp w{w?(S)½ � with w?(S)~w 1z2S=w½ �1=2 , a choice that is inspired by the physics of gaseous radiation [71] where distinct absorption rates at different

frequencies lead to non-exponential spectrally integrated extinctions. In all six models, S is deduced from the deposition mean free time t according to S(t)~
Ð t

0

1

t(t’)
dt’,

the walking speed is v~1:610{2m:s{1 and the U-turn rate is 1
tU

with tU ~9:9s.

doi:10.1371/journal.pone.0038588.t001
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