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Abstract

Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-
substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of
compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount
of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO)
(1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic
cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine
sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the
control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to
quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR
response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum
sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did
not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both
compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by
different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs
through QSI is discussed.
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Introduction

Biofilm formation by many pathogens is intimately linked to

a form of inter-bacterial communication known as quorum sensing

(QS), in which small diffusible signaling molecules called

autoinducers globally regulate gene expression. Using quorum

sensing, bacterial populations can switch from acting as individual

cells to operating in a concerted, multi-cellular fashion [1]. In

a clinical setting, a major challenge presented by biofilms is that

bacteria living within them enjoy increased protection against host

immune responses [2–8] and are markedly more tolerant to

various anti-microbial treatments. A case in point is the

opportunistic human pathogen Pseudomonas aeruginosa. P. aeruginosa

is a Gram negative, biofilm-forming bacterium that has been

shown to exhibit quorum sensing behavior using two distinct acyl-

homoserine lactone (AHL) based pathways: the rhlI/rhlR pathway,

which uses butyryl acyl homoserine lactone (C4-HSL), and the

lasI/lasR pathway that uses 3-oxo-dodecanoyl homoserine lactone

(3-oxo C12-HSL). A third signaling molecule, 2-heptyl-3-hydroxy-

4(1 H)-quinolone, has been identified [9], and plays a role in

P. aeruginosa virulence and possibly inter-species communication

[10]. Multiple studies have shown that P. aeruginosa defective in QS

may be compromised in their ability to form biofilms [11–14].

However, media composition and hydrodynamic conditions

(independent of QS parameters) may also play a role in biofilm

quality and stability [15–17].

One implication of the aforementioned observations is that the

use of quorum sensing inhibitors (QSIs) may have the potential to

circumvent the challenge of the development of antidrug re-

sistance in the bacteria to which they are exposed. It is also

conceivable that QSIs could be developed as an adjuvant to the

administration of antibiotics, with the former serving to increase

the susceptibility of infecting bacteria to cell death by exposure to

antibiotics. Preliminary findings by Brackman et al. have demon-

strated that QSIs increase the susceptibility of bacterial biofilms

(including P. aeruginosa biofilms) to multiple types of antibiotics

[18]. It has recently been demonstrated that some biofilm-

associated bacteria return to the planktonic state through the

secretion of D-amino acids [19] and cis-2-decenoic acid [20]

natural products, both of which trigger biofilm disassembly. This
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finding supports the premise that small molecules that interrupt

QS could serve as a means of controlling the establishment of

bacterial infections. We report here the results of our work on the

effects of various natural products and natural-products-inspired

scaffolds as inhibitors of biofilm formation in P. aeruginosa and

suggest a possible link to QSI. Further, we demonstrate that such

compounds can reduce the bacterial load in the Drosophila

melanogaster model of P. aeruginosa infection.

Results and Discussion

Effect of Compounds on Biofilms
Both in vitro and in vivo studies have shown the potential of garlic

extracts to attenuate the virulence of P. aeruginosa. Harjai et al. [21]

have observed that in a mouse model of nosocomial catheter-

associated urinary tract infections, oral treatment with crude garlic

extracts significantly lowered renal bacterial counts and protected

mouse kidney from tissue destruction. The further observation of

decreased production of virulence factors and reduced production

of quorum-sensing signals by P. aeruginosa was interpreted to

suggest that garlic exhibits QSI activity. Symth et al. observed

a trend towards improvement in lung function in cystic fibrosis

patients with garlic therapy. However, the sample size was too

small to demonstrate statistically significant improvement in

clinical outcomes [22]. Garlic derived natural products 126
(Figure 1) have been reported to inhibit lasl/lasR-based QS systems

that are found in Pseudomonas species [23], as well as the luxI/luxR

systems found in other bacteria, such as Vibrio spp. [24,25]. Both lux

and las QS systems utilize acyl homoserine lactone (AHL)

compounds as autoinducers, although genetic regulation by these

systems varies widely between different species. Bioassay guided

fractionation of garlic extracts has revealed that the derivatives

responsible for QSI activity include ajoene, as well as sulfides and

polysulfides 124, and vinyl dithiins 5 and 6 (Figure 1) [25–27]. Of

these, 124 antagonized LuxR but were also toxic to bacteria.

However, 5 and 6 possessed QSI activity exclusively in a LuxR

monitor system [23]. All six of these compounds are derivatives of

the cysteine sulfoxide alliin (Figure 1). These compounds are

derivatives of a reaction cascade that begins in macerated garlic

tissue with alliinase-catalyzed breakdown of the precursor S-

alk(en)yl cysteine sulfoxide alliin (Figure 1). Similar alliinase-

mediated chemistry occurs in the Amazonian medicinal plant

Petiveria alliacea L. (Phytolaccaceae) to afford a variety of

organosulfur derivatives with similar functionalities but different

structures from those observed in garlic [28,29]. A combination of

natural and unnatural cysteine sulfoxides with which the P. alliacea

alliinase reacts (7211) [30] and several of the organosulfur

compounds downstream of the action of its alliinase (12216)
[25,28,31,32] are also shown in Figure 1. The demonstration that

garlic-derived natural products inhibit lux and las-based QS

systems [23] and the observation of the presence of the chemistry

that produces these compounds in an increasing number of plants

[28,29,31,33,34], implies that plants may have evolved to produce

these secondary metabolites in order to serve as quorum sensing

antagonists that prevent the establishment of infections by

pathogenic microbes.

To begin our investigations into this possibility, we determined

the effect of five cysteine sulfoxides with which the P. alliacea

alliinase has been shown to react (7211, Figure 1) [30], as well as
several of the sulfide and disulfide derivatives of the alliinase-

mediated reactions (12216, Figure 1), on biofilm formation and

QS-based signaling in P. aeruginosa. The effects of these compounds

on P. aeruginosa biofilm formation were initially assessed using

a crystal violet-based biomass staining assay, with the results

shown in Figure 2A. 4-Nitropyridine-N-oxide (NPO), a known

inhibitor of biofilm formation in P. aeruginosa, was used as a positive

control [32,35]. Of the compounds tested, only S-phenyl-L-

cysteine sulfoxide (7), diphenyl disulfide (12) and NPO demon-

strated significant biofilm inhibitory activity (Dunnett’s test,

p,0.01), each at a concentration of 1 mM. These results were

confirmed in optical micrographs of the resultant biofilms

(Figure 3A), which show a significant difference in biofilm density

on the bottom surface of the microplates in the presence of 7, 12
and NPO as compared to the ‘‘no-inhibitor’’ control. Further,

laser scanning confocal microscopy of a biofilm grown in the

presence of compound 7 showed significantly altered 3D

morphology, as compared to a no-inhibitor control (Figure 3B).

In particular, the biofilm exposed to compound 7 is sparse and has

limited 3D projections off of the glass substrate (Figure 3B, right),

while the control biofilm (Figure 3B, left) is densely packed and

extends vertically with multiple 3D projections.

Following this initial screening of compound effectiveness,

compounds 7, 12 and NPO were tested in a concentration

dependent manner. Figure 2B shows the results of these

experiments in which the concentrations of compounds 7, 12
and NPO were varied from 0.01–1 mM. All three compounds

exhibited significant (p,0.01) inhibitory activity against biofilm

formation at 1 mM, but had diminished activity at lower

concentrations. Of the three compounds, 12 retained significant

inhibitory activity at 0.1 mM. To distinguish between the effects of

7, 12 and NPO on cell growth vs. cellular biofilm forming ability,

planktonic cell density was determined by measuring the OD of

each microwell prior to biofilm staining with crystal violet. Our

results show that, in addition to inhibiting biofilm formation, NPO

significantly inhibits planktonic cell growth (Figure 2, panels A &

B). In contrast, planktonic cell density was not significantly affected

by compounds 7 and 12. We further confirmed these results by

performing growth curve analysis for compounds 7, 12, and NPO

(Figure 4). P. aeruginosa cells exposed to 1 mM of compounds 7 and

12 showed no lag in growth, as compared to control cultures

[containing only media and the solvent (DMSO) used for

compound resuspension], and reached an optical density of

.0.4 within 10 h. A parallel experiment using concentrations of

up to 0.1 M of compounds 7 and 12 showed no difference in

growth behavior (data not shown). In contrast, cells exposed to

NPO showed no increase in OD, indicating complete inhibition of

cell growth. These data suggest that NPO primarily affects biofilm

formation by inhibiting bacterial growth, while compounds 7 and

12 affect biofilm formation independent of cell growth/propaga-

tion.

To further evaluate the effects of the compounds on P. aeruginosa

biofilms, the formazan-based 3-(4,5-dimethylthiazol-2-yl)-2,5-di-

phenyltetrazolium bromide (MTT) assay was performed on

biofilms that were exposed to compounds 7, 12 and NPO. This

assay measures enzymatic activity in actively respiring cells and is

therefore a measure of cell viability and/or relative numbers of

viable cells. The analysis showed that biofilms grown in the

presence of compounds 7 and 12 had significantly lower activity

(41% and 45%, respectively) as compared to a no inhibitor control

(Figure 5). In contrast, exposure to NPO reduced cell activity in

the biofilm by.99%. These data further corroborate the results of

the crystal violet-based staining assays, which showed a distinct

decrease in stained biomass for biofilms grown in the presence of

compounds 7, 12 and NPO. The compounds did not however,

inhibit planktonic cell growth, as demonstrated in the planktonic

cell OD measurements shown in Figure 2, panels A & B, as well as

the growth curve analysis shown in Figure 4. This is in stark

contrast to the previously reported biofilm inhibitor NPO, which
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appears to inhibit both planktonic cell growth and biofilm

formation. This distinction is important, since inhibition of

planktonic growth and biofilm formation are decoupled for our

compounds, and this inhibition does not rely upon strict biocidal

activity.

Effect of Compounds on Quorum Sensing
As described earlier, garlic-derived structural relatives of our

active compounds demonstrated QSI activity in lux-based QS

systems [23]. To determine if our active compounds behaved

similarly, we evaluated their effects on QS using previously

described quorum sensing reporter plasmids, pFNK202 and

pFNK503 in E. coli, and in a P. aeruginosa reporter strain (PAO-

MW1 with pUM15) [36]. The results of these experiments are

shown in Figures 6 and 7. Compound 7 was shown to significantly

affect the quorum sensing response (p,0.01), as measured by GFP

expression, for both pFNK202 and pFNK503. This indicates that

compound 7 can antagonize both the lasI/lasR and rhlI/rhlR

quorum sensing systems in this artificial reporter strain. Com-

pound 7 also significantly (p,0.01) affected quorum sensing in the

P. aeruginosa PAO-MW1 pUM15 reporter, further supporting the

conclusion that it is operating through antagonism of the lasI/R

quorum sensing system. To further examine the effect of

compound 7 on quorum sensing, we used the PAO-MW1 reporter

containing pUM15 in our biofilm inhibition assay. The reporter

itself is deficient in both rhlI and lasI (rhlI::Tn501 lasI::tetA) which

Figure 1. C-S lyase (i.e. alliinase) mediated cleavage of cysteine sulfoxides. For both the onion and P. alliacea alliinases, reaction with
a cysteine sulfoxide derivative yields a fleeting sulfenic acid, two molecules of which can condense to give thiosulfinates. The thiosulfinates react
further to yield a variety of organosulfur compounds. Compounds 126 from garlic have been found to inhibit luxR- and lasR-based QS systems. The
P. alliacea alliinase has been shown to have broad substrate specificity and degrade a variety of cysteine sulfoxide derivatives such as compounds
7211.
doi:10.1371/journal.pone.0038492.g001
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makes it a QS mutant when exogenous autoinducer is not

provided. We exposed this strain to both exogenous autoinducer

(3-oxo C12 HSL) alone, and to 3-oxo C12 HSL plus compound 7,
and evaluated biofilm formation. This experiment showed that

exposure to compound 7 reduced biofilm formation by .50%

(data not shown). When no autoinducer was added (completely

shutting off quorum sensing), biofilm formation by both the

control (no compound added) and compound 7 exposed cells was

reduced by 80% (data not shown). Further, there was no

significant difference between biofilm formation in these two

exposure groups. This follows previous studies in which elimina-

tion of quorum sensing significantly affected biofilm formation in

P. aeruginosa [11–14]. We conclude that complete inhibition of

quorum sensing masks the effect of compound 7 on biofilm

formation and cannot distinguish between QSI or another

mechanism responsible for biofilm inhibition.

Unlike compound 7, compound 12 did not significantly affect

the quorum sensing response for the E. coli reporters pFNK202 or

pFNK503, but did show significant antagonism in the P. aeruginosa

reporter (12% reduction in fluorescence). None of the other

compounds significantly affected the quorum sensing response

(data not shown). The control inhibitor, NPO, did not show an

effect on quorum sensing in either of the E. coli reporters, but did

reduce quorum sensing in the P. aeruginosa reporter by 99%. This is

likely due to the difference between the assays used for E. coli vs. P.

aeruginosa, since the P. aeruginosa assay was dependent upon cell

growth and expression of the fluorescent reporter protein. As

shown previously, NPO inhibits growth of P. aeruginosa, which

would likewise prevent expression of the reporter (YFP) in this

assay. Since both compounds 7 and 12 were shown to inhibit

biofilm formation, but do not have similar QSI activity, they may

be functioning via different pathways, or may be additionally

Figure 2. Panel A: Inhibition of P. aeruginosa PAO1 biofilm formation by small molecule inhibitors. Panel B: Concentration dependence
for inhibition of P. aeruginosa PAO1 biofilm formation by small molecule inhibitors. For 2A and 2B, average OD600nm measurements of crystal violet
stained biofilms (top) and planktonic cells (bottom) are shown with error bars representing one standard deviation (n = 3). ANOVA (p,0.0001) was
performed, followed by Tukey’s test, with asterisks (*) indicating significant (p,0.01) reduction in planktonic cell density or biofilm, and (+)
representing a significant increase.
doi:10.1371/journal.pone.0038492.g002
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processed by the cells to yield alternative compounds or

breakdown products.

Effect of Compounds on Infection in D. melanogaster
It has been observed that biofilm formation can have profound

effects on infection dynamics and pathogenesis [37]. Recently, the

model organism Drosophila melanogaster has been used to study in vivo

P. aeruginosa infection dynamics, and in particular, the relationship

between biofilm formation and pathogenicity [38,39]. Thus, Estin

et al. have shown that P. aeruginosa infection and lethality in

Drosophila is QS-dependent and that expression of a human-

derived autoinducer degrading enzyme (paraoxonase 1) can act as

a protective agent to reduce infection [38]. Fly mortality (reflecting

pathogen virulence) is a composite measure of host defense

incorporating both resistance and tolerance to the infection.

Previous experiments in our labs (using Pseudomonas aeruginosa

infections) have shown a strong positive correlation between CFU

counts and fly mortality (data not shown). In this study, we used

the Drosophila infection model to assess the effect of compounds on

patterns of resistance (which is defined as the inverse of bacterial

load). We observed a dramatic decrease in the number of bacteria

recovered from flies treated with either compound 7 or 12
compared to controls (Figure 8). Both compounds had similar

effects on slowing bacterial growth in flies. The solvent used to

dissolve the compounds (DMSO) appears to slow bacterial growth

during infection, but to a much lesser extent than either

compound 7 or 12 (Figure 8). Similar effects were seen for both

male and female flies, and therefore no sex bias was observed. For

these experiments, bacteria were suspended in a 0.1 M concen-

tration of compound that was then injected into the flies. Bacteria

were only exposed to this high concentration for 5 min or less,

since injected material is expected to be diluted inside of the flies.

Further, 0.1 M concentrations of compounds 7 and 12 were not

shown to affect P. aeruginosa cell growth dynamics (as determined

by growth curve analysis). Therefore the reduced bacterial load in

affected flies is attributed to increased ability of the flies to mitigate

infection, and not compound induced reduction in bacterial

growth rate.

Our results indicate that the disruption of biofilm formation (or

QS) may significantly alter infection dynamics in acute systemic

infections in D. melanogaster. We propose that the inability to form

a biofilm during acute systemic infections may make the growing

bacterial population more susceptible to the innate immune

defense of the fly. Our results seem in contrast to those of a recent

study that found that strains of P. aeruginosa not capable of

producing a biofilm showed increased virulence in the fly [39].

However, in that study, flies were fed bacteria that resulted in

chronic infections maintained largely in the crop. Further, strains

capable of biofilm formation were better inducers of local

antimicrobial peptide production in the crop, indicating that the

biofilm is more immunogenic than planktonic cells [39]. In acute

systemic infections such as those carried out here, innate immune

induction due to both wounding and the recognition of the

bacteria are likely to occur, and the inability to form a biofilm may

leave the population more prone to attack by these defenses.

The structural relationship between the two active compounds 7
and 12 is noteworthy because of the clues it provides on how the

active compounds may be metabolized in P. aeruginosa. When a C-

S lyase such as the P. alliacea alliinase encounters 7 or another

cysteine sulfoxide of appropriate structure, the C2S( =O) bond

that is b- to the amino acid moiety is cleaved to yield a sulfenic

acid, two molecules of which rapidly condense to yield

a thiosulfinate (Figure 1). The labile thiosulfinates can then

undergo further transformations to yield disulfides. In the case of

7, the corresponding disulfide is 12. C-S lyase mediated

decompositions of cysteine sulfoxides are marked by the

emergence of a strong sulfurous odor as the disulfide is generated.

The smell is characteristic and easily detectable since the precursor

cysteine sulfoxides are non-volatile compounds. Over the course of

our experiments, we observed that with time, the P. aeruginosa

samples that were incubated with cysteine sulfoxides 7211 all

began to emit an organosulfur odor reminiscent of fresh P. alliacea

macerates. The implication of this observation is that the bacteria

possess a C-S lyase enzyme analogous to those observed in garlic

and P. alliacea, that can degrade cysteine sulfoxides to ultimately

yield sulfides and/or disulfides that might themselves exhibit

biofilm inhibitory activity. Although there are no literature reports

that show the PAO1 strain of P. aeruginosa to possess cysteine

sulfoxide lyases, a cysteine sulfoxide lyase has been isolated from

Pseudomonas cruciviae [40]. An amino acid BLAST search [41] of the

P. aeruginosa PAO1 genome yields a hypothetical protein sequence

with 26% sequence similarity (and total alignment score of 31.6) to

the Allium cepa (onion) C-S lyase (GenBank: AF126049.1). The

sequence similarity is relatively low; however, this putative protein

could indeed have C-S lyase enzymatic activity. This possibility

would need to be demonstrated or confirmed in a follow-on study.

A further implication of our findings is that the cysteine sulfoxides

enter into the bacterial cells, since their decomposition requires the

action of lyase enzymes that would not likely be present in the

extracellular milieu, but rather in the cytosol.

Since it has been demonstrated that structurally similar garlic-

derived organosulfur compounds can inhibit lux-based bacterial

quorum sensing [23] and that compound 7 identified in this study

Figure 3. Panel A: Optical micrographs of bacterial biofilms. The films were grown in the presence of small molecule inhibitors 7 and 12 at
1 mM final concentration. Scale bar = 100 mm. Panel B: Laser scanning confocal micrographs of biofilms. The films were grown in the presence of
1 mM compound 7 (right) or without inhibitor (left). Top down images are shown in the upper views, with vertical and horizontal cross-sections
shown to the right and below, respectively. Three dimensional reconstructions are shown in the bottom views. Scale bars for top down and 3D views
are 50 mm, while scale bars for cross sections are 10 mm.
doi:10.1371/journal.pone.0038492.g003

Figure 4. Growth curve analysis (OD600nm) for P. aeruginosa. The
bacteria were grown in the presence of 1 mM of compounds 7, 12,
NPO and DMSO. Error bars represent the standard deviation (n = 3).
doi:10.1371/journal.pone.0038492.g004
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inhibits las and rhl-based quorum sensing, we hypothesize that its

inhibition of biofilm formation in P. aeruginosa may occur through

antagonism of quorum sensing pathways. The fact that compound

12 did not show significant quorum sensing inhibition, but did

inhibit biofilm formation, suggests that it is functioning via

a different mechanism, or its QSI activity is obscured by the

particular QSI assays that were used. Nevertheless, our results

reveal a new class of bacterial biofilm inhibitors, and further

support an approach to biofilm inhibition via antagonism of

quorum sensing behavior. Further, we have demonstrated that

these compounds can significantly affect the bacterial load in

a Drosophila based infection model, which suggests their applica-

bility for mitigating P. aeruginosa infections. Studies are underway to

elucidate the specific mechanism of action of these compounds in

biofilm inhibition, to identify their mode of action during Drosophila

infection, and to further characterize their QSI activity.

Materials and Methods

Instrumentation
NMR spectra were recorded on a Bruker 400 MHz spectrom-

eter. IR spectra were recorded using a Perkin Elmer Spectrum 100

FT-IR spectrophotometer.

Compounds
The S-phenyl- and S-benzyl-L-cysteines (precursors to com-

pounds 7 and 8 respectively), as well as diphenyl disulfide,

dibenzyl sulfide and dibenzyl disulfide (compounds 12, 13, and 14
respectively) were purchased from Sigma-Aldrich (St. Louis, MO,

USA) and were used without further purification. Compound 8
was synthesized as previously described [29]. S-b-Phenylethyl-, S-
[(4-methylphenyl)methyl]- and S-[(4-chlorophenyl)methyl]-L-cy-

steines (precursors to compounds 9, 10, and 11 respectively) were

synthesized as described by Kubec and Musah [29]. Briefly, to

a stirred solution of L-cysteine (0.1 mol) in 150 ml of 1 M NaOH

and 200 ml of ethanol was added the corresponding bromide (1.15

equiv). After 2 h, the solution was acidified with conc. HCOOH to

pH 5–6. The precipitated product was filtered off and washed

thoroughly with acetone and diethyl ether. Cysteine sulfoxides 7

and 9–11 were prepared by oxidation of the corresponding S-

substituted L-cysteines with H2O2. Bis(2-phenylethyl)disulfide and

bis[(4-methylphenyl)methyl] disulfide (compounds 15 and 16
respectively) were synthesized by NaIO4 oxidation of the

corresponding thiols as described by Montazerozohori et al. [42].

Briefly, 0.5 equivalents of NaIO4 was placed in a mortar and

moistened with water. Then 1 equivalent of the thiol was added

and the mixture was triturated for 2 min. The solid material was

taken up in CH2Cl2 and the resulting solution filtered. The filtrate

was dried over MgSO4 and the solvent was evaporated under

reduced pressure to yield the disulfide product.

S-(b-Phenylethyl)-L-cysteine (precursor to compound
9): white solid; mp 2202221uC; IR nmax cm21: 267523150 (m,

br), 1680 (m, sh), 1577 (m, sh), 1479 (m, sh), 1408 (m, sh), 695 (s, sh);
1H NMR (400 MHz; D2O/NaOD; DSS): d 2.76 (1H, dd, J=8.0,

14.8 Hz, H-3a), 2.8422.94 (5H, m), 4.38 (1H, dd, J=2.4, 8.0 Hz,

H-2), 7.3627.42 (5H, m, Harom);
13C NMR (400 MHz; D2O/

NaOD; DSS): d 33.0, 36.8, 37.4, 55.0, 126.4, 128.5, 128.6, 140.6,

180.0; HR ESI-TOF [MH+]: 226.0890 (calc. for C11H15NO2S:

226.0896).

S-[(4-Methylphenyl)methyl]-L-cysteine (precursor to
compound 10): white solid; mp 2222223uC (boiling water);

IR nmax cm
21: 251023220 (m, br), 1616 (m, sh),1584 (s, sh), 1558 (s,

sh), 1492 (s, sh), 1393 (s, sh), 821 (m, sh); 1H NMR (400 MHz; D2O/

NaOD; DSS ): 2.31 (3H, s), 2.69 (1H, dd, J=8.4, 12 Hz, H-3a),

2.76 (1H, dd, J=2, 12 Hz, H-3b), 3.38 (1H, dd, 4.0, 12.0 Hz, H-2),

3.74 (2H, s, H-5), 7.2127.29 (4H, m, Harom);
13C NMR

(400 MHz; D2O/NaOD; DSS): d 20.0, 35.1, 36.2, 54.8, 128.8,

129.2, 135.3, 137.3, 181.0; HR ESI-TOF [MH+]: 226.0900 (calc.

for C11H15NO2S: 226.0896).

S-[(4-Chlorophenyl)methyl]-L-cysteine (precursor to
compound 11): white solid; mp 207–209uC (boiling water); IR

nmax cm
21: 262523215 (m, br), 1618 (m), 1588 (m, sh), 1562 (m, sh),

1490 (s, sh), 1394 (m, sh), 1094 (m, sh), 839 (m, sh), 730 (m, sh); 1H

NMR (400 MHz; D2O/NaOD; DSS): d 2.76 (1H, dd, 8, 12 Hz,

H-3a), 2.69 (1H, dd, 4.0, 12.0 Hz, H-3b), 3.37 (1H, dd, 6.4,

12.0 Hz, H-2), 3.66 (2H, s, H-5), 7.3427.39 (4H, m, Harom);
13C

NMR (400 MHz; D2O/NaOD; DSS): d 34.7, 36.1, 54.8, 128.5,

Figure 5. Cell viability within microplate-established biofilms as determined by the MTT assay. Biofilms were grown in the presence of
1 mM of compounds 7, 12 and NPO. ANOVA (p,0.0001) was performed, followed by Tukey’s test, with asterisks (*) indicating significant (p,0.01)
reduction in viability as compared to the no inhibitor control (n = 5).
doi:10.1371/journal.pone.0038492.g005
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130.3, 132.2, 137.1, 181.0; HR ESI-TOF [MH+]: 246.0353 (calc.

for C10H12ClNO2S: 246.0350).

S-Phenyl-L-cysteine sulfoxide (7): white solid; mp

1582160uC (boiling water); IR nmax cm21: 247623165 (m, br),

1583 (s), 1516 (m), 1401 (m), 1032 (s, sh), 746 (m, sh), 688 (s, sh); 13C

NMR (400 MHz; D2O, NaOD): 38.8, 54.9, 126.5, 129.1, 129.5,

134.5, 180.5; HR ESI-TOF [MH+]: 214.0533 (calc. for

C9H11NO3S: 214.0532).

S-(b-Phenylethyl)-L-cysteine sulfoxide (9): white solid; mp

1792180uC; IR nmax cm
21: 250023175 (m, br), 1651 (m), 1582 (s,

sh), 1399 (m, sh), 1320 (m, sh), 1023 (s, sh), 700 (s, sh); 13C NMR

(400 MHz; D2O/NaOD; DSS): d 52.0, 52.6, 56.5, 56.7, 126.9,

128.6, 128.8, 138.7, 179.3; HR ESI-TOF [MH+] 242.0850 (calc.

for C11H15NO3S: 242.0845).

S-[(4-Methylphenyl)methyl]-L-cysteine sulfoxide (10):
white solid; mp 1692171uC; IR nmax cm21: 253023170 (m, br),

1583 (s),1514 (m, sh), 1420 (m, sh), 1356 (m, sh), 1016 (s, sh), 817 (m,

sh); 13C NMR (400 MHz; D2O/NaOD; DSS): d 20.22, 50.88,

55.59, 125.93, 129.49, 130.34, 138.93, 179.79; HR ESI-TOF

[MH+]: 242.0842 (calc. for C11H15NO3S: 242.0845).

S-[(4-Chlorophenyl)methyl]-L-cysteine sulfoxide (11):
white solid; mp 1702172uC; IR nmax cm21: 252123165 (m, br),

1577 (m, br), 1492 (m, sh), 1388 (m, sh), 1019 (s, sh), 824 (m); 13C

NMR (400 MHz; D2O, NaOD): d 51.0, 55.6, 55.7, 127.8, 128.8,

Figure 6. Inhibition of quorum sensing. In these experiments, E. coli pFNK202 (rhlI/rhlR - C4 HSL autoinducer) and pFNK503 (lasI/lasR - 3-oxo C12
autoinducer) reporters were used. Fluorescence intensity (480 nm/520 nm Ex/Em) of the resulting QS induced GFP expression was measured,
following 24 h exposure to 1 mM of compounds 7, 12 and NPO. ANOVA (p,0.0001) was performed, followed by Tukey’s test, with asterisks (*)
indicating significant (p,0.01) reduction in fluorescence as compared to the no inhibitor control (n = 3).
doi:10.1371/journal.pone.0038492.g006
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131.8, 134.0, 179,2; HR ESI-TOF [MH+]: 262.0303 (calc. for

C10H12ClNO3S: 262.0299).

Bis(2-phenylethyl) disulfide (15): viscous pale yellow oil;

IR nmax cm21: 3026 (w, sh), 2911 (w), 1603 (w, sh), 1495 (m, sh),

1453 (m, sh), 748 (m); 1H NMR (CDCl3, TMS): d 2.91–3.01 (4H,

m), 7.18–7.31 (5H, Harom);
13C NMR (400 MHz; CDCl3; TMS):

d 35.8, 40.2, 126.5, 128.6, 128.7, 140.1; HR ESI-TOF [MH+]:

275.0922 (calc. for C16H18S2: 275.0923).

Bis[(4-methylphenyl)methyl] disulfide (16): white solid;

mp 42244uC; IR nmax cm
21: 3019 (w, sh), 2914(w, sh), 1510 (m, sh),

1101 (m, sh), 814 (s, sh); 1H NMR (400 MHz; CDCl3, 0.03%

TMS): d 2.33 (s, 3 H), 3.61 (s, 2 H), 7.12 (4H, Harom);
13C

(400 MHz; CDCl3; TMS): d 21.3, 43.3, 129.3, 129.4, 134.5,

137.2; HR ESI-TOF [MH+]: 275.0918 (calc. for C16H18S2:

275.0923).

Figure 7. Inhibition of quorum sensing for the P. aeruginosa PAO-MWI pUM15 (lasI/lasR –3-oxo C12 autoinducer) reporter.
Fluorescence intensity (480 nm/520 nm Ex/Em) of the resulting QS induced YFP expression was measured, following 24 h exposure to 1 mM of
compounds 7, 12 and NPO. ANOVA (p,0.0001) was performed, followed by Tukey’s pairwise comparison test, with asterisks (*) indicating significant
(p,0.01) reduction in fluorescence as compared to the no-compound control (n = 3).
doi:10.1371/journal.pone.0038492.g007

Figure 8. Effects of compounds 7 and 12 on D. melanogaster infected with P. aeruginosa PAO1. Treatment groups not connected by the
same symbol are significantly different from each other, as determined by ANOVA (p,0.01) and Tukey’s test (p,0.05).
doi:10.1371/journal.pone.0038492.g008
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Biofilm Inhibition
P. aeruginosa PAO1 was propagated on trypticase soy agar (TSA)

for plate-based assays or in trypticase soy broth (TSB) for liquid

culture. M9 growth media supplemented with 0.4% (w/v) glucose

and 0.4% (wt/v) casamino acids was used for biofilm formation

experiments. Culture media (TSB, TSA, M9 salts and casamino

acids) were obtained from Difco/Becton Dickinson (Franklin

Lakes, NJ, USA) and all other reagents (phosphate buffered saline,

glucose, ethanol and crystal violet) were obtained from Sigma-

Aldrich (St. Louis, MO, USA). Corning 35–1172 flat-bottomed

polystyrene 96-well plates were used for biofilm formation

experiments and optical density measurements were performed

in a Tecan M-200 (Durham, NC, USA) plate reader. Optical

micrographs of biofilms were obtained using a Nikon Eclipse 80i

microscope.

A microplate based assay, modified from Junker et al. [32] was

used to screen compounds for QSI. Briefly, P. aeruginosa PAO1 was

grown in TSB for 18 h at 37uC with rotary shaking at 225 rpm.

The culture was then centrifuged at 14,000 rpm and rinsed with

phosphate buffered saline (PBS, pH 7.4) three times, then was re-

suspended in M9 minimal growth media to approximately

16107 cfu/ml (determined by OD and plate count assay). Test

compounds were dissolved in DMSO and were added to sterile

distilled water to achieve concentrations ranging from 0.1–10 mM

while keeping DMSO at a maximum of 1% (v/v). P. aeruginosa

inocula (360 ml) were then pre-mixed with 40 ml of the test

compound solutions to achieve final compound concentrations

ranging from 0.01–1 mM. An aliquot (100 ml) of this cell/

compound mixture was then added to three separate wells in

a 96-well microplate for replicate testing. For control wells (no

inhibitor), dilute DMSO was added to the inocula instead of test

compounds, to a final concentration of 1% (v/v). Optical density

(OD600nm) measurements were performed immediately after

inoculation and after 24 h incubation at 37uC (without shaking)

to monitor planktonic cell growth. To determine the amount of

biofilm formation, supernatant from the microplate wells was

gently removed and the wells were washed twice with 150 ml of
PBS using a multichannel pipette. The remaining biofilm was then

stained using 100 ml of a 0.2% (w/v) crystal violet solution for

15 min at room temperature. The crystal violet was then removed

from the wells, the wells were rinsed four times with PBS, and then

100 ml of 95% ethanol was added to extract the crystal violet

solution from the biofilm. The OD600nm of the extracted crystal

violet was then measured, yielding a measure of biofilm formation

(relative to the control). For optical imaging, crystal violet stained

biofilms were washed with distilled water and no ethanol

extraction was performed.

In addition to crystal violet based quantification of biofilm

biomass, cell viability within biofilms exposed to inhibitor

compounds was determined using the formazan dye-based MTT

assay (Cell Proliferation Kit I, Roche Diagnostics, Mannheim,

Germany). This assay has previously been described for de-

termination of biofilm cell viability [43–45]. Briefly, biofilms were

grown in 96 well microplates for 24 h as described above, in the

presence and absence of inhibitor compounds. After this initial

inoculation period, planktonic cells were removed and the

remaining biofilm was gently rinsed three times with 100 ml of
PBS. After rinsing, 100 ml of PBS and 10 ml of the MTT labeling

reagent were added and the suspension was incubated for 4 h at

37uC, followed by addition of 100 ml of solubilization solution.

Plates were then incubated for 24 h at 37uC and absorbance

measurements were taken using a Tecan M-200 plate reader at

560 nm (peak absorbance for the formazan dye breakdown

product) and at 700 nm (reference wavelength for the intact dye).

Confocal Imaging
To prepare biofilms for confocal imaging, cells were cultured at

37uC overnight in TSB. Biofilms were grown on a 50 mm glass

bottom dish (Willco Wells B.V., Amsterdam, The Netherlands) by

diluting the overnight cell culture to 1% in 10% TSB in filter-

sterilized deionized water. Compounds were added to the

experimental samples to a final concentration of 1 mM, and

filter-sterilized deionized water was used in place of compounds in

the control samples. Samples were incubated without shaking for

48 h at 37uC. Biofilms were then stained with FilmTracer FM 1–

43 fluorescent biofilm cell stain (Invitrogen) at a final concentra-

tion of 1 mg/ml. Imaging was performed with a Leica TCS SP5 II

confocal microscope, using a 20X oil-immersion lens with 477 nm

excitation and 560–600 nm emission range. Both image acquisi-

tion and subsequent manipulation were performed using Leica

Application Suite v2.1.2 software.

Quorum Sensing Inhibition
Quorum sensing inhibition (QSI) studies were performed in

both Escherichia coli and P. aeruginosa biosensor strains which

respond to exogenously added autoinducers by expressing

fluorescent proteins (GFP or YFP). Experiments using E. coli were

performed using quorum sensing reporter plasmids pFNK-503-

qscrsaL (abbreviated pFNK503) or pFNK-202-qsc119 (abbreviat-

ed pFNK202) in E. coli JM2.300, as previously reported by

Brenner et al. [46]. These plasmids were kindly provided by Dr.

Ron Weiss (Massachusetts Institute of Technology, Cambridge,

MA, USA). Plasmid pFNK503 contains part of the P. aeruginosa

lasI/R pathway, including the lasR gene and the green fluorescent

protein (gfp) gene under the control of the pLas promoter. Cells

hosting this plasmid respond to 3-oxo C12-HSL by producing

GFP. Plasmid pFNK202 contains part of the P. aeruginosa rhlI/R

pathway, including the rhlR gene and the green fluorescent protein

(gfp) gene under the control of the pRhl promoter. Cells hosting

this plasmid respond to C4-HSL by producing GFP. Both strains

pFNK503 and pFNK202 were maintained on trypticase soy agar

(TSA) plates containing 0.5 mg/ml kanamycin (Kan) at 37uC. QSI

studies in P. aeruginosa were performed using a quorum sensing

reporter strain previously described by Muh et al. [36]. This

reporter strain, obtained from Dr. Peter Greenberg (University of

Washington, Washington State, USA) uses pUM15 (rasL::yfp

transcriptional fusion, Cbr) in a P. aeruginosa PAO-MW1

(rhlI::Tn501 lasI::tetA) background. This reporter expresses YFP

when exposed to 3-oxo C12-HSL at concentrations as low as

0.3 mM [36]. Cultures were maintained on Luria-Bertani Broth

(LB) plates containing 150 mg/ml carbenicillin at 37uC.
Liquid cultures of E. coli reporter strains were grown in TSB

+0.5 mg/ml Kan at 37uC with shaking at 225 rpm. For QSI

experiments, strains were grown for 12 h to an OD600 of 0.7.

Aliquots of cells (80 ml) were then added to individual wells of

a sterile 96 well microplate. Autoinducers (10 ml of 1 mM 3-oxo

C12-HSL or C4-HSL, Cayman Chemicals, Ann Arbor, MI) were

then added to each well. This addition was followed by addition of

test compounds (10 ml of a 10 mM stock solution) to yield a final

concentration of 1 mM, prepared as described above. Control

wells contained TSB only, cells without autoinducer, cells with

autoinducer but no test compound, or cells with autoinducer and

1 mM DMSO (to determine if the DMSO component of the test

compound stocks affected quorum sensing response). P. aeruginosa

QSI experiments were performed using a similar protocol with the

following modifications. The P. aeruginosa reporter was grown in

LB with 150 mg/ml carbenicillin, and 10 ml of a mid-log phase

culture was added per microwell. Microwells were brought to

100 ml total volume with sterile LB and the autoinducer 3-oxo
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C12-HSL was added to a final concentration of 0.1 mM. For both

E. coli and P. aeruginosa reporters, an initial fluorescence reading

(480 nm excitation/520 nm emission) was then taken for each well

(in a Tecan M200 microplate reader), followed by incubation at

37uC without shaking. Fluorescence readings were then repeated

at 24 h to evaluate the amount of GFP expression for each

experimental condition. The percent change in fluorescence

intensity was determined for each test condition and a minimum

of three replicate samples was used for all experiments.

Effect of Compounds on Infections in Drosophila
Melanogaster
In recent years D. melanogaster has emerged as a powerful model

system for understanding P. aeruginosa pathogenicity [39,47]. Thus,

the effects of compounds on in vitro infections were tested using D.

melanogaster infected with P. aeruginosa strain PAO1. For infections,

cells were grown to log-phase in LB broth at 37uC in a shaking

incubator. Cultures were diluted using sterile LB to a concentration

of 26107 cfu/ml for injections. There were three treatment

groups: (i) cells alone; (ii) cells with DMSO (10% v/v final

concentration); and (iii) cells and 0.1 M compounds. Stock

solutions of compounds were made in DMSO. Growth curve

analysis, as described above, was performed using 0.1 M

concentrations of compounds to demonstrate P. aeruginosa viability

at elevated compound concentrations. A volume of 54 nl for each

treatment culture was injected into the thorax of flies using

a Nanoject II nanoliter injector (Drummond Scientific), corre-

sponding to ,1000 cfu per fly. A total of 16 males and 16 females

were injected for each treatment group. Single flies were

homogenized 18 h post injection in 250 ml of sterile LB, diluted

to 1% of its original concentration. An aliquot of this sample

(50 ml) was plated using an Autoplate 4000 spiral plater (Spiral

Biotech, Bethesda, MD, USA). Plates were incubated overnight at

30uC and the number of colony forming units (cfu) was counted

using the Q-Count detection system (Spiral Biotech, Bethesda,

MD, USA). Colony counts were natural log transformed prior to

analysis using analysis of variance (ANOVA). The statistical model

included the main effects of treatment and sex as well as the

combined treatment/sex interaction.

Statistics
Statistically significant variance (p,0.01) for collected data was

determined by ANOVA. Data with significant variance were

further analyzed by Dunnett’s multiple comparison test or Tukey’s

Honestly Significant Difference (HSD) test. For fly infection

experiments, pair-wise comparison of the different treatment

groups was carried out using Tukey’s HSD test with an

experiment-wise error rate of a #0.05. Statistics were performed

using GraphPad Prism 5 software (Graph Pad Software Inc., La

Jolla, CA, USA).
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