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Abstract

As suggested in recent studies, species recognition and disambiguation is one of the most critical and challenging steps in
many downstream text-mining applications such as the gene normalization task and protein-protein interaction extraction.
We report SR4GN: an open source tool for species recognition and disambiguation in biomedical text. In addition to the
species detection function in existing tools, SR4GN is optimized for the Gene Normalization task. As such it is developed to
link detected species with corresponding gene mentions in a document. SR4GN achieves 85.42% in accuracy and compares
favorably to the other state-of-the-art techniques in benchmark experiments. Finally, SR4GN is implemented as a standalone
software tool, thus making it convenient and robust for use in many text-mining applications. SR4GN can be downloaded
at: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/downloads/SR4GN
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Introduction

Species recognition has become increasingly important for the

text mining community in recent years. In particular, it has

been shown that accurately recognizing species and linking

them to relevant genes or proteins is critical to the success of

many downstream tasks such as gene normalization (GN) [1,2]

and protein-protein interaction extraction [3,4,5]. To address

this issue, Gerner et al., [6] developed Linnaeus: a species name

identification tool for the biomedical literature. As a standalone

and public tool, Linnaeus has been widely used by many

participating teams in the BioCreative III Gene Normalization

task [1]. More recently, a new hybrid rule-based/machine

learning system called OganismTagger [3] was developed as a

plugin of the GATE system [7,8], which was shown to perform

favorably to Linnaeus in species identification.

Although identifying species names in biomedical text is not

particularly challenging by itself (,95% in F-measure reported by

both Linnaeus and OganismTagger), associating recognized

species mentions to other biological entities (e.g. genes) remains

challenging and unsolved despite few recent attempts, most

notably by Wang et al., [9] and Mu et al., [10].

Based on the pre-annotated gene mentions from the

BioCreative I and II GN data [2,11], Wang and colleagues

[9] derived a new corpus named DECA consisting of 644

PubMed citations where in each citation every gene mention

was hand tagged with a species ID. Using this corpus, the

authors developed a combination method of syntactic parsing

and supervised learning, and reported its best performance of

83.80% in accuracy. Their software is made available as a

UIMA component of an integrated NLP system [12]. More

recently, a hierarchical classification system was developed and

experimented with by Mu et al. [10] on the same corpus. A

slightly better performance (85.13%) was reported but no

software was made available. Unlike their machine-learning

based methods, we developed SR4GN: an unsupervised

approach that adds new features to our winning system [13]

in the 2010 BioCreative III GN task. More specifically, we

address two important issues that were not well studied in the

past: a) how to determine focus species [14,15] and b) how to

infer species when no explicit organism information can be

found in a document (common for abstracts). With a set of new

heuristics, SR4GN achieves state-of-the-art performance in

benchmarking experiments. The other main contribution of

SR4GN lies in its implementation. Inspired by the success of

Linnaeus, SR4GN was developed as a standalone, command-

line tool that can be readily used to recognize species’ names,

map them to NCBI Taxonomy IDs, and associate them with

relevant gene/proteins in the biomedical text. With a single

download, SR4GN complements and combines the service

provided by Linnaeus and Wang et al., [9].

GNAT [16,17] is also related to our work in that it attempts to

handle multiple species for the GN task. When it was first reported

earlier in 2008, GNAT was developed and tested on a benchmark

set also derived from the BioCreative I and II GN data. However,

its benchmark set contains only a small part of the BioCreative

data: 100 abstracts covering 320 genes from 13 species. In

addition, GNAT was developed as an integrated approach for GN

other than a separate module focusing on identifying species and

assigning them to gene mentions. For these two aforementioned
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reasons, neither GNAT nor its benchmark set was used for

comparison in this work.

Methods

We show in Figure 1 an overview of our SR4GN system. Given

as input an abstract or full-length article in either XML or free-text

format, both sentence boundaries and gene mentions are first

recognized in the preprocessing step. As shown in Figure 1, each

sentence is assigned with a sentence identifier (SID). Then by

default, we use AIIA-GMT [18] for gene mention recognition but

other tools may also be used. Next, SR4GN detects organism

names from sentences and assigns them to pre-tagged gene names

through the disambiguation step.

For Species Identification, SR4GN Largely Re-Uses Our
Previously Developed Module [13], Which is Primarily a
Dictionary Lookup Approach Based on Four Different
Resources

The NCBI Taxonomy, handcrafted Linnaeus species dictionary

[6], list of species specific cell names (e.g. HeLa cells) from the Cell

Line Knowledge Base and Wikipedia. All names and synonyms of

a given species from different sources were first normalized to

lowercase letters and then automatically transformed into a

regular expression for quick lookup (e.g. NCBI Taxonomy ID:

83333 for E. Coli K-12). Whenever possible, our program

identifies most specific species. For instance, when a general

organism term (e.g. Arabidopsis) co-occurs with a specific name

(Arabidopsis thaliana), we would make an inference and associate

the NCBI Taxonomy id of the latter also to the former mention.

http://clkb.ncibi.org/index.php.

In Addition to Using Species Names, Cell Names were
Found Useful in Species Identification (e.g. HeLa Cells
would Indicate Humans). In Particular, We Make a
Modification to the Previous System and Created a New
Rule in SR4GN as follows

R1: When using cell names for inferring species, we relax the

requirement in the previous system that the word ‘cell(s)’ appear

immediately after a cell name. Instead, we now allow the word

‘cell(s)’ to co-occur in the same noun phrase with a cell name (e.g.

HeLa cancer cell).

Note that different from the two general-purpose species

recognition tools–Linnaeus and OganismTagger–we also opti-

mized our species recognition module in SR4GN specifically for

the gene normalization task. Most notably, we first removed from

our dictionary any species that is not linked to any records in

Entrez Gene such as Vibrio cholera MO10 (NCBI Taxonomy ID:

345072). Second, we added few common species terms that are

absent from the formal terminologies such as ‘‘porcine’’ for Sus

scrofa (NCBI Taxonomy ID: 9823). As a result, the number of

species for consideration in SR4GN (6,704) is significantly smaller

than that in Linnaeus (398,037). Not only does such a reduction in

species name space help improve accuracy, but it increases

SR4GN’s efficiency too.

With Respect to Assigning an Identified Taxonomy Id to a
Pre-Tagged Gene Mention, Three Heuristic Rules
Proposed from the Previous Studies [13,15] are First
Applied in Order

a) Prefix. If the first lowercase letter of a gene name is an

abbreviation of an organism name (e.g. hRrp46p), we assign

that species to the gene.

b) Co-occurring word. If a species and gene name co-occur

in the same sentence, we assign that species to the gene.

When there are multiple species mentions, priority is given to

species mentions appearing to the left of the gene name

Figure 1. An overview of the SR4GN workflow. Sid, start, end and tax_id in shaded boxes refer to individual sentence identifier; beginning and
end text span of a gene or species mention; and NCBI Taxonomy ID.
doi:10.1371/journal.pone.0038460.g001

SR4GN
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rather than to its right. When there are multiple species

mentions on one side, priority is given to the species name

closest to the gene name.

c) Focus species. We define the most discussed species in a

document as the focus species of the document and assign

that species to all gene mentions that are not covered by the

previous rules. For instance, about 50% of the gene mentions

in the DECA corpus [9] need to be assigned by this rule.

When two or more species are found with the same number

of appearances in a document, we randomly select one as the

focus species.

Next, in SR4GN we Added Three New Rules for
Addressing the Issues of Focus Species (R2, R3) and
Empty Species (R4), Respectively

R2: When determining the focus species, we weight the species

mention more when it occurs in the title rather than in the

abstract. Specifically, we assign double frequency counts to the

species mentions in the title when counting their occurrences in a

document.

R3: Instead of randomly selecting a species when multiple

species have the same number of occurrences in a document, we

developed a new tie-breaking strategy that uses the global

frequency of different species in the Linnaeus corpus as opposed

to the random selection in the previous system. For instance, the

three most popular species in the Linnaeus corpus are human, rat,

and mouse.

R4: When no species names can be identified from a document

(17% in the DECA corpus), we apply the Species Represented

Indicator (SRI) coefficient method [14], which infers four specific

species (i.e. human, mouse, yeast, and fly) using words that are

strongly correlated with species (e.g. ‘‘cohort’’ for humans and

‘‘ferment’’ for yeast) with a high accuracy of 85%.

Results

We conducted various kinds of assessments for SR4GN with

respect to its uses in the GN task and compared its performance to

that of Linnaeus (v.1.5) and OrganismTagger (v.1.4) whenever

possible. First, we evaluated SR4GN’s ability to automatically

detect species names from free text using the Linnaeus corpus [6].

As shown in Table 1, SR4GN achieved a precision of 0.86, recall

of 0.85 and F-measure of 0.86. Note that in the Linnaeus corpus,

every species mention is annotated regardless of their relation to

genes. As such, many non-gene linking species were ignored by

SR4GN (false negatives). On the other hand, SR4GN makes use

of many species cue words like HeLa Cells. Although they are found

useful for inferring species, they are not annotated in the gold

standard (false positives). A third major cause of discrepancies

between our computed results and the gold standard can be

attributed to the missing and incorrect annotations in the Linnaeus

corpus, which was found also in the study by Naderi and

colleagues [19].

Secondly, we evaluated SR4GN with respect to its ability to

associate detected species to pre-tagged gene mentions. Using the

DECA corpus from Wang et al., [9], we show in Table 2 that all of

our new rules can help improve system performance. The

proposed SR4GN system achieves a significantly better accuracy

(85.42%) than our previous system (81.08%) [13]. As shown in

Table 1. Evaluation on species detection using the Linnaeus
corpus from.

Precision Recall F-measure

SR4GN 86% 85% 86%

Linnaeus 98% 94% 96%

OrganismTagger 96% 63% 76%

doi:10.1371/journal.pone.0038460.t001

Table 2. Evaluation on species assignment using the DECA
corpus from Wang et al., (2010).

Method Accuracy

Kao and Wei, 2011 81.08%

+R1 81.61%

+R1+R2 82.10%

+R1+R2+R3 84.20%

+R1+R2+R3+R4 (SR4GN) 85.42%

Wang et. al., 2010 83.80%

Mu et. al., 2010 85.13%

As in Wang et al., [9] and Mu et al., [10], hand-tagged gene mentions are used.
doi:10.1371/journal.pone.0038460.t002

Table 3. Evaluation using the test data from the BioCreative
III GN task.

Species Module TAP-5 TAP-10 TAP-20 F-measure

Kao and Wei, 2010 0.3254 0.3538 0.3535 0.4553

SR4GN 0.3278 0.3543 0.3543 0.4691

Linnaeus 0.3042 0.3283 0.3283 0.4476

OrganismTagger 0.2915 0.3011 0.3011 0.4456

Both traditional F-measure and BC III TAP-k measure [22] are reported. The
same software AIIA-GMT was used to tag gene mentions here. The last two
rows show decreased GN results when replacing SR4GN with Linnaeus and
OganismTagger for species recognition while keeping all other GN modules
(e.g. gene recognition) intact.
doi:10.1371/journal.pone.0038460.t003

Table 4. Comparison of benchmarking time on species
detection by Linnaeus, OrganismTagger and SR4GN.

System
Loading
dictionary 10 abstracts

100
abstracts

Output
format

Linnaeus 41s 1.95s 2.15s Tab delimited
text

OrganismTagger* 34s 37s 5m21s XML

SR4GN 0 15s 2m44s XML

SR4GN does not preload the species dictionary into the memory, thus requiring
the least amount of computer RAM for the tests shown above: Linnaeus (1.2GB),
OrganismTagger (1.6GB), and SR4GN (150MB).
*According to its online documentation, when running 5 parallel threads with
10GB RAM, OganismTagger needs only 14 seconds for processing 100
documents.
doi:10.1371/journal.pone.0038460.t004

SR4GN
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Table 2 (last two rows), SR4GN also compares favorably to the

two previously reported methods.

Lastly, we have found that using SR4GN can also remarkably

improve the results of downstream GN task. As shown in Table 3,

using SR4GN while keeping all other parts of our previous

BioCreative III GN system unchanged, we can achieve an

improved F-score of 0.4691, which would be the best performance

on the BioCreative III GN test data ever reported. Also from

Table 3, we can see that replacing our SR4GN with the two

general-purpose species identification programs–Linnaeus and

OrganismTagger–for species identification results in significantly

lower GN results (p,0.05 by Fisher’s randomization tests [20]).

This suggests that our optimization procedures (e.g. removal of

species with no genes in Entrez Gene) are playing a positive and

critical role in the GN task.

Finally, we compared SR4GN with Linnaeus and Organism-

Tagger in terms of computational efficiency (running speed) and

output data format, as both are important factors for consideration

in practical use besides accuracy. As shown in Table 4, it takes on

average 1.5 seconds for SR4GN to process a PubMed abstract on

a typical modern desktop computer (with 3.16 GHz CPU and

4 GB RAM), placing SR4GN in between the two existing

software. With high-performance and parallel computing, all

three tools can be adapted for large-scale document analysis. For

instance, SR4GN has been successfully used in batch processing

when applied to the entire set of PubMed [21] and the open access

subset of PMC.

Discussion

Despite its solid performance on the DECA corpus, SR4GN

failed to assign correct species for approximately 15% of total gene

mentions. Hence we analyzed the number of error assignments by

each of the heuristic rules in the order as they were applied. As

shown in Table 4, the first ‘‘prefix’’ rule achieves perfect precision

but it was only applicable to a very small percentage of the total

gene mentions.

Compared to other rules, our ‘‘Co-occurring word’’ rule is the

least precise when applied to approximately 1/3 of the gene

mentions, suggesting that in many cases the co-occurring gene and

specie mentions in the same sentence are not straightly correlated.

For instance, considering the following sentence (from PMID:

11700027): ‘‘Promoter analysis revealed that the intergenic region

between Dlad and Uox has promoter activity for both the Dlad

and Uox directions, however, the corresponding human genomic

fragment has promoter activity only for DLAD.’’ All gene

mentions (e.g. Dlad) in the first part of the sentence are annotated

as mouse genes based on the entire abstract despite that they are

co-located with the species mention ‘‘human’’ in this sentence.

As for the ‘‘focus species’’ rule, SR4GN decides the focus species

to be the one that is the most discussed in the text. As shown in

Table 5, this rule is applicable to nearly half of the gene mentions.

But unfortunately, the rule is not always correct. On the DECA

corpus, 64.2% (213/332) of the errors were due to the fact that the

focus species was not the most mentioned species. This rule also

fails when the focus species is completely missing from the

examined text (focus species appears only in the full text but not

abstract), which accounted for the remaining 35.8% of the errors.

Lastly, due to confusion and ambiguity in the species indicating

words between human and mouse, the SRI coefficient method

fails to distinguish these two species in many occasions. Indeed,

about 80% of SRI errors (125/157) made an incorrect assignment

between these two species.

Conclusion
Here we report SR4GN, a standalone system for recognizing

species mentions and pairing them with corresponding gene/

protein mentions. Unlike existing general-purpose species recog-

nition tools, SR4GN is optimized for the gene normalization task.

By incorporating new rules for the specific problems of identifying

focus species and inferring species when no explicit species

mention can be found in a document, SR4GN performs better

than the previous systems when benchmarked on public data sets.

In addition, we believe SR4GN is computationally efficient to

handle large-scale text mining applications. Our error analysis

suggests modifying the co-occurring rule and applying SR4GN to

full text (when available) may result in future enhancement of

SR4GN’s performance. Other future investigation includes

additional evaluation beyond the species data in the current

DECA corpus.

Availability
http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/downloads/

SR4GN.
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