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Abstract

The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into
another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing
their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-
derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow
and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell
communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a
myocardial phenotype in the stem cells 8–16 days later. These intercellular communications are associated with novel Ca2+

oscillations in the stem cells that are synchronous with the Ca2+ transients in adjacent cardiomyocytes and are detected in
the stem cells as early as 24–48 hrs in co-culture. Early and significant up-regulation of Ca2+-dependent effectors, CAMTA1
and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the
cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized
calcineurin-NFAT pathway as a response to a Ca2+ signal, the CAMTA1 up-regulated expression as a response to such a
signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce
Ca2+ signals that activate a myocardial gene program in the stem cells via a novel and early Ca2+-dependent intermediate,
up-regulation of CAMTA1.
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Introduction

It has become well recognized that transcription factors have a

crucial role in reprogramming gene expression in mammalian cells

and that the process of cell differentiation can be reversed

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. Differentiated somatic

cells from various tissues and species including humans have been

reprogrammed into pluripotency by transduction and over

expression of defined transcription factors [2,4,5,7,10]. More

recently direct reprogramming of one cell type into another,

without resorting to an intermediate pluripotent stage has been

achieved with over-expression of tissue specific transcription

factors [13,14,15,16,17]. These findings raise the possibility that

targeted manipulation of a less stringent epigenetic restrictive state

in multipotent adult-derived stem cells may be achieved, so as to

induce the endogenous expression of a transcriptional program

that characterizes a specific cell fate.

As the molecular basis underlying adult-derived stem cell

commitment to a myocardial lineage is poorly understood

[18,19,20,21,22] we attempted in the present study to identify

novel and early transcription factors that activate the expression of

a myocardial transcriptional program in the stem cells without the

introduction of exogenous genetic material [13,14,15,16,17]. We

have previously shown that cells from a cloned rat liver stem cell

line (WB F344) acquired a cardiac phenotype in vivo and when co-

cultured with rat neonatal cardiomyocytes as an in vitro

cardiogenic microenvironment [23,24,25]. Using fluorescence

recovery after photobleaching (FRAP) we found that the stem

cell-derived nascent cardiomyocytes were functionally coupled

with adjacent cardiomyocytes through gap junctions. This is

associated with novel Ca2+ oscillations that are synchronous with

Ca2+ transients in adjacent cardiomyocytes and detected in the

stem cells as early as 24–48 hrs in co-culture with the cardiomy-

ocytes.

Since evidence suggests that intracellular Ca2+ signals trigger

transcriptional responses and that the diversity of responses in

different cell types results from the variability in the frequency
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and duration of the Ca2+ signals

[26,27,28,29,30,31,32,33,34,35,36,37], we explored the possibil-

ity that these novel Ca2+ signals may be decoded in bone

marrow mesenchymal stem cells from human (hMSCs) and

mouse (mMSCs) by activating a cardiac gene program.

We find that the expression of the transcription factor

CAMTA1, a member of a recently recognized family of Ca2+-

dependent calmodulin binding transcription activators conserved

in eukaryotes [38,39,40,41,42] and RCAN1, a known regulator

of calcineurin [36,43,44,45], to be significantly up-regulated in

the stem cells as early as 24 hrs in co-culture with rat neonatal

cardiomyocytes. This process preceded stem cell acquisition of

other cardiac properties. Cardiac specific transcription factors

appear after 2–4 days in co-culture and myocardial contractile

proteins 8–16 days later. Furthermore, the expression of

CAMTA1 was up-regulated in the stem cells cultured alone

when exposed to ionomycin, which produces a tonic increase in

intracellular Ca2+ ([Ca2+]i). This was associated with novel

expression of cardiac transcription factors in the stem cells. When

CAMTA1 expression is suppressed with CAMTA1 siRNA or

shRNA before the stem cells are exposed to an increase in

[Ca2+]i the expression of the corresponding cardiac transcription

factors is significantly decreased.

Collectively, our results support the hypothesis that [Ca2+]i

signals in adult-derived stem cells relay messages that activate

downstream pathways where up-regulation of CAMTA1 expres-

sion, is an early event in the stem cell commitment to a myocardial

lineage.

Figure 1. Bone marrow-derived MSCs in co-culture with cardiomyocytes. (A) A nascent cardiomyocyte derived from mMSCs of a bMHC-YFP
genotype mouse at 8 days in co-culture with cardiomyocytes. The bMHC-YFP cell is pseudo colored green for visualization of the striations. Left panel
shows novel endogenous expression of bMHC-YFP fluorescence along stress fibers and striations (magnified in insert). Middle panel shows
surrounding rat cardiomyocyte. Merged images in right panel. (B) GFP-hMSCs co-cultured with cardiomyocytes for 16 days and immunostained for a-
actinin or troponin T ([23] and Supporting Information S1). Acquisition of a differentiated cardiac phenotype is demonstrated in the inserts where
cardiomyocyte striations are visible. Nuclear DAPI in blue. Scale bar = 20 mm.
doi:10.1371/journal.pone.0038454.g001
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Results

Three Different Types of Adult-Derived Stem Cells
Acquire Cardiomyocyte Properties in Co-Culture with
Cardiomyocytes

In spite of the focus of this study on the earliest transcriptional

events, we nevertheless show that bone marrow mesenchymal

stem cells from hMSCs and mMSCs acquire a cardiac

phenotype in co-culture with cardiomyocytes similar to our

previous report on rat liver stem cells (WB F344) [23,24,25].

Expression of a differentiated cardiac phenotype where contrac-

tile proteins are localized in a striated pattern is demonstrated in

the stem cells after 8–16 days in co-culture with rat neonatal

cardiomyocytes (Figure 1). Human MSCs constitutively labeled

with GFP in the cytoplasm or dsRed targeted to the mitochon-

dria and mMSCs from C57BL/6 mice with the following

genotypes: a beta Myosin Heavy Chain (bMHC)-YFP fusion

transgenic mouse and aMHC-CFP/bMHC-GFP transgenic

mouse [46,47] were prepared. Mouse MSCs were isolated from

the bone marrow of the mice as previously reported [48,49]. The

mMSCs demonstrated no fluorescence until after 8 days in co-

culture, at which time few cells exhibited spontaneous faint

fluorescence indicating the onset of expression of the MHC gene

in these cells. The intensity of the fluorescence and the number

of fluorescent cells increased over the next 7 days. By two weeks,

elongated fluorescent cells were seen adjacent to beating rat

cardiomyocytes (Figure 1). In the case of the mMSCs derived

from the bMHC-YFP mouse the corresponding nascent cardio-

myocytes expressed novel yellow fluorescence along striations and

stress fibers (Figure 1A). In contrast, the alpha MHC-CFP

fluorescence from the corresponding mouse was cytoplasmic as

the MHC-CFP gene was engineered as a single copy in the

HPRT locus (data not shown). Once dissociated and harvested

using FACS, the mMSCs population of cells that expressed YFP-

bMHC represented a relatively pure population of mMSCs that

had undergone ‘‘differentiation’’. These cells were used to

monitor the efficiency of the differentiation process (10–15%)

calculated as a fraction of the number of non-fluorescent native

mMSCs originally seeded on the neonatal rat cardiomyocytes.

The hMSCs pre-labeled with GFP or dsRed started expressing

cardiac specific troponin T (cTnT) and alpha-actinin after 8–16

days in co-culture. These proteins could be seen by immunocy-

tochemistry along striations and stress fibers of differentiating

GFP-labeled hMSCs (Figure 1B). The number of GFP-labeled

hMSCs in co-cultures that demonstrated expression of cTnT or

alpha-actinin proteins by immunocytochemistry was calculated to

be 2160.2% (n = 3).

To confirm previous reports by us and others [23,50,51,52,53]

that cell-cell contact with cardiomyocytes is the most likely initiator

of differentiation of stem cells into a cardiac lineage we ruled out a

role for paracrine or juxtacrine factors from the neonatal rat

cardiomyocytes. Native hMSCs in monocultures which were

exposed to a neonatal rat cardiomyocyte lysate showed no up-

regulation in the expression of CAMTA1 or cardiac transcription

factors (data not shown). Furthermore, the combination of growth

factors that has been shown to enhance differentiation of

embryonic stem cells into cardiomyocytes [54,55,56] did not

induce any of the adult-derived stem cell lines to differentiate into

cardiomyocytes (data not shown). Fusion with cardiomyocytes as

the only mechanism for the stem cells acquisition of a cardiomy-

ocyte phenotype was ruled out in stem cell monoculture studies

(see below).

Ca2+ Oscillations in hMSCs Co-Cultured with
Cardiomyocytes

Line scanning confocal fluorescence microscopy was performed

to record intracellular Ca2+ signals in hMSCs adjacent to

cardiomyocytes in co-culture. Synchronous Ca2+ oscillations were

detected in the stem cells that were adjacent to a neonatal

cardiomyocyte as early as 24–48 hrs in the cytoplasm of

approximately 1 in 10–20 hMSCs cardiomyocyte (Figure 2).

The location and origin of each Ca2+ recording was verified by

acquiring a 3D Z stack image through the cell’s depth. Ca2+

recordings were acquired from hMSCs and cardiomyocytes that

were not overlapping. The hMSC Ca2+ oscillations were of the

same frequency but lower amplitude than the Ca2+ transients in

adjacent spontaneously contracting or paced cardiomyocytes. The

duration of the novel Ca2+ oscillations in the hMSCs was 375–

400 ms, significantly shorter than the slow, endogenous Ca2+

transients in MSCs cultured alone [57]. Ca2+ oscillations were not

detected in hMSCs seeded away from cardiomyocytes in the co-

culture. Consistent with our findings in WB F344 cells co-cultured

with cardiomyocytes [23,25], these results suggest that cell-cell

communication between hMSCs and cardiomyocytes might

trigger the acquisition of oscillating Ca2+ signals in the stem cells.

Transcriptional Profiling of Co-Cultured Stem Cells
To uncover early transcription factors that have a role in stem

cell commitment to a cardiomyocyte lineage, we performed a

screening transcriptional expression microarray on hMSCs co-

cultured for 4 days with cardiomyocytes, well before they acquired

recognizable cardiac properties 8–16 days later. DsRed hMSCs

were separated from the non-labeled cardiomyocytes using

trypsinization buffers, and harvested with fluorescence activated

cell sorting (FACS, see Methods). The RNA for the microarray

analysis was prepared from three biologically separate samples of

hMSCs co-cultured with cardiomyocytes for 4 days. The results

from the microarray (NCBI-GEO data base accession number

GSE32171) demonstrated significant up-regulation in the expres-

sion of two Ca2+-dependent factors, CAMTA1 and RCAN1. The

expression of CAMTA1 was negligible in naive hMSCs but

showed a significant 5.5 fold up-regulation (p#0.0321) after they

were co-cultured with cardiomyocytes. In contrast, CAMTA2,

expressed a priori in the hMSCs, did not significantly change

when the stem cells were co-cultured with cardiomyocytes. The

microarray also showed that the expression of RCAN1 was

significantly up-regulated by 4 fold (p#0.008) in the hMSCs 4

days after they were co-cultured with neonatal cardiomyocytes

(Figure 2D). As the focus of this study was to investigate the role of

CAMTA1 in the early induction of cardiac transcription factors

expression in adult-derived stem cells, we did not examine at this

stage, the hierarchal relationship between CAMTA1 and RCAN1

in this developmental process. Rather, we used and monitored the

expression of RCAN1 along with that of CAMTA1 as a reference

for a Ca2+ signal response in the stem cells. RCAN1 is a direct

target of the Ca2+/calcineurin-NFAT signaling pathway [43] and

its up-regulation suggests involvement of this signaling pathway in

the hMSCs co-cultured with cardiomyocytes. The results of the

microarray were confirmed by RT-qPCR using RNA from dsRed

or GFP-labeled hMSCs and from dsRed-labeled liver stem cells.

As both cell types expressed fluorescent proteins, they were FACS

harvested after 2 and 4 days in co-culture with neonatal rat

cardiomyocytes (Figure 3). Using species specific primers (Table

S2) the reactions were carried out in triplicate on RNA isolated

from sorted fluorescent stem cells in co-cultures.

RT-qPCR was also used to monitor the expression of cardiac

specific transcription factors and contractile protein genes and the

CAMTA1 in Myocardiogenesis
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early progression of the stem cell commitment and their

differentiation to a myocardial lineage (Figure 3). Whereas the

expression of CAMTA1 and RCAN1 reached their peak

expression at about 24 hr in co-culture, the expression of other

cardiac specific transcription factors, Nk62.5, Tb65, Mef2C and

GATA4 and the contractile protein genes, bMHC and cTnT

began to rise soon after and continued to increase 2 days later

(Figure 3). These results suggest that signaling through CAMTA1

and indirectly Ca2+/calcineurin/NFAT may be early events in the

initiation of stem cell commitment into a cardiomyocyte pheno-

type. Up-regulation in the expression of CAMTA1 and RCAN1

was associated with nuclear localization, demonstrated by

Figure 2. Intracellular Ca2+ signals acquired from a dsRed hMSC and neonatal cardiac myocyte, after 48 hrs in co-culture. (A)
Illustrates the three dimensional distribution of hMSCs and cardiac myocytes in co-culture. The image shows a 1.0 mm confocal optical section from a
14 mm thick co-culture. The section shown corresponds to the regions indicated by the blue arrows, confirming that the cells were not overlapping
(right upper quadrant). A line scan was acquired along the green horizontal line. Scale bar = 20 mm. (B) Using confocal line scan microscopy Ca2+

oscillations corresponding to the hMSCs (red arrow in A) and a cardiac myocyte (white arrow in A) were recorded. Top panel shows Ca2+ oscillations
recorded in the cytosol of a cardiac myocyte, noted by the white arrow in A. Bottom panel shows perinuclear Ca2+ oscillation recorded from a young
dsRed hMSC adjacent to a cardiac myocyte (red arrow in A). Note the difference in Ca2+ signal amplitude at this early time point. Ca2+ signals were
recorded on a Zeiss laser scanning confocal microscope at room temperature. All cells were labeled with Fluo-4 AM. Cardiac myocytes were beating
spontaneously. (C) Human MSCs response to ionomycin. Fluo-4 fluorescence measured in naive hMSCs in monoculture (left panel), 10 sec after the
application of 1 mMol/L ionomycin (middle panel), and 60 sec after the application of 2 mMol/L EGTA (right panel). (D) Transcriptional response to
ionomycin-induced intracellular calcium in hMSCs in monocultures. Human MSCs in monocultures were stimulated for 6 hrs with 0.6 mMol/L
ionomycin. RT-qPCR from RNA harvested from A: Untreated, control hMSCs. B: hMSCs after 6 hr ionomycin stimulation, C: hMSCs stimulated for 6 hrs
with ionomycin, washed, cultured in fresh medium and harvested after 24 hrs of ‘recovery’. Expression of CAMTA1 (left panel); RCAN (right panel).
The bars show mean 6 SEM, *p,0.05.
doi:10.1371/journal.pone.0038454.g002
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immunocytochemistry of CAMTA1 and NFAT2C proteins in the

co-cultured hMSCs (Figure 4). NFAT in combination with other

transcription factors is believed to orchestrate expression of

cardiogenic and other developmental genes

[36,43,44,45,58,59,60,61,62] and our data indicates that

CAMTA1, in adult-derived stem cells, contributes to this process.

We queried the microarray as to the status of the ‘‘pluripotent’’

factors [4,5,10]: Oct4, Sox2, c-Myc, and KLF4, LIN28 and

NANOG to determine whether the stem cells underwent

reprogramming into a pluripotent state before they acquired a

myocardial fate. With the exception of c-Myc, none of these

factors were significantly changed in the hMSCs co-cultured with

cardiomyocytes. On the other hand, as reprogramming of stem

cells is reported to be associated with chromatin remodeling

[14,63,64,65,66,67,68] the expression of BRG1, BRM and BAF

57, members of the SWI/SNF chromatin remodeling complex,

was significantly downregulated in hMSCs co-cultured for 4 days

with cardiomyocytes suggesting that these adult-derived stem cells

underwent a relative withdrawal from an unstable ‘‘stemness’’

state (Table S1).

Increased Intracellular Ca2+ in Stem Cells Cultured Alone
Leads to Up-regulated Expression of Transcription
Factors

The role of increased [Ca2+]i on the expression of transcription

factors was examined in all three types of stem cells in

monocultures, without the benefit associated with co-cultured

cardiomyocytes. The [Ca2+]i increase was induced with 0.6 mMol/

L of the Ca2+ ionophore, ionomycin added to the culture medium.

The increase in global Ca2+ concentration was monitored with the

fluorescent Ca2+- sensitive fluoroprobe, Fluo-4 (Figure 2C). Under

this condition, the expression of CAMTA1 and RCAN1 was

significantly up-regulated within 6 hrs after introduction of the

ionophore in all three types of stem cells (Figure 2D). Interestingly,

the transcriptional level of other family members namely,

CAMTA2 and RCAN3 was unchanged under these conditions,

suggesting their independence from Ca2+ signaling in the stem

cells. Twenty-four hours after termination of the Ca2+ signaling

the expression of these transcription factors returned to baseline

levels (Figure 2D). We attribute the sustained expression of these

Figure 3. Time course of RNA expression levels of cardiac transcription factors and contractile protein genes in hMSCs co-cultured
with rat neonatal cardiomyocytes. Control levels of CAMTA1, RCAN1, GATA4, Nk62.5, Mef2c, Tb65, cTnT, and BetaMHC in the stem cells in
monoculture at day 0 (0d), or co-cultured with cardiomyocytes for 2 days(2d) and 4 days (4d). The bars show mean 6 SEM, *p,0.05. # denotes novel
expression in Nkx2.5.
doi:10.1371/journal.pone.0038454.g003
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factors in the stem cells co-cultured with cardiomyocytes to the

continuous Ca2+ oscillations in the stem cells while in physical

contact with cardiomyocytes.

The expression of the transcription factors Mef2C and GATA4,

was also up-regulated with increase in [Ca2+]i in the MSCs in

monocultures exposed to ionomycin (Figure 5). The latter finding

of Ca2+-dependent up-regulation in the expression of the cardiac

transcription factors Mef2C and GATA4 in the hMSC in

monocultures argues against fusion of the stem cells with

surrounding cardiomyocytes as the only mechanism for adult-

derived stem cell commitment to myocardial lineage.

A Role for CAMTA1 in Stem Cell Differentiation
That CAMTA1 has a role in stem cell commitment to a cardiac

lineage was investigated in loss-of function studies. Human

CAMTA1 shRNA lentiviral particles were pre-transduced in the

hMSCs to minimize the ionomycin/Ca2+-induced up-regulation

of CAMTA1 expression. These studies were first established in

hMSC monocultures where CAMTA1 expression could be acutely

induced with ionomycin (Figure 2D and Figure 5, CAMTA 1,

condition B). Two days after the stem cells in monocultures were

pre-transduced with CAMTA1 shRNA they were exposed to

0.6 mMol/L ionomycin for 6 hrs. RNA was isolated from all

samples for RT-qPCR. HMSCs pretreated with CAMTA1

shRNA showed attenuated expression of Mef2C and GATA4 as

well as that of CAMTA1 after ionomycin treatment (Figure 5).

As the hMSCs did not survive long enough in coculture to allow

activation of a cardiac gene program (i.e. 4 days) after they were

transduced with the transfecting reagents, we used the liver stem

cells (WB F344) to examine the effects of minimizing CAMTA1

expression on activation of a cardiac program in co-cultured stem

cells. This cloned rat liver stem cell line is more resilient to

transfection and the activation of a cardiac program is earlier (2

days) than that in the hMSCs (greater than 4 days) in co-culture.

DsRed WB F344 stem cells were pre-transfected with a pool of

human CAMTA1 siRNAs before they were added to the

cardiomyocytes. Only one of the human CAMTA1 siRNA

sequences in the siRNA pool was identical to that of the rat. A

generic GFP labeled fluorescent siRNA was used to calculate the

transfection efficiency to be 80%. After two days in co-culture with

cardiomyocytes, the pre-transfected stem cells were harvested for

RNA extraction and RT-qPCR. CAMTA1 siRNA pre-transfected

for 48 hrs in the dsRed stem cells caused significant decrease in

CAMTA1 expression after they were co-cultured for 2 days with

cardiomyocytes compared with stem cells that were co-cultured

with cardiomyocytes but not pre-transfected with CAMTA1

siRNA (Figure 6). This was associated with down-regulation in

expression of cardiac specific transcription factors, myocardin, and

Nkx2.5 but not that of CAMTA2. The expression of the cardiac

Figure 4. Protein localization by immunocytochemistry in hMSCs co-cultured with cardiomyocytes for 48 hours. Left panels show
dsRed-hMSCs, middle panels show CAMTA1 or NFAT protein localization. Right panels show merged images. (A) Novel expression of CAMTA1 protein
is demonstrated in the nucleus of a dsRed hMSCs co-cultured with rat cardiomyocytes (arrow in middle panel). Rat cardiomyocytes (small nuclei in
the background) a priori express CAMTA1. Note the larger human nucleus of the hMSCs compared to the size of the rat nuclei in the background. (B)
Novel NFAT2c protein expression in an hMSC co-cultured with cardiomyocytes. NFAT2c is localized throughout the hMSC including the nucleus of
the hMSC. NFAT2c was not detected in the nucleus in naı̈ve hMSCs.
doi:10.1371/journal.pone.0038454.g004
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contractile genes, cTnT and bMHC was also decreased in the pre-

transfected stem cells in co-culture (Figure 6). Together these

results suggest an important role for CAMTA1 in the activation of

a cardiac gene program in the stem cells.

Discussion

Our study was designed to uncover new and early endogenous

transcription factors that may have a role in directing adult-

derived stem cell to activate a cardiac gene program. Our results

suggest that a Ca2+- dependent signaling pathway that includes

significant up-regulation in expression of CAMTA1 and RCAN1

is an early event in the induction of a myocardial gene program in

the stem cells. We focused exclusively on CAMTA1 regulation by

intracellular calcium concentration because of the novelty of our

results in mammalian cells and similar findings in plants where the

CAMTA1 gene product is believed to be an integrator between

stress-induced intracellular Ca2+ increase and expression of genes

that allow the plant to adapt to its environment [38,39,40,41,42].

We used the expression of RCAN1, also up-regulated in our

system, to monitor a parallel response to a Ca2+ signal. While the

role of the Ca2+/calcineurin/NFAT/RCAN1 pathway has been

extensively studied in the adult heart and in development

[30,35,36,43,44,45,58,59,60,61,69] the role for CAMTA1 pro-

posed in embryonic cardiac development was never tested [42].

The CAMTA gene family is a family of activator/repressor

transcription factors with a broad range of functions conserved in

multicellular organisms [38,39,40,41,42]. As a response to a Ca2+

signal, the functional activity of CAMTA depends on its binding to

the ubiquitous calmodulin in the cell, targeting downstream

effectors, while its transcriptional role is determined through its

nuclear interaction with other transcription factors [39] and a

conserved CG-1 DNA binding domain [40,41]. Two homologous

CAMTA genes have been reported in mammalian heart [42].

CAMTA1, a putative tumor suppressor candidate [70], is

suspected to have a role in embryonic cardiac development

mediating the functions of transcription factors in the developing

heart [42]. CAMTA2 shows expression after birth, is a potent co-

activator of the cardiac specific transcription factor Nk62.5, and is

involved in cardiac hypertrophy [42]. The CAMTA1 allele in

humans is located in the distal portion of the short arm of

chromosome 1q3.6 [71,72]. Spontaneous deletion of this sub-

telomeric chromosomal region in patients with the so-called

‘‘1p3.6 Deletion Syndrome’’ is associated with heart malforma-

tions and other cardiomyopathies in over 71% of cases [71,72].

Coupled with our findings and those of Song et.al. [42] it is

tempting to speculate that as a response to Ca2+ signaling,

CAMTA1 may have a role in cardiogenesis in that deletion of the

1p36 chromosomal region may underlie the causation of cardiac

abnormalities in some patients.

Interestingly, The CAMTA1 null mouse is embryonic lethal

(Personal communication, Eric Olson) in contradistinction to that

of RCAN1 (DSCR) where the null mouse exhibits no overt

phenotype in the absence of stress [73]. The mechanisms

underlying the lethality in the CAMTA1 null mouse are not

known.

The authors queried the GEO Microarray Database attempt-

ing to elucidate a role for CAMTA1 in mammalian cells other

than in the developing heart [42] and stem cell-derived

cardiomyocytes as suggested by our findings. We found in the

GEO Microarray Database (GDS814, GDS2387) that the

expression of CAMTA1 is up-regulated and expressed as a

sharp spike during the 1-cell stage embryo after fertilization of

the oocyte. This coincides temporally with the well known

Figure 5. Regulation of expression of cardiac transcription
factors following the minimization of CAMTA1 expression in
hMSCs monocultures. Human MSCs were pre-transduced with
specific lentiviral vectors 24 hrs before the up-regulation of CAMTA1
expression was induced with ionomycin. A: control, naive hMSCs grown
in monoculture, B: hMSCs pre-transduced with a GFP-lentiviral vector,
then stimulated with ionomycin. C: hMSCs pre-transduced with
CAMTA1 shRNA lentiviral vector, then stimulated with ionomycin. The
graphs illustrate expression of the transcription factors CAMTA1, Mef2C,
and Gata4. Note condition B shows increased expression of Mef2C and
Gata 4 with increased CAMTA1 expression. With minimization of
CAMTA1 expression (condition C) expression of Mef2C and Gata4 was
significantly decreased (see Figure 2D for CAMTA1 control). The bars
show mean 6 SEM, *p,0.05.
doi:10.1371/journal.pone.0038454.g005
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Figure 6. Regulation of cardiac transcription factors in liver stem cells co-cultured with cardiomyocytes after minimizing CAMTA1
expression. Except for the control conditions (A and B) the stem cells were pre-transfected with specific siRNA 24 hrs before they were added to the
co-culture with cardiomyocytes. A: control, naive stem cells in monoculture for 72 hrs. B: naive stem cells cultured for 24 hrs, then co-cultured with
cardiomyocytes for 48 hrs. C: Stem cells pre-transfected with a scrambled siRNA 24 hrs before they were co-cultured for 48 hrs with cardiomyocytes.
D: Stem cells were pre-transfected with a human pool of CAMTA1 siRNAs for 24 hrs before they were co-cultured for 48 hrs with cardiomyocytes. The
graphs illustrate expression of the transcription factors CAMTA1, CAMTA2, Nk62.5, Myocardin, cTnT and BetaMHC. A significant decrease in the
expression of transcription factors Nkx2.5, Myocardin, cTnT and BetaMHC were measured when CAMTA1 expression was minimized. Note that no
significant change in CAMTA2 expression was observed. The bars show mean 6 SEM, *p,0.05.
doi:10.1371/journal.pone.0038454.g006
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increase in intracellular Ca2+ once the sperm fuses with the

oocyte plasma membrane during fertilization [74]. Though a

cause and effect are not linked in these reported studies, our

present findings suggest that a single ionomycin-induced Ca2+

pulse in the stem cells cultured alone activates a transient

expression of CAMTA1. Twenty four hours after termination of

the Ca2+ signal the expression of CAMTA1 becomes down

regulated to baseline levels (see Figure 2D). The sustained high

level of CAMTA1 expression in the stem cells co-cultured over

4–16 days with cardiomyocytes is thought to be the result of

continuous Ca2+ spikes oscillating in the stem cells while in

physical contact with cardiomyocytes.

Ca2+ Signal Response
Intracellular Ca2+ binds to calmodulin and activates among

other pathways the Ca2+-dependent-calcineurin/NFAT signaling

pathway [43,69]. In a feedback loop NFAT activates the

expression of RCAN1, an inhibitor of calcineurin, to protect the

cells from unrestrained calcineurin activity [43,44] where Ca2+

signals in the form of Ca2+ oscillations more efficiently elicit

nuclear transcriptional responses [26,27,31,37,58]. Similarly our

data suggest that as a response to Ca2+ signals in the stem cells, up-

regulation of CAMTA1 expression contributed to the induction of

the transcriptional program that directs a stem cell into a

myocardial lineage [62,75].

Cell-Cell Communication
We and others have reported that cell-cell communication

between the stem cells in co-culture with cardiomyocytes provides

the necessary event/s including initiation of Ca2+ signaling that

induce the stem cells to acquire a cardiac phenotype

[23,50,51,52,53]. This is supported by our previously reported

results showing that myocardial genes in the stem cells are not

upregulated when the cardiomyocyte membranes are partially

depolarized with the voltage-dependent Ca2+ channel antagonist,

Nifedipine [23]. Nifedipine inhibits the Ca2+ transients in the

cardiomyocytes, as well as the corresponding Ca2+ oscillations in

the adjacent stem cells and is associated with a decrease in the

expression of cardiac genes in the stem cells [23]. As reported by

others [76] we examined the possibility that exocrine factors

contributed to the differentiation of the mesenchymal stem cells

into a cardiac lineage. We incubated the stem cells in a

monoculture with a neonatal cardiomyocyte lysate. We found in

this study as we reported previously [25] that naı̈ve stem cells did

not express CAMTA1 or cardiac transcription factors when

exposed to a cardiac lysate or separated from the cardiomyocytes

in culture with a semipermeable membrane. Yet, an intracellular

Ca2+ signal induced with ionomycin in the hMSCs cultured alone

resulted in the up-regulation of CAMTA1 and cardiac transcrip-

tion factors (Figure 2D). Collectively, these findings support the

hypothesis that novel Ca2+ oscillations in a population of stem cells

co-cultured with cardiomyocytes are a result of physical contact

between the membranes of the respective cell types and that these

Ca2+ signals activate a downstream cardiogenic transcriptional

response in the stem cells. To confirm that these findings can be

independent of fusion between the stem cells and surrounding

cardiomyocytes we ran parallel experiments (Figure 2D) where the

hMSCs were cultured alone without the input of surrounding

cardiomyocytes and exposed them to an ionomycin-induced/Ca2+

pulse. We found that hMSCs in monocultures respond to this Ca2+

signal by up-regulating the expression of CAMTA1 and cardiac

transcription factors.

Conclusion
Collectively, our results lead us to hypothesize that as a result of

cell-cell membrane communication between the cardiomyocytes

and the stem cells novel ‘‘cardiac-like’’ Ca2+ oscillations activate

signaling pathways that result in a myocardial transcriptional

program in the stem cells. CAMTA1 expression and activation of

the calcineurin/NFAT/RCAN1 pathway are early and important

events in the process. That the NFAT pathway alone was not

sufficient to activate the cardiogenic transcriptional program in the

stem cells is suggested in our silencing of CAMTA1 experiments

which resulted in minimizing the expression of the cardiac specific

transcription factors. Recently Li et al. [77] reported that the

Ca2+-dependent calcineurin/NFAT signaling is critical for the

early transition of mouse ES cells from self-renewal to lineage

commitment. Though CAMTA1 expression was not investigated

in that study, it is tempting to speculate that a response to Ca2+

signals may be a common process for lineage specification in stem

cells.

Methods

Cardiac Microenvironment
The cardiac microenvironment was created as previously

published [23]. Details are included in Supporting Information S1.

Microarray
Microarrays were performed by the Functional Genomics Core

Facility, Neuroscience Center at UNC, Chapel Hill, NC.

Affymetrix Human U133 Plus 2.0 GeneChip array (Santa Clara,

CA) was used. Seven mg of total RNA was used to synthesize

cDNA. A custom cDNA kit from Life Technologies was used with

a T7-(dT) 24 primer for this reaction. Biotinylated cRNA was then

generated from the cDNA reaction using the BioArray High Yield

RNA Transcript Kit. The cRNA was fragmented in fragmentation

buffer (5X fragmentation buffer: 200 mMol/L Tris-acetate,

pH 8.1, 500 mMol/L KOAc, 150 mMol/L MgOAc) at 94uC
for 35 minutes before the chip hybridization. Fifteen mg of

fragmented cRNA was then added to a hybridization cocktail

(0.05 mg/ml fragmented cRNA, 50 pMol/L control oligonucle-

otide B2, BioB, BioC, BioD, and cre hybridization controls,

0.1 mg/ml herring sperm DNA, 0.5 mg/ml acetylated BSA,

100 mMol/L MES, 1 M [Na+], 20 mMol/L EDTA, 0.01%

Tween 20). Ten mg of cRNA was used for hybridization. Arrays

were hybridized for 16 hours at 45uC in the GeneChip

Hybridization Oven 640. The arrays were washed and stained

with R-phycoerythrin streptavidin in the GeneChip Fluidics

Station 400. Arrays were scanned with the Hewlett Packard

GeneArray Scanner. Affymetrix GeneChip Microarray Suite 5.0

software was used for scanning, and basic analysis. Sample quality

was assessed by examination of 39 to 59 intensity ratios of certain

genes.

Microarray Data Analysis
The probe-level data from a set of Affymetrix CEL files were

analyzed with GeneSpring GX 7.3.1 (Agilent Technologies,

Englewood, CO). Only the perfect-match probe intensities were

used for the robust multi-array analysis (RMA), which includes

preprocesses of background correction, quantile normalization

and probe set summarization. The background was estimated by

using a kernel density estimation method. Quantile normalization

of background corrected values across all arrays was performed.

Finally median polishing, a robust model fitting technique, was

applied for probe-set measurement summarization. For compar-

ison of and viewing the data the preprocessed values were

CAMTA1 in Myocardiogenesis

PLoS ONE | www.plosone.org 9 June 2012 | Volume 7 | Issue 6 | e38454



normalized to 50th percentile for each array and then normalized

to median values across all arrays for each gene. The principle

component analysis and hierarchical clustering over test conditions

and M-A plot were conducted for data quality estimation and

control to ensure that no outlier array(s) was included in the

analyzed data set. The probe sets with equal to or greater than 1.2

fold changes between the experimental conditions were kept for

further analysis. Welch t-test was applied to the gene list. The

differentially expressed gene list was created using Benjamini and

Hochberg false discovery rate, with the p-value cut-off of 0.05 to

reduce false positive discoveries.

Sources of Adult-derived Stem Cells
The mouse bone marrow mesenchymal stem cells (mMSCs)

were prepared from C57BL/6 mice with the following genotypes:

a bMHC-YFP fusion mouse and aMHC-CFP/bMHC-GFP

transgenic mouse (both provided by Dr. Kumar Pandya

[46,47]). MSCs were isolated as previously described [48,49].

Briefly, 8–12 week old male mice were sacrificed by cervical

dislocation, and the femurs and tibiae were removed. The tips of

each bone was cut off, and the bone marrow was flushed out of the

bone with Dulbecco’s Modified Eagle’s Medium (DMEM)

containing 15% FBS. The isolated bone marrow was treated for

5 minutes at room temperature with ACK lysis buffer to remove

red blood cells. The cells were filtered through a sterile 70 mm cell

strainer. Cells were plated onto plastic 100 mm cell culture plates

at a density of 10–206106 cells per plate. Plating medium

consisted of DMEM, 15% FBS, 2 mm L-glutamine, b-mercapto-

ethanol, 100 u/ml penicillin, 100 u/ml streptomycin, and LIF.

Cultures were maintained at 37uC in 95% air and 5% CO2.

Passage 4–5 cells were used in the experiments. Approval of the

procedures and methods to isolate mouse MSCs was obtained

from the Institutional Animal Care and Use Committee of the

University of North Carolina at Chapel Hill. Frozen vials of

extensively characterized hMSCs from normal healthy donors

were obtained from the Tulane Center for the Preparation and

Distribution of Adult Stem Cells and Tulane Center of Gene

Therapy under a Tulane University Institutional Review Board

approved protocol through a grant from National Center for

Research Resources of the US Department of Health and Human

Services National Institutes of Health, Grant# p40RRO17447.

The rat liver stem cells [23] were a gift from Dr. Joe Grisham at

UNC at Chapel Hill. Approval of procedures and methods to

isolate rat liver stem cells was obtained from the Institutional

Animal Care and Use Committee of the University of North

Carolina at Chapel Hill. All cells were prepared and co-cultured

with rat neonatal cardiomyocytes as previously described [23].

Immunocytochemistry
Immunocytochemistry was performed as previously reported

[23] using the antibodies listed in Supporting Information S1.

Real-time RT-PCR Amplification Method and
Primer Design

Briefly, dsRed fluorescent hMSCs were separated from the non

labeled cardiomyocytes using trypsinization buffers and sorted

using a FACScan flow cytometer (Becton Dickinson, Franklin

Lakes, NJ) equipped with a 70- or 100-mm nozzle, a 488-nm argon

laser for excitation of the dsRed protein, and a 530615-nm

bandpass filter for monitoring fluorescent emission [23].

Total RNA was prepared from sorted dsRed hMSCs, dsRed

WB F344 or YFP mMSCs using a Qiagen mRNA kit. For

template preparation, 100–1000 ng of total RNA was transcribed

to cDNA in the presence of 0.5 mg oligo dT, 0.25 mMol/

L dNTPs, 16 First Strand Buffer and 200 units Superscript II

Reverse Transcriptase (Invitrogen, Carlsbad, CA). Reactions were

carried out in a single reaction for each experimental sample for

1 hr at 42uC followed by 15 min at 72uC. Briefly, PCR was

carried out with 10 pMol/L each forward and reverse species

specific and gene specific primers (TDI Integrated DNA Tech-

nologies, Coralville, IA). Also see Table S2), 16SYBR Green (Bio-

Rad, Hercules, CA) and 3.3 uL cDNA template in a total volume

of 25 ml. The temperature parameters were as follows: annealing

at 59uC for 40 cycles, followed by extension at 72uC for 30 sec.

Each amplification was performed in triplicate. The thermal

denaturation protocol at 95uC for 5 min was run at the end of the

PCR to determine amplification of the specific products. The cycle

number at which the reaction crossed an arbitrarily placed

threshold (Ct) was determined for each gene. Data were analyzed

in an Excel spreadsheet using the 22DDCt method to obtain the

relative expression level and the HPRT as a normalization control

in each sample. The relative amount of target = 22DDCt, where Ct

is the threshold cycle for target amplification, DCt = Ct target gene –

Ct internal reference, and 2DDCt =DCt sample - DCt calibrator.

Statistical analysis was performed as previously published [23].

Stimulation of CAMTA1 Expression in hMSCs
Monocultures

Ionomycin was used to increase [Ca2+]i and stimulate

CAMTA1 expression in the stem cells. Stem cells were expanded

in complete alpha MEM medium containing 10% fetal bovine

serum and L-glutamine. Twenty four hrs prior to ionomycin

exposure, all cells were changed to a medium containing 2% horse

serum. Cells were stimulated for 6 hrs using a final concentration

of 0.6 mMol/L ionomycin calcium salt (Sigma-Aldrich, St. Louis,

MO). Control and ionomycin-treated cells were washed and

harvested for RNA preparation. Remaining cells were washed

extensively and allowed to recover in culture in fresh complete

medium containing 2% horse serum. They were then harvested

after 24 hrs of ‘recovery’. RNA was isolated using Qiagen’s

RNEasy standard protocol for RNA isolation (Valencia, CA).

Silencing of CAMTA1 in the Stem Cells
The effects of CAMTA1 on the expression of the cardiac

transcription factors were investigated in loss-of-function-experi-

ments:

A. Silencing CAMTA1 in hMSC monocultures. Human

MSCs were transduced with GFP or CAMTA1 lentiviral particles

(Santa Cruz, CA), used at vendor’s recommended concentrations

for 6 hrs in 6 mg/ml Polybrene. All cells were then washed and

maintained in culture for 24 hrs before Ca2+ stimulation with

0.6 mMol/L of ionomycin. All cells were then harvested for total

RNA preparation

B. Silencing CAMTA1 in WB F344 stem cells co-cultured

with cardiomyocytes. DsRed WB-F344 stem cells were

maintained in culture as described previously [23]. They were

transfected using Ambion’s siPORT Amine reagent (Austin, TX)

with 30 nMol/L predesigned human CAMTA1 siRNAs pool or

scrambled siRNA (Santa Cruz, CA) using the manufacturer’s

recommended method. Transfected cells were washed 24 hrs later

and cultured for an additional 48 hrs. The cells were then

trypsinized, washed and seeded onto cardiomyocytes at a ratio of

1:10 and allowed to continue in co-culture for an additional

48 hrs. The cells were then harvested by FACS for dsRed

fluorescence and used for total RNA isolation (Qiagen RNEasy

standard protocol). WB F344 cells used for control conditions were

harvested for RNA directly from monocultures.
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