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Abstract

In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical
system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential
equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous
dynamical system by default. However, recent studies argued that discontinuous transcription might be more common
than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring
transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional
event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each
state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow
transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models – the Goodwin
oscillator and the Rössler oscillator. By constructing a ‘‘dual memory’’ oscillator – the fractional delay Goodwin oscillator, we
suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback,
sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler
oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear
genetic oscillatory system behaving chaotically.
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Introduction

The design and construction of genetic circuits are of great

importance to the nascent field of synthetic biology [1]. A vital

design principle for synthetic genetic circuits is to insure the

capability of self-sustained oscillations for adapting the biological

rhythms or environmental cycles. For example, the Goodwin

oscillator which is considered to be the simplest genetic oscillator

and the basis of the repressilators [1,2] has been used as a minimal

model to interpret the circadian rhythms occurring in gene’s

negative autoregulation [3,4]. Usually, one may expect to describe

a basic genetic circuit by using a minimal dynamical model (with

as few equations as possible), for the purpose of simplicity. The

variables in such model represent the quantities of several key

products in the circuit. However, as we have known, even the

simplest genetic regulation includes complex intermediate pro-

cesses like transcription, transportation of RNA, RNA splicing,

RNA capping, translation, transportation of mature protein and

other steps of post-translational modification. Therefore, a

minimal model (sometimes with only a single equation) often

lacks power to cover such complex intermediate processes in a

regular timescale. This can be seen from the case that a Goodwin

oscillator which requires an unrealistic high Hill coefficient (larger

than 8) for the destabilization of a fixed point and generating limit

cycle oscillations [5,6].

However, by altering the timescale of gene transcription and

introducing slow dynamics (e.g. considering the time lag in the

protein transportation), one can readily obtain the desirable

dynamical behaviors by using minimal models. A common

method to achieve slow dynamics is introducing explicit time

delay. In such way, sufficient time delay is considered to be one of

the general requirements for sustained oscillations [7]. Another

method is inserting an additional equation for lagging fast change

in protein level, which plays a dynamical role similar to explicit

time delays or to transport equations [8]. The two methods above

display certain sorts of memory effects in gene transcription [7,8].

These optimizations in timescale are designed merely for a specific

intermediate product (e.g. protein) or for a specific intermediate

biochemical step. We thus regard the above timescale changes as

non-global.

In this paper, we would like to introduce the globally slow

transcription which can be described by fractional differential

equations (FDE). This idea is based on the recent evidence that

discontinuous transcription may be more common than contin-

uous transcription. In the discontinuous transcription case, by

inserting silent intervals into neighboring transcriptional events

which are presupposed to be continuous, and appending an

inserted silent interval to the end of the preceding event, we aim to

establish that the running time for an intact transcriptional event

increases and the transcription system thus shows the property of
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globally slow transcription. Effects of such globally slow transcrip-

tion are investigated in a minimal Goodwin oscillator and a

Rössler oscillator, both of which are well-known in genetic

regulation.

Materials and Methods

Definitions of Fractional Calculus and Memory Weighted
via the Convolution Kernel

In spite of the existence of different definitions for the fractional

derivatives, the fractional integral is the common foundation of

fractional calculus. The notion of the left-side fractional integral

operator with order l[Rz is in fact an extension of the Cauchy’s

formula for repeated integrals which replaces the l-fold integrals

of a function f by a simple convolution:

0Jl
t f (t) : ~

ðt

0

g(t{s)f (s)ds~

ðt

0

(t{s)l{1

C(l)
f (s)ds, ð1Þ

where tw0, g(t)~
tl{1

C(l)
, and C(:) is the Gamma function. Moreover,

under certain reasonable assumptions there exists lim
l?0

0Jl
t f (t)~f (t);

we then obtain an identity operator denoted by [9]

0J0
t f (t) : ~f (t): ð2Þ

Considering that in real world applications, the evolution of a general

dynamical system governed by the principle of causality is apriori time-

irreversible, we use the left-side integral/derivative operators and the

initial time t0~0 throughout this paper.

The derivative operator under the Caputo definition is

expressed as follows [10]:

(a) If l~n[N0, we have the integer order derivatives:

C
0 Dn

t f (t)~Dnf (t)~f (n)(t), ð3Þ

where D1f (t)~ lim
Dt?0

f (t){f (t{Dt)

Dt
, demonstrating the local

property at a given time point t. In particular, there exists
C
0 D0

t f (t)~f (t).

(b) If l[Rz and l=[N, the left-side Caputo fractional derivative

operator is represented by

C
0 Dl

t f (t) : ~0Jn{l
t Dnf (t)~

ðt

0

(t{s)n{l{1

C(n{l)
f (n)(s)ds, ð4Þ

where n~qlr and n{1vlvn. In particular, when 0vlv1, we

have

C
0 Dl

t f (t) : ~0J1{l
t D1f (t)~

ðt

0

(t{s){l

C(1{l)
f (1)(s)ds, ð5Þ

(c) If l[Rz, then

C
0 Dl

t 0Jl
t f (t)~f (t): ð6Þ

From Eq. (3) and Eq. (4) we can see that the difference between the

integer order derivative operator and the fractional (non-integer

order) derivative operator is caused by the integral 0Jn{l
t

(0vn{lv1) which endows the operator C
0 Dl

t f (t) with the non-

local property because the information of the entire integral

interval 0,t½ � is involved. This is why we regard the fractional

integral as the common foundation of fractional calculus.

In dynamical systems theory, memory effects are usually

described by explicit non-local terms about the state variables.

In Eq. (1), we know g : 0,?½ Þ?R. If f : 0,?½ Þ?R, according to

the commutative property of convolution, we have

ðt

0

g(t{s)f (s)ds~

ð?
{?

g(t{s)I 0,t½ �(s)f (s)ds

~

ð?
{?

g(s)I 0,t½ �(t{s)f (t{s)ds

~

ðt

0

g(s)f (t{s)ds:

ð7Þ

Then, Eq. (1) can be written as

0Jl
t f (t)~

ðt

0

(t{s)l{1

C(l)
f (s)ds~

ðt

0

sl{1

C(l)
f (t{s)ds: ð8Þ

It is obvious that the fractional integral Eq. (8) reflects a weighted

average of delays f (t{s) via a specific convolution kernel function

g(s)~ sl{1

C(l)
. The values of the weighting function g(s) change with

s under different order l are illustrated in Fig. 1. In the

circumstance where lw1, the memory is enhanced with s

increasing, while states closed to present are given little weights.

For 0vlv1, g(s) decreases with increasings, leading to the

‘‘fading memory’’ property with which the importance of the past

state f (t{s) fades out. In this scenario, the larger values of l
provide slower decay of g(s). In the limit as l approaches zero,

g(s) approaches the Dirac delta function, leading to the identity

operator (zero order calculus). In contrast, in the limit as l

approaches 1, the weighting function g(s)~
sl{1

C(l)
approaches the

constant 1, providing same weights for all states.

Transcriptional Discontinuity Builds the Link between
Gene Transcription and Fractional Calculus

In early models of genetic regulation, the system of gene

transcription is presupposed to be a continuous dynamical system

and thus its long-time behavior can be described by using an

ordinary differential equation (ODE) which contains a Michaelis-

Menten (MM) mRNA synthesis term. For example, the one-

variable Goodwin model is

_xx~
1

1zxm
{ax, a[Rz, m[N, ð9Þ

where a is the degradation coefficient and m is Hill coefficient

[6,11]. By examining the two-variable extension of Eq. (9):

_xx(t)~
1

1zy(t)m {ax(t),

_yy(t)~x(t){by(t),

(a,b[Rz, m[N)

and the three-variable extension:

Fractional Dynamics of Globally Slow Transcription
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_xx(t)~
1

1zz(t)m {ax(t),

_yy(t)~x(t){by(t),

_zz(t)~y(t){cz(t),

(a,b,c[Rz, m[N)

Griffith [6] found that the addition of intermediate steps (with the

non-MM synthesis term for an intermediate product such like

protein) tends to make the oscillation be achieved more easily.

This finding makes us realize that the transcription equation which

contains the MM mRNA synthesis term is the fundamental part of

a basic autoregulation model, while other intermediate steps (with

non-MM synthesis) play the role of introducing slow dynamics for

certain intermediate variables, as described in [8]. The above

suggests that one may expect to compact any Goodwin model to a

single equation for gene transcription like Eq. (9).

Eq. (9) is a single ODE which reflects a continuous dynamical

system. The increment of continuous state variable at the time

point t can be expressed in difference form:

x(tzDt){x(t)~F (x,t)Dt, ð10aÞ

or in differential form:

dx~F (x,t)dt, ð10bÞ

where F (x,t) is the sum rate of synthesis rate minus degradation

rate, and the time increment Dt or dt is an extremely tiny value.

However, a recent molecular experiment shows that both

continuous transcription and discontinuous transcription exist in

yeast gene expression [12]. Moreover, more and more direct

evidence show that the process of transcription for most genes is

interspersed by ‘‘gene-on’’ and ‘‘gene-off’’ states by turns, in both

prokaryotes and eukaryotes [13–15]. A silent interval (in which

genes switch to ‘‘off’’ state and enter a refractory period) lying

between two neighboring transcriptional events makes gene

transcription not so continuous, and therefore, dynamics in such

situation is described to be temporally discontinuous [15]. In this

sense, if we remove those silent intervals, the presupposed

continuous dynamical system of gene transcription is recovered.

In order to describe the temporally discontinuous gene

transcription by using differential equations, we impose a silent

interval upon its preceding transcriptional event. The schedule of

an intact transcriptional event is then extended with a refractory

period being appended as the end part, implying a relative slow

transcriptional dynamics for that the total running time of an

intact transcriptional event increases. With this treatment, two

neighboring transcriptional events can be connected smoothly and

continuously without an interval (Fig. 2). The idea of inserting

silent intervals into continuous events can be traced back to the

case where a trapping event (the Brown particle is temporarily

immobile) is inserted into two neighboring jumps of continuous

time random walk (Fig. 2) and eventually leads to fractional

dynamics [16–19]. Different from this stochastic dynamics whose

solution is usually described by transition probability, in our

deterministic model, imposing a time interval upon a transcrip-

tional event and increasing the running time of an intact

transcriptional event will make each variable increment dx occur

within a larger time increment rather than within the original dt.
Since the original dt is an extremely tiny value (e.g. dt~0:0001 in

dimensionless form), we take Jumarie’s notion of time increment

(dt)l, where 0vlv1 leads to (dt)l
wdt while lw1 leads to

(dt)l
vdt [20]. By setting (dt)l with 0vlv1 to be the larger time

increment, we obtain the analog of Eq. (10b) which reads.

dx~F (x,t)(dt)l, l[(0, 1): ð11Þ

The relation between the fractional difference and the finite

difference has been given as

Figure 1. Graph of the weighting function g(s) with intermediate values of l. With 0vlv1, the curves demonstrate the property of fading
memory, while in the case where lw1, the memory of earlier time is enhanced while recent values of g(s) are attenuated.
doi:10.1371/journal.pone.0038383.g001
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Dlf%C(1zl)Df , ð12aÞ

or in differential form:

dlf%C(1zl)df , ð12bÞ

where l[(0,1) [20–22]. Multiplying both sides of Eq. (11) by

C(1zl) and taking account of Eq. (12b), we obtain

dlx%C(1zl)dx~C(1zl)F (x,t)(dt)l, l[(0, 1): ð13Þ

Hence, with time evolving, we have a l-order differential

equation:

dlx

(dt)l
%C(1zl)F (x,t), l[(0, 1): ð14Þ

The symbol of l-order derivative
dlx

(dt)l
makes one recall the age-

old issue presented in the communications between L’Hôspital and

Leibniz: what if the order is 1=2 (see [23] and the Preface of [10]).

Mathematicians have been inspirited by this story for over 300

years and their endeavors have led to a variety of nonequivalent

definitions for the fractional order derivatives. By taking Caputo’s

definition of the left-side fractional derivative and normalizing the

constant coefficient C(1zl) in Eq. (14) to unity, we obtain the

generalized form:

C
0 Dl

t x~F (x,t), l[(0, 1): ð15aÞ

From Eq. (5) we know that C
0 Dl

t x(t)~0J1{l
t D1x(t). If C

0 Dl
t x(t) is

differentiable, by calculating (1{l)-order derivatives of the both

sides of Eq. (15a), we can obtain an equivalent equation:

_xx~C
0 D1{l

t F (x,t), l[(0, 1), ð15bÞ

where _xx represents the first order derivative of x. Different from

the traditional ordinary differential equation _xx~F(x,t) in which

the product rate _xx is locally determined by F(x,t), Eq. (15) shows

long-term memory because the fractional derivative operator is

non-local. Take C
0 D1{l

t in Eq. (15b) for example, according to Eq.

(5) and the commutative property of convolution, we know that

C
0 D1{l

t F (x,t)~0Jl
t D1F (x,t)

~

ðt

0

(t{s)l{1

C(l)
F (1)(x,s)ds

~

ðt

0

sl{1

C(l)
F (1)(x,t{s)ds, l[(0, 1):

ð16Þ

Figure 2. Consecutive events are separated by a silent interval. A. Inserting a trapping event into two neighboring jumps of the Brown
particle in the continuous time random walk. B. The silent interval corresponds to the gene-off state. C. Temporally discontinuous transcription. The
reinitiation will not launch until the refractory period is over, then the inhibitor starts to act on the promoter and triggers the reinitiation. Therefore,
the time span of the silent interval can be treated to be equal to the time delay of the inhibitor generated in last transcriptional event. The blue
ellipse indicates an intact transcriptional event.
doi:10.1371/journal.pone.0038383.g002
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Since F (x,t) is the sum of synthesis rate minus degradation rate,

we define the first order derivative F (1)(x,t) as the ‘‘acceleration of

product gain’’. The convolution kernel g(s)~
sl{1

C(l)
is used to

weight F (1)(x,t{s) from nonce to remote history with s increasing

from zero to current time point t. As depicted in Fig. 1, with

normal timescale (l~1), weights are always equal, implying that

each transcriptional event launches de novo. Under this condition,

the traditional ordinary differential equation _xx~F (x,t) is recov-

ered. In the case where lw1, the farthest transcriptional event

gives the highest impact while the weight given by the nearest

transcriptional event is nearly close to zero. This case is in

contradiction with regular physiological phenomena. Besides, l
can be infinitely large under the condition of lw1. Therefore, we

exclude lw1 in our study. In contrast, the case in which 0vlv1
shows the property of ‘‘fading memory’’. With such memory, a

current event carries information form the preceding events,

especially the nearest one. This property seems to be consistent

with the observed phenomenon that transcriptional reinitiation is

more common than de novo initiation in a discontinuously-

transcribed gene [13]. However, the mechanisms of such

transcriptional memory are not very clear by now. A feasible

explanation may be that the loop scaffold forming in gene

transcription would retain certain enzymes (or regulatory factors)

of the preceding transcriptional events [24,25] and sterically

hinder the new recruited enzymes to take their place. Therefore, a

subsequent transcriptional event remembers the preceding tran-

scriptional events and takes a reinitiation rather than initiating de

novo. The likelihood of reinitiation diminishes as the interval time

elapses, and such relation can fit a simple exponential decay

function [13]. Since l[(0,1), we simply use a regular decay

expression l~e{rDhD to represent the probability for a gene still

‘‘surviving’’ with the capability of transcriptional reinitiation after

a time length DhD (time span of the silent interval), while 1{l is the

probability for the gene decaying to de novo initiation. The

unknown system constant r represents the probability per unit time

for a still ‘‘surviving’’ gene to decay [26]. In this way, a relative

small DhD indicates a relative large l, resulting in a relative small

(dt)l. If the silent interval does not exist, namely, in the limit as DhD

approaches zero, l will approaches one and (dt)l will approaches

dt, leading to the recovery of the early stage models for the

continuous transcription.

Numerical Studies of Fractional Dynamics in two
Illustrative Examples – a minimal goodwin oscillator and
a Rössler Oscillator

The first example is the Goodwin oscillator which was

introduced originally in 1950s to simulate physiological oscillations

in a closed loop with negative feedback.

The one-variable Goodwin model is expressed as Eq. (9). This

model reflects by default a fast dynamics in which the products will

be put into the feedback loop very quickly and then participate in

the reactions immediately (Fig. 3A). However, this model does not

generate sustained oscillation [6]. When the explicit time delay is

introduced for generating sustained oscillation, a slow dynamics is

achieved and the model becomes a delay Goodwin oscillator

(Fig. 3B). If transcriptional discontinuity is considered, by involving

explicit time delay and the deduced Eq. (15a), we obtain a

‘‘fractional delay Goodwin oscillator’’ which reads

C
0 Dl

t x(t)~
1

1zx(tzh)m {ax(t), ð17Þ

where hƒ0 is the time delay and the symbol C
0 Dl

t with l[(0,1)

denotes the Caputo fractional derivative operator. Since both the

time delay and the fractional operator are non-local, Eq. (17)

describes a ‘‘dual memory’’ system.

In this model, we assume that the silent interval retards the

inhibitor produced in a transcriptional event to act on the gene

promoter until the transcriptional reinitiation starts. Under this

assumption, the time delay can be set to be equal to h (hƒ0) when

DhD denotes the time span of the silent interval (Fig. 2C and Fig. 3C).

In order to avoid negative solution when time delay is involved

in the Goodwin oscillator [27], the conditions required for non-

negative solution should be established. Since the Goodwin

oscillator can often be developed into several variants (e.g. the

degradation term {ax(t) can be replaced by an MM expression

Figure 3. Different types of one-variable Goodwin model. A. Goodwin model with regular timescale. B. Goodwin oscillator with explicit time
delay. C. The fractional delay Goodwin oscillator described by Eq. (17). The silent interval hinders the product to trigger the reinitiation of gene
transcription and hence the time span of the silent interval is equal to the delay time.
doi:10.1371/journal.pone.0038383.g003
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[7,28]), we investigate the existence and the uniqueness of the non-

negative solution for the generalized form of the fractional delay

Goodwin oscillator (see Appendix S1).

The Simulink block diagram of Eq. (17) is depicted in Fig. 4.

The fractional integrator used in this section is the well-established

Oustaloup recursive filter which has been proved to fit well to the

fractional operators and has been widely used in control systems

[29–31]. It is suggested that because the same orders of the

numerator and the denominator in the ordinary Oustaloup filter

may cause algebraic loops in simulation, a low-pass filter must be

appended to the Oustaloup filter to avoid such disadvantage; the

stiff equation solver ode23tb is selected to ensure high efficiency and

accuracy [32]. In simulation, we fix the parameter a~0:2 in the

degradation term.

The second example is the Rössler oscillator which is originally

used to study chaotic kinetics in biochemical system [33]. Novak

and Tyson [7] used this model to describe the activator

amplification with two negative feedback loops in parallel. From

the viewpoint of mathematical modeling, the common phenom-

enon of coupling different genetic oscillator motifs in gene

regulation would tend to cause complex non-linear oscillations

like chaos. However, the deterministic chaos has not been detected

more often in real data from experiments, and Novak and Tyson

speculated that such chaos might be swamped by white noise and

averaged out in large populations of cells [7]. This speculation is

passable if stochastic factors are introduced. However, since all we

have discussed so far are deterministic models, can we give an

alternative explanation about the lack of chaos in gene regulation

merely from the angle of determinism?

For convenience, we use the classic Rössler system (the ‘‘model

of a model’’; [34])

C
0 Dl

t x~{(yzz)
C
0 Dl

t y~xzay
C
0 Dl

t z~bzz(x{c)

8><
>: ð18Þ

to illustrate how the globally slow transcription affects the system’s

dynamical behavior. The parameters are set by a~0:15, b~0:2
and c~10 with sampling period Dt~0:1s for time series,

according to the reference [35]. Because of the global property

of (dt)l, all three individual equations of Eq. (18) share a

commensurate order just like the way given by the traditional

commensurate first order Rössler system (but with l[(0,1)). The

numerical method for fractional calculus is the Oustaloup

recursive filter mentioned above. The largest Lyapunov exponent

(LLE) is calculated by using the method of Rosenstein et al. [35],

and the embedded delay and dimension are evaluated by using the

methods of Kim et al. [36] and Kugiumtzis [37].

Results and Discussion
By inserting silent intervals into consecutive transcriptional

events and globally replacing dt by a larger increment (dt)l, we

make the early stage models change from ODE to FDE. The

impact of the order fractionization on genetic oscillation can be

shown by the Goodwin oscillator and the Rössler oscillator.

For the fractional delay Goodwin oscillator, the numerical

results show that no sustained oscillations occur when m~1;

however, with fixed l and h, the increase of m leads to the

destabilization of the steady state (data not shown). In the case of

m~2 (Fig. 5A and Fig. 5B), when h is specified, the increase of l
leads to the stability loss. The impact of time delay is clearly shown

in Fig. 5B–5D. When m~2 and l~0:9, setting the delay time

h~{15 generates damped oscillation which is on the way to

Figure 4. Simulink block diagram of the fractional delay Goodwin oscillator. Subsystem 1 containing a block of Transport Delay possesses
the time lag effect, while subsystem 2 is a fractional integrator (with order of 0.9) which reflects the fading memory effect. The Step block is used for
assigning the initial value in the beginning step, and the Outport block is used for collecting the simulation results.
doi:10.1371/journal.pone.0038383.g004
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steady state, while h~{20 produces periodical sustained oscilla-

tion. In this case, by plotting the rate of degradation or synthesis

versus the present values x(t), the trajectory of the time-delayed

synthesis rate with h~{15 is attracted to the intersection point

(the steady state of x) of the degradation rate and the non-delayed

synthesis rate (Fig. 5C). With an extending delay of h~{20, the

time-delayed loop overshoots and undershoots the steady state,

indicating the periodical sustained oscillation of x(t) (Fig. 5D).

Novak and Tyson [7] proposed four general requirements for

oscillation in gene regulation: (1) negative feedback loop; (2)

sufficient nonlinearity; (3) sufficient time delay; (4) proper

balancing of timescale (namely, a in the degradation term of Eq.

(17) must not be too large). However, by introducing fractional

dynamics, the decrease of the order l would tend to make the

oscillation more stable, even though a sufficient time delay is

reached. This can be clearly shown in Fig. 5A and Fig. 5B: when

sufficient nonlinearity (m~2), sufficient time delay (h~{20) and

proper balancing of timescale (a~0:2) are satisfied, the decrease of

l (from 0.9 to 0.7) makes the oscillatory limit cycle become a fixed

point attractor. Since the order l (as shown in Fig. 1) can be used

to indicate the strength of memory in fractional dynamics, we

suggest the use of the term ‘‘sufficient memory’’ for the 3rd

requirement rather than using only ‘‘sufficient time delay’’ when

fractional dynamics is involved.

For the Rössler oscillator, the traditional commensurate first

order model shows the classic unimodal folded chaos with LLE of

+0.0995 (Fig. 6F). When fractional dynamics is involved, it is

clearly shown that the dynamical behavior changes from non-

periodic (chaotic) motion (LLE.0) to periodic motion (LLE = 0)

with l decreasing (Fig. 6F). Some points that seem to be outliers at

around l&0:993 (Fig. 5F) are attributed to the meeting of the

period-three window which is embedded in the chaotic region

(Fig. 6C and Fig. 6E). The existence of the period three window in

the diagram of period doubling bifurcation (Fig. 6E) implies that

the chaotic dynamics of the fractional Rössler model can be

interpreted through the Sharkovskii order [38] or Li-Yorke

theorem [39]. The critical value for the route to chaos is

lC&0:9845, and the region corresponding to the order interval

0:9845ƒlƒ1 is defined as the chaotic region. Therefore, if we

simply consider a uniform distribution of l within the order

Figure 5. Numerical results of the fractional delay Goodwin oscillator. A. A comparison of the solutions of Eq. (17) with different time delay
(–15 and –20, respectively) under the same condition of m~2, l~0:7 and a~0:2. No sustained oscillations occur in both cases. B. Under the same
condition of m~2, l~0:9 and a~0:2, the solution of Eq. (17) with h~{15 indicates a damped oscillation on the way to steady state, while the case
with h~{20 corresponds to sustained oscillation. C. Plots of the synthesis rate (without delay), the degradation rate and the rate of synthesis
containing delay, against the present value x(t). The blue curve indicates the damped oscillation. D. Plots of the synthesis rate (without delay), the
degradation rate and the rate of synthesis containing delay, against the present value x(t). The blue circle indicates sustained oscillation.
doi:10.1371/journal.pone.0038383.g005
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interval (0,1), the fractional Rössler oscillator with originally

specific parameters will show a probability of more than 0.98 to

behave non-chaotically. This deterministic fractional dynamics

may provide an alternative explanation for understanding why the

deterministic chaos in gene regulation has not been detected more

often in real data from experiments [7].

In conclusion, a transcription equation with a term repre-

senting MM mRNA synthesis is the core of a basic autoregulation

model. Therefore, any basic autoregulation circuit can be

minimized to such a single equation. Traditionally, slow dynamics

can be achieved via setting explicit time delay to the state variable

of a minimal model. In this study, we propose a globally slow

transcription on the basis of the recent observation that

discontinuous transcription may be more common than contin-

uous transcription. By inserting silent intervals into neighboring

transcriptional events which are presupposed to be continuous,

Figure 6. The Rössler oscillator running under globally slow transcriptional dynamics. A. Period one motion. B. Period two motion. C.
Period three motion. D. Chaotic motion. E. Diagram of period doubling bifurcation. F. Plot of the largest Lyapunov exponent against the system
orders. LLE indicates chaotic motion, limit cycle (or quasiperiodic motion) and fixed point attractor with positivity, zero and negativity, respectively.
doi:10.1371/journal.pone.0038383.g006
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and appending an inserted silent interval to the end of the

preceding event, we establish that the running time for an intact

transcriptional event increases. By globally replacing the original

time increment for each state increment by a larger one, we obtain

a fractional model for gene transcription. With the assumption

that the silent interval hinders the product to trigger the

reinitiation of gene transcription and hence causes time delay,

we construct a fractional delay Goodwin oscillator. Since both

time delay and fractional operator are non-local, such new type of

Goodwin oscillator is a ‘‘dual memory’’ system. To avoid negative

solution when time delay is involved, the existence and the

uniqueness of the non-negative solution for the generalized form of

the fractional delay Goodwin oscillator are also studied. The

numerical studies show that the explicit time delay tends to

destabilize the steady state, while the fractionization of the order

tends to make the system stable. This result makes us realize that

the requirement ‘‘sufficient time delay’’ for genetic oscillation is

not sufficient and should be changed to ‘‘sufficient memory’’ when

fractional dynamics is involved. When we examine another well-

known genetic oscillator – the Rössler oscillator which describes

the activator amplification coupled with two negative feedback

loops in parallel, the diagram of period doubling bifurcation

against the orders reveals that the globally slow dynamics induced

via discontinuous transcription tends to lower the chance of a

coupled or more complex nonlinear genetic oscillatory system

behaving chaotically.
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