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Abstract

Background: Besides well-established roles of bile acids (BA) in dietary lipid absorption and cholesterol homeostasis, it has
recently become clear that BA is also a biological signaling molecule. We have shown that strategies aimed at activating
TGR5 by increasing the BA pool size with BA administration may constitute a significant therapeutic advance to combat the
metabolic syndrome and suggest that such strategies are worth testing in a clinical setting. Bile acid binding resin (BABR) is
known not only to reduce serum cholesterol levels but also to improve glucose tolerance and insulin resistance in animal
models and humans. However, the mechanisms by which BABR affects glucose homeostasis have not been established. We
investigated how BABR affects glycemic control in diet-induced obesity models.

Methods and Findings: We evaluated the metabolic effect of BABR by administrating colestimide to animal models for the
metabolic syndrome. Administration of BABR increased energy expenditure, translating into significant weight reduction
and insulin sensitization. The metabolic effects of BABR coincide with activation of cholesterol and BA synthesis in liver and
thermogenesis in brown adipose tissue. Interestingly, these effects of BABR occur despite normal food intake and
triglyceride absorption. Administration of BABR and BA had similar effects on BA composition and thermogenesis,
suggesting that they both are mediated via TGR5 activation.

Conclusion: Our data hence suggest that BABR could be useful for the management of the impaired glucose tolerance of
the metabolic syndrome, since they not only lower cholesterol levels, but also reduce obesity and improve insulin
resistance.
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Introduction

Bile acid (BA) is essential constituents of bile that facilitate

dietary lipid absorption and cholesterol catabolism. BA also

activates several signaling pathways, endowing them with an

endocrine function. For instance, BA was shown to be natural

ligands that activate the nuclear receptor farnesoid X receptor

(FXR, NR1H4) [1–3], which controls both the synthesis and

enterohepatic circulation of BA [4–5]. FXR induces the expression

of the short heterodimer partner (SHP, NR0B2), an atypical

nuclear receptor that acts as a corepressor. The FXR-mediated

SHP induction contributes to the negative feedback regulation of

BA biosynthesis, through inhibition of liver X receptor a and b
(LXRa, NR1H3 and LXRb, NR1H2) and liver receptor

homolog-1 (LRH-1, NR5A2), both required for the transcription

of the rate-limiting enzyme in the neutral BA biosynthesis

pathway, cholesterol 7a-hydroxylase (CYP7A1) [6–11]. The

FXR-mediated induction of FGF15/19 (FGF19 in human and

its ortholog FGF15 in mouse) in intestinal epithelial cells also

participates in the feedback repression of BA synthesis, via FGFR4

on hepatocytes [12–14]. Using a similar mechanism, the FXR-

mediated SHP induction attenuates the capacity of LXR and

LRH-1 to induce the expression of sterol regulatory element-

binding protein (SREBP)-1c, the master regulator of lipogenesis,

explaining the inhibition of hepatic fatty acid and triglyceride

biosynthesis and VLDL production by BA administration [15].

Recently, it was reported that FXR deficiency improves glucose

homeostasis in a mouse model for the metabolic syndrome [16]. In

addition, we established that a synthetic FXR agonist (GW4064),

deteriorates metabolic control in a diet-induced obesity mouse

model [17]. These results suggest that the BA-specific nuclear
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receptor FXR is involved in the pathogenesis of the metabolic

syndrome.

BA may also signal in peripheral tissues through another

pathway involving the binding and activation of TGR5, a G

protein-coupled receptor (GPCR), leading to the induction of

intracellular cyclic adenosine monophosphate (cAMP) levels [18–

19]. The subsequent activation of type 2 iodothyronine deiodinase

(D2), the enzyme which converts inactive thyroxine into active

3,5,39-triiodothyronine [20] and hence determines thyroid hor-

mone receptor saturation in cells, and of peroxisome proliferator-

activated receptor (PPAR) c coactivator-1a (PGC-1a), the master

regulator of mitochondrial biogenesis [21], then stimulates energy

expenditure in brown adipose tissue (BAT) (in rodents) and skeletal

muscle (in humans) [22].Activation of this pathway explains how

administration of BA to mouse models of obesity and diabetes

induces weight loss and insulin sensitization. In addition, we

reported that in mice, a synthetic FXR agonist (GW4064) reduced

the BA pool and altered BA composition impairing peripheral

energy metabolism possibly via TGR5 [17]. Furthermore, TGR5

activation enhances GLP-1 secretion from the enteroendocrine L-

cell stimulating pancreatic insulin secretion [23]. Thus in addition

to FXR, the BA-specific GPCR TGR5, is an attractive therapeutic

target for treating metabolic syndrome.

These observations have built a strong case that BA has effects

beyond the strict control of BA homeostasis and function as

general metabolic integrators [24]. Bile acid binding resins

(BABR), such as cholestyramine, is effective drugs for the

treatment of coronary heart disease by lowering LDL-cholesterol

as primary prevention, and for the treatment of cholestatic liver

disease. BABR absorbs BA in the intestine thereby preventing

their uptake in the ileum and interrupting their enterohepatic

circulation. The resulting decrease of negative feedback signals will

induce the expression of Cyp7a1. The subsequent decrease in

intrahepatic cholesterol levels will on its turn activate SREBP-2,

which induces the expression of the low density lipoprotein (LDL)

receptor, to enhance cholesterol uptake, and of enzymes that

synthesize cholesterol de novo, such as 3-hydroxy-3-methylglutaryl

(HMG) CoA reductase. BABR was also reported to improve

glycemic control in a type 2 diabetes mouse model [25], but the

mechanism has not been established. We characterize here in

detail the molecular and functional impact of a second generation

BABR, colestimide [26], on metabolic homeostasis in animal

models for the metabolic syndrome. Interestingly, colestimide not

only reduces cholesterol levels but also decreases body weight and

improves glucose tolerance, qualifying BABR as ideal agents to

treat the metabolic syndrome. We suggest that a part of the anti-

metabolic syndrome effect of BABR will be exerted by an

alteration of the peripheral BA composition followed by TGR5

activation.

Materials and Methods

Materials
Cholic acid (CA) and cholestyramine were obtained from Sigma

(St. Quentin Fallavier, France). Colestimide was a generous gift of

Mitsubishi Pharmaceuticals.

Animal studies
All procedures undertaken in the present study conformed to

the principles outlined in the Guide for the Care and Use of Laboratory

Animals published by the USA National Institutes of Health (NIH

Publication No. 85-23, revised 1996) and were approved by the

Institutional Animal Care and Use Committee of Keio University

School of Medicine (permission No. 08062-(2)). Male C57BL/6J

mice, 6–7 weeks of age, were obtained from Charles River

Laboratories France (l’Arbresle, France) and CLEA Japan Inc.

(Tokyo, Japan), respectively. All mice were maintained in a

temperature-controlled (23uC) facility with a 12 hours light/dark

cycle and were given free access to food and water. The high-fat

diet was obtained from Research diets (New Jersey, USA). The

high-fat diet (D12492) contained 20 kcal% protein, 20 kcal%

carbohydrate and 60 kcal% fat. For treatment with BA or BABR,

mice were fed diets mixed with CA (0.5% w/w) or colestimide (2%

w/w). Based on a daily food intake of 5 g, this resulted in a daily

dose of colestimide 100 mg. The mice were fasted 4 hours before

harvesting blood for subsequent blood measurements, and tissues

for RNA isolation, lipid measurements and histology. Food intake

was measured from the accumulated weight of the food for 1 week,

with 5 mice in each group. Oxygen consumption was measured

using the Oxymax apparatus (Columbus Instruments, Columbus,

OH) [27].

Morphological studies
Pieces of mouse tissues were fixed in Bouin’s solution,

dehydrated in ethanol, embedded in paraffin, and cut at a

thickness of 5 mm. Sections were deparaffinized, rehydrated, and

stained with haematoxylin and eosin.

mRNA expression analysis by Q-RT-PCR
Expression levels were analyzed in cDNA synthesized from total

mRNA using real-time PCR as described [22]. The sequences of

the primer sets used are displayed in table 1.

Clinical biochemistry and evaluation of glucose and lipid
homeostasis

An oral glucose tolerance test (OGTT) was performed in

animals that were fasted overnight. Glucose was administered by

gavage at a dose of 2 g/kg. An intra peritoneal insulin tolerance

test (IPITT) was done in 4 h fasted animals. Insulin was injected at

a dose of 0.75 U/kg. Glucose quantification was done with the

Maxi Kit Glucometer 4 (Bayer Diagnostic, Puteaux, France) or

Glucose RTU (bioMérieux Inc., Marcy l’Etoile, France). Plasma

insulin concentrations were measured using ELISA for mouse

(Cristal Chem Inc., Downers Grove, IL). HOMA-R was

calculated by this formula: (fasting serum insulin concentration

[mU/ml])*(fasting serum glucose concentration [mg/dl])/405.

Free fatty acids, triglycerides, and total cholesterol were deter-

mined by enzymatic assays (Roche, Mannheim, Germany). LDL

cholesterol was measured with plasma clinical chemistry analysis

using AU-400 automated laboratory workstation and commercial

reagents (Olympus France SA, Rungis, France) [28]. BA in

enterohepatic organs were determined as described [29]. Lipid

absorption was calculated as follows; (food lipid content – fecal

lipid content)/food lipid content (6100(%)), with the food and

feces consumed by/accumulated from 5 mice for 48 hours. To

calculate the lipid absorption, TG was extracted from the

accumulated feces by the classical Folch method [30] and

measured as previously described [15].

Statistical analysis
Values were reported as mean +/2 standard error (SEM).

Statistical differences were determined using ANOVA (Statsview

software, Abacus concepts, Inc., Berkeley, CA). Statistical signif-

icance is displayed as * (P,0.05) or ** (P,0.01) versus F.
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Results

BABR prevents the onset of diet-induced obesity
To evaluate the metabolic effects of a BABR in models of diet-

induced obesity (DIO), we fed C57BL/6J mice normal chow, HF

diet, or HF diet supplemented with either colestimide (2% w/w) or

cholic acid (CA, 0.5% w/w) for 96 days. HF fed animals gained

more weight than chow-fed animals. The animals fed with CA

supplemented HF diet gained weight at a rate comparable to

chow-fed mice. Colestimide had an even more pronounced effect

in curbing weight gain. Since food intake and lipid absorption

were not affected by CA and colestimide, these effects on body

weight are probably mediated by increased energy expenditure

(Fig. 1A). At necropsy, the weight of liver, epididymal white

adipose tissue (epWAT) and BAT of HF fed animals was all

significantly increased (Fig. 1B). The BAT was paler, indicative of

increased fat accumulation, and there was an expansion of WAT

surrounding the BAT (not shown). Both colestimide and CA

completely prevented HF-induced changes in liver and adipose

mass and morphology. High fat diet-induced significantly

increased serum total cholesterol (T-C), LDL-cholesterol (LDL-

C), fasting glucose and insulin levels. Colestimide ameliorated

serum triglyceride (TG), T-C, LDL-C, fasting glucose and insulin

levels significantly. CA administration exerted significant reduc-

tion of fasting glucose and insulin levels, but induced serum LDL-

C level as expected (Fig. 1C). During OGTT, both colestimide

and CA significantly reduced blood glucose concentrations to

normalize the glucose tolerance of the mice with diet-induced

obesity. Insulin sensitivity of the mice was also improved by

colestimide and CA, shown in the result of IPITT (Fig. 1D). In

KK-Ay mice, both colestimide and cholestiramine improved

metabolic status (Text S1) without suppressing their food intake

(Fig. S1A). The BABR significantly reduced epWAT weight gain,

and also significantly improved serum metabolic index including

TG, FFA, fasting glucose, insulin levels, and HOMA-R.

Colestimide administration significantly improved liver weight

gain and serum T-C level, either (Fig. S1B–D). The BABR-

received KK-Ay mice exhibited significantly lower blood glucose

during the OGTT (Fig. S1E). In the IPITT, the BABR reduced

blood glucose level, but the improvement rate described in iAUC

was not affected by the BABR administration (Fig. S1E). These

data show that BABR improves metabolic control in mouse

models for the metabolic syndrome.

BABR increases energy expenditure
The significant weight loss, in the wake of an unaltered food

intake, suggested that BABR could stimulate energy expenditure

and as such improve metabolic homeostasis. We hence analyzed

the morphology of key metabolic tissues and performed indirect

calorimetry in the C57BL/6J mice used in the HF study (see

Fig. 1). This furthermore enabled us to compare the effect of the

BABR with those of BA, which we characterized previously in this

model [15] [22]. Liver sections of HF fed animals showed more

unstained inclusions, indicative of steatosis, which were absent

when the HF diet was supplemented with colestimide or CA (not

shown and [15]). The HF diet induced significant adipocyte

hypertrophy in both epWAT, characterized by a larger adipocyte

volume (Fig. 2A), and BAT, typified by larger lipid vacuoles within

the cells. This adipocyte hypertrophy was not observed when the

HF diet was supplemented with either colestimide or CA. Electron

microscopic analysis of BAT also showed more lipid vacuoles in

HF fed animals when compared with chow fed animals or animals

receiving HF diet combined with colestimide or CA (Fig. 2A,B&C).

Compared with the HF diet, colestimide and CA supplementation

increased the number of lamellar cristae in the mitochondria

(Fig. 2C). Indirect calorimetry, showed a higher CO2 production

and O2 consumption in animals fed a HF diet with either

colestimide or CA when compared to animals on a HF or a

Table 1. Primer sequences of genes used for quantification of mRNAs by real-time PCR.

Gene Forward Primer (59R39) Reverse Primer (59R39)

18s GATGGGAAGTACAGCCAGGT TTTCTTCAGCCTCTCCAGGT

Cyp7A1 TACAGAGTGCTGGCCAAGAG TTCAAGGATGCACTGGAGAG

SHP CAAGGAGTATGCGTACCTGAAG GGCTCCAAGACTTCACACAGT

FXR CAAAATGACTCAGGAGGAGTACG GCCTCTCTGTCCTTGATGTATTG

PGC-1a AAGGGCCAAACAGAGAGAGA GCGTTGTGTCAGGTCTGATT

PEPCK GGGAACTCACTACTCGGGAA GCCAGGTATTTCTTCTTGCC

G6Pase CCGGATCTACCTTGCTGCTCACTTT TAGCAGGTAGAATCCAAGCGCGAAAC

SREBP-2 AAGTGACCGAGAGTCCCTTG ACGTTGAGACTGCTCCACAG

HMGCR TCGAAGGACGAGGAAAGACT CGTCAACCATAGCTTCCGTA

LDLR AGGCTGTGGGCTCCATAGG TGCGGTCCAGGGTCATCT

PPARa GGTGAGGAGAGCTCTGGAAG GAAGCTGGAGAGAGGGTGTC

ACC ACCCACTCCACTGTTTGTGA CCTTGGAATTCAGGAGAGGA

SCD1 CTCCTGCTGATGTGCTTCAT AAGGTGCTAACGAACAGGCT

D2 TTCTGAGCCGCTCCAAGT GGAGCATCTTCACCCAGTTT

UCP-1 GGCCCTTGTAAACAACAAAATAC GGCAACAAGAGCTGACAGTAAAT

FGF15 GGCAAGATATACGGGCTGAT GATGGTGCTTCATGGATCTG

mCPT-1 GCACTGCAGCTCGCACATTACAA CTCAGACAGTACCTCCTTCAGGAAA

Cyp8B1 GGAAGCCAAGAAGTCGTTCA GACGCAGACTCTCCTCCATC

Cyp27A1 TCTGGCTACCTGCACTTCCT CTGGATCTCTGGGCTCTTTG

doi:10.1371/journal.pone.0038286.t001
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normal diet (Fig. 2D). We conclude from these experiments that

feeding of colestimide or CA changes fat and energy metabolism

most likely due to an effect on basal metabolic rate.

Molecular mechanism of BABR action
To identify the molecular drivers of the effects of BABR, we

performed analysis of gene expression using Q-RT-PCR in liver,

BAT, muscle and ileum of the C57BL/6J HF study (Fig. 1).

Hepatic gene expression reflected the interruption of the

enterohepatic cycle of BA by BABR and its consequences on BA

production and cholesterol homeostasis. These changes were

typified by the significant induction of Cyp7a1 expression,

subusequent to the reduction in Shp. Cyp8b1 expression was

significantly suppressed by CA administration, but was not

affected by BABR administration. Gene expression of Cyp27a1,

another rate-limiting enzyme participating in the alternative acidic

BA synthesis pathway, was not affected by CA or BABR

administration. The cholesterol depletion caused by colestimide

stimulated BA production by CYP7A1, and then induced

significantly increased expression levels of Srebp-2 and its target

genes including HMG-CoA reductase and LDL receptor. Genes

involved in gluconeogenesis, such as phosphoenolpyruvate car-

boxykinase (Pepck) and glucose-6-phophatase (G6Pase) were affect-

ed. Pepck gene expression was significantly induced, and G6Pase

gene expression was also stimulated as a consequence of the

significant rise in the Pgc-1a expression, which stimulates

gluconeogenesis. In contrast to colestimide, and as previously

reported, the FXR agonist CA significantly induced Shp mRNA

levels, which attenuates the expression of Cyp7a1 and of the genes

involved in cholesterol homeostasis. Genes involved in fatty acid

oxidation (Ppara) and lipogenesis (acetyl-CoA carboxylase 1 (Acc1)

and stearoyl-CoA desaturase-1 (Scd1)) were not changed in

response to colestimide and CA (Fig. 3A).

In BAT, the expression of Pgc-1a and D2 were both induced by

colestimide and CA. As a consequence the expression of

uncoupling protein-1 (Ucp-1) was also increased after both BABR

and BA administration (Fig. 3B). Colestimide and CA treatment

did not lead to significant differences in the expression of the genes

involved in energy homeostasis in muscle (Fig. 3C). In ileum, the

expression of Fgf15, which is one of the target genes of FXR, was

significantly decreased by colestimide and increased by CA

(Fig. 3D). In combination, the gene expression studies confirm

that BAT and liver are the primary target organs that contribute to

the beneficial effects of BABR on energy, lipid and glucose

homeostasis. Remarkably, the effect on energy homeostasis

induced by BABR was very similar to those observed after

administration of CA (Figs. 1, 2, 3, Fig. S1 and [22]), despite the

fact that BABR and BA has opposite actions on hepatic gene

expression. Precisely, BABR administration induces Cyp7a1

expression, while BA supplementation reduces expression of this

gene, which is secondary to the changes in the BA pool size and

serum BA levels. CA increased the BA pool and serum BA levels,

but unexpectedly colestimide induced only a minor and non

significant decrease in these parameters (Table 2). More striking,

the changes in the composition of the BA pool and serum BA was

similar after BABR or CA administration [22]. Both treatments

Figure 1. BA and BABR improve metabolic control in DIO C57BL/6J mice model. (A) Body weight, food intake and TG absorption (B) Liver,
epididymal WAT (epWAT), and BAT weight change of C57BL/6J mice during 96 days on different diets. Ch stands for chow, F denotes HF diet, FCOL
denotes HF diet+2.0% w/w colestimide and FB denotes HF diet+0.5% w/w CA. (C) Serum levels of TG, T-C, LDL-C, glucose and insulin in C57BL/6J
mice on the indicated treatments. (D) Glucose levels during OGTT and IPITT in the different treatment groups (AUC is depicted in the inset). The OGTT
were performed after an overnight fast after 9 weeks of administration. Glucose was administered by gavage at a dose of 2 g/kg. The IPITT were
performed after 4 h fast after 10 weeks of administration. Insulin was injected at a dose of 0.75 U/kg. Data are expressed as the mean +/2 SEM (n = 5–
6). * (P,0.05) or ** (P,0.01) versus F.
doi:10.1371/journal.pone.0038286.g001
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increased the relative contribution of CA and its derivatives, most

notably tauroCA. Bile acids derived from chenodeoxyCA such as

tauromuriCA were decreased by both BA supplementation and

BABR treatment (Fig. 4 and [22]). BABR preferentially sequesters

mono- and di-hydroxy BA and prevent them from enterohepatic

recirculation hence inducing the de novo synthesis of CA.

Discussion

In the present study, we show that administration of BABR

stimulated energy expenditure mediated by BAT, thereby

preventing and reversing diet-induced obesity in mice. This

phenomenon was accompanied by an improved glucose tolerance

and insulin sensitization in a diet-induced obesity model

(C57BL6/J (Fig. 1)). BABR also improved glucose tolerance in

KK-Ay mice (Text S1 and Fig. S1). Brown adipose tissue is

recently recognized as an important tissue of thermogenesis and

energy homeostasis not only in rodents but also in man [31–33].

Our results indicate that therapy with colestimide, a new and

better formulated BABR when compared with cholestyramine,

could improve metabolic control also in humans suffering from the

metabolic syndrome. In fact, colestimide decreased fasting glucose

levels, but also reduced body weight, BMI, and visceral fat mass

[34]. Furthermore, BABR was reported to improve obesity, insulin

sensitivity and glycemic control in diabetes mellitus mouse model

[25]. Furthermore, there is clinical evidence suggesting that BABR

such as colesevelam may improve both lipid control and glycemic

control in patients with type 2 diabetes that receive oral

antihyperglycemic medications [35–37] [38,39]. Combined with

the limited systemic toxicity ofBABR, which isnot absorbed, these

compounds could constitute a significant advance in our

therapeutic armamentarium to combat against metabolic syn-

drome. Although there is some evidence that the beneficial effects

of BABR may be mediated through FXR, LXR, FGF15/19, and

TGR5, but the exact molecular mechanisms are not yet clearly

defined.

On a molecular and cellular level, BABR improves metabolic

homeostasis through effects on liver and BAT (Fig. 5). The effects

on liver are well known and include an induction of cholesterol

and BA biosynthesis, subsequent to the fecal loss of bile acids

caused by the BABR treatment. This underlies the cholesterol-

lowering effect of BABR. The metabolic effects on BAT have not

been reported before and phenocopy the changes seen after

treatment of rodents with primary BA, such as CA [22]. This is

surprising, since treatment with BABR and BA has opposite

actions on most parameters of BA homeostasis. CA administration

increases FXR activation, whereas BABR treatment decreases it.

CA administration decreases the BA synthesis, whereas BABR

treatment increases it. However, BABR and CA had similar effects

on BA composition. Both treatments increased the relative

contribution of CA and its derivatives, most notably deoxyCA,

tauro-deoxyCA and tauroCA. Bile acids derived from chenodeox-

Figure 2. BABR increase energy expenditure. Hematoxylin and eosin (HE) stained epWAT (A) and BAT (B) sections of C57BL/6J animals treated
with control or HF diet when indicated combined with colestimide or CA as specified in Fig. 1. Scale bar, 50 mm. (C) BAT analysis by transmission
electron microscopy. (D) Averaged O2 consumption (VO2) and CO2 production (VCO2) as measured by indirect calorimetry in mice on the different
diets as indicated. Data are expressed as the mean +/2 SEM (n = 5–6). * (P,0.05) or ** (P,0.01) versus F.
doi:10.1371/journal.pone.0038286.g002
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yCA such as muriCA and tauromuriCA were decreased. In

addition to our studies in mice, colestimide treatment of

hypercholesterolemia patients significantly increased CA in bile

[40]. The most likely explanation for this specific increase in BA

species derived from CA, is the fact that colestimide has a high

adsorptive capacity for mono- and di-hydroxy BA like chenodeox-

yCA and lithoCA, but a relative low capacity for the tri-hydroxy

BA such as CA. In addition, the induced BA biosynthesis during

colestimide treatment might produce more CA than chenodeox-

yCA [41]. Increased BA pool size and plasma BA levels are fine

indicator for TGR5 activation [22] [17]. This time, we focus on

the importance of bile acid composition to improve metabolic

status. TGR5 is activated by almost all BA including mono- and

di-hydroxy BA. Some of the BA like ursodeoxyCA have little

activity on TGR5, but no inhibitory BA was identified in our test

of over 60 BA and BA derivatives for antagonistic effects on TGR5

(data not shown). Most importantly, BABR administration

induced levels of tauroCA, a relatively potent TGR5 agonist

[22], which could be the key to the anti-metabolic syndrome effect

of BABR administration. In agreement with this, reduction of BA

pool size and tauroCA levels by the administration of the synthetic

FXR agonist GW4064, exacerbated the effects of HF feeding [17].

It is conceivable that BABR, such as colestimide and

cholestyramine that are mainly active in the intestinal tract, could

affect the production of incretins, such as FGF15, cholecystokinin

(CCK) and glucagon like peptide-1 (GLP-1). FGF15 is interesting

in this respect, since transgenic mice that overexpress the human

Fgf15 ortholog Fgf19 in the muscle or in a more general pattern

have increased metabolic rate and decreased adiposity [42].

BABR, however, decreases expression of Fgf15 (Fig. 3D), whereas

CA has the opposite effect, making it unlikely that it underlies the

common metabolic effects of BABR. GLP-1 has glucose-depen-

dent insulinotropic actions on the pancreatic beta-cells and has

recently been associated with bile acids because its release was

stimulated in an enteroendocrine cell line via TGR5, a GPCR

specific for bile acids [23]. BABR may have an effect on the

intestinal secretion of GLP-1, according to recent reports [43].

Indeed, we found that GLP-1 secretion was stimulated by BABR

administration (unpublished data), which may contribute to the

other beneficial effects of BABR. CCK is another good candidate,

since cholestyramine can increase CCK production but also

pancreatic beta cell function [44–45]. In addition CCK has been

linked to increased sympathetic activity to BAT [46–47]. To date,

effects of BABR on incretins and BAT have not been sufficiently

studied.

Taken together, our data show that BABR activates energy

expenditure, resulting in weight loss and improved glucose

tolerance in animal models suffering from the metabolic

syndrome, in a mechanism very similar to BA administration

[22]. The alteration of BA composition, which occurs after BABR

Figure 3. Gene expression in liver, BAT, muscle and ileum. (A) mRNA expression levels of Cyp7a1, Cyp8b1, Cyp27a1, Shp, Fxr, Pgc-1a, Pepck,
G6Pase, Srebp-2, HMG-CoA reductase, LDL-Receptor, Ppara, Acc1 and Scd1 were determined using quantitative RT-PCR in liver of C57BL/6J mice
treated as described in Fig. 1A. (B) mRNA expression levels of D2, Pgc-1a and Ucp-1 in BAT. (C) Pgc-1a and mCpt-1 in muscle. (D) Fgf15 in ileum.
Treatments and abbreviations are identical to those specified in Fig. 1A. Mice were fasted 4 hours before sacrifice and tissue collection. Data are
expressed as the mean +/2 SEM (n = 5–6). * (P,0.05) or ** (P,0.01) versus F.
doi:10.1371/journal.pone.0038286.g003
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and CA administration, more specifically the increase of tauroCA,

may be the key to improve the metabolic status. A recent study in

man employing colesevalam treatment in type 2 diabetic patients

revealed no correlation energy expenditure with plasma BA levels

[48]. Another report showed that BA kinetics caused by BABR

administration could not affect the improvement of glycemic

control in patients with T2DM [49]. In fact, biophysiological roles

and significances of the each composition of the BA profiles might

not be identical in human and mice, and it is difficult to make a

plain comparison between the report and our result. Futhermore,

in the report, the ‘BA kinetics’ was just a cholic acid or total bile

acid synthesis. More precise analysis according to BA profiles, as

we performed in this article, would provide a clue to solve the

mechanism of improved glycemic control by BABR. These reports

illustrate that the mechanisms involved in the beneficial effects of

BABR in humans are still controversial and further investigation is

warranted. Our previous study demonstrated one of the various

mechanisms of BABR in anti-metabolic syndrome effect. Our

Figure 4. Bile acid composition in the enterohepatic organs and serum. Bile acid composition in the enterohepatic organs and serum of
C57BL/6J fed with high fat diet (Fig. 1A) after treatment with colestimide or CA. Undefined abbreviations are: G, glycol; T, tauro; CD, chenodeoxy; D,
deoxy; H, hyo; HD, hyodeoxy; UD, ursodeoxy; L, litho; M, muri.
doi:10.1371/journal.pone.0038286.g004

Table 2. BA pool size and serum BA concentration in C57BL/
6J mice.

BA pool size (nmol/g
Liver+Intestine) Serum BA (mM)

Ch 9852.6+/2191.2A 15.23+/22.23

F 9130.4+/2261.6 13.83+/21.80

FCOL 8643.4+/2254.8 11.84+/21.68

FB 22867.0+/2145.3B 18.21+/21.16A

Ch denotes chow, F denotes HF diet, FCOL denotes HF diet+2% w/w
colestimide and FB denotes HF diet+0.5% w/w CA as specified in Fig. 1A.
Data are expressed as mean +/2 SEM (n = 5–6).
AP,0.05 versus F.
BP,0.01 versus F.
doi:10.1371/journal.pone.0038286.t002

Figure 5. Changes in energy metabolism by BABR administra-
tion. Administration of BABR to animals leads to induction of bile acid
synthesis and as a consequence a relative increase in CA and TCA. This
translates into induced energy expenditure in brown adipose tissue,
hence improving obesity and diabetes.
doi:10.1371/journal.pone.0038286.g005
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findings in mice could be useful clues to elucidate the signaling

functions of BA in man.

Supporting Information

Figure S1 BABR improves metabolic control in KK-Ay

mice. (A) Body weight (BW) and food intake change of KK-Ay

mice. Ch denotes chow, COL denotes chow+colestimide and

CHO denotes chow+cholestyramine. (B) A comparison of the

weight of liver, epididymal WAT (epWAT) and BAT fat pads after

the different interventions. (C) Serum levels of triglycerides (TG),

free fatty acids (FFA), total cholesterol (T-C) in KK-Ay mice on the

indicated treatments. (D) Serum levels of glucose and insulin in

KK-Ay mice on the indicated treatments. The HOMA-IR is

calculated as described in the materials and methods. (E) Glucose

levels during an OGTT and IPITT, and area under the curve

(AUC) and integrated areas under the curve (iAUC) in KK-Ay

mice in the different treatment groups. The OGTT were

performed after an overnight fast after 2 weeks of administration.

Glucose was administered by gavage at a dose of 1 g/kg. The

IPITT were performed after 4 hours fast after 3 weeks of

administration. Insulin was injected at a dose of 0.75 U/kg. Data

are expressed as the mean +/2 SEM (n = 5–6). # (P,0.05) or
## (P,0.01) versus Ch. Further description about the materials

and methods of the experiments is included in ‘‘Materials and

Methods S1’’.

(DOC)

Text S1

(DOCX)

Materials and Methods S1

(DOC)
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