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Abstract

This study investigated the in vivo properties of two heavy chain antibody fragments (VHH), ni3A and pa2H, to differentially
detect vascular or parenchymal amyloid-b deposits characteristic for Alzheimer’s disease and cerebral amyloid angiopathy.
Blood clearance and biodistribution including brain uptake were assessed by bolus injection of radiolabeled VHH in APP/PS1
mice or wildtype littermates. In addition, in vivo specificity for Ab was examined in more detail with fluorescently labeled
VHH by circumventing the blood-brain barrier via direct application or intracarotid co-injection with mannitol. All VHH
showed rapid renal clearance (10–20 min). Twenty-four hours post-injection 99mTc-pa2H resulted in a small yet significant
higher cerebral uptake in the APP/PS1 animals. No difference in brain uptake were observed for 99mTc-ni3A or DTPA(111In)-
pa2H, which lacked additional peptide tags to investigate further clinical applicability. In vivo specificity for Ab was
confirmed for both fluorescently labeled VHH, where pa2H remained readily detectable for 24 hours or more after injection.
Furthermore, both VHH showed affinity for parenchymal and vascular deposits, this in contrast to human tissue, where ni3A
specifically targeted only vascular Ab. Despite a brain uptake that is as yet too low for in vivo imaging, this study provides
evidence that VHH detect Ab deposits in vivo, with high selectivity and favorable in vivo characteristics, making them
promising tools for further development as diagnostic agents for the distinctive detection of different Ab deposits.
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Introduction

Besides neurofibrillary tangles, Alzheimer’s disease (AD) is

characterized by cerebral deposition of b-amyloid (Ab) in so-called

senile or diffuse plaques [1]. Similar vascular deposits of Ab
associated with cerebral amyloid angiopathy (CAA) lead to loss of

vessel wall integrity increasing the risk of brain haemorrhages [2].

Present in 30% of the non-demented population over 60 years of

age, CAA co-exists in 90% of the AD patients and forms an

important complication in the development of immunotherapeutic

strategies [3–5]. Although, the exact role of Ab regarding the

underlying pathogeneses remains unsolved, accumulation is

believed to start 20–30 years prior to clinical onset [6,7].

Distinctive in vivo detection of the different Ab deposits therefore

renders important knowledge regarding early diagnosis and

preventive therapy development.

Currently, a gross differentiation can only be made based on the

occipital predilection of CAA, while existing PET ligands, like 11C-

PiB, target Ab in its fibrillar amyloid form rather than specific

vascular or parenchymal types of Ab deposits [8].

Previously, we have selected heavy chain antibody fragments

with high affinity specific for either CAA or all types of human Ab
deposits [9]. Derived from the Camelid heavy chain antibody

repertoire, which completely lack light chains, their single N-

terminal domain (VHH) is fully capable of antigen binding with

affinities comparable with those of conventional antibodies

[10,11].

Blood-brain barrier (BBB) passage was shown to be favorable in

an in vitro assay [12]; therefore, this study assessed the in vivo

characteristics of two distinct Ab targeting VHH, ni3A and pa2H,

for their potential use to differentially detect AD and CAA. First,

pharmacologic behaviour and biodistribution were examined after

administration of radiolabeled VHH into a transgenic AD/CAA
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mouse model. Secondly, fluorescently labeled VHH were admin-

istered after the BBB was circumvented to evaluate their ability to

specifically bind Ab deposits in vivo.

Materials and Methods

Production of ni3A and pa2H
VHH ni3A and pa2H were selected from respectively a non-

immune or an immune library created after immunisation with

post-mortem brain parenchyma of a patient with Down’s

syndrome. VHH were subcloned and produced as previously

reported including a myc- or VSV-tag for detection and a his-tag

for purification [9]. Similarly, pa2H free of any additional peptide

tags was commercially produced by overexpression in yeast (BAC,

Leiden, the Netherlands).

Animal studies
All studies were performed using 12–16 month old transgenic

mice or wildtype littermates from a colony set up using the

APPswe/PS1dE9 strain (APP/PS1) (JAX), known to accumulate

vascular and parenchymal Ab deposits [13], and have been

approved by the institutional Animal Ethics Committee (DEC) at

the Leiden University Medical Center, permit number 09132.

Besides standard genotyping, after each experiment amyloid

pathology was confirmed by standard Thioflavin T staining.

Human material
Human brain tissue was obtained of AD/CAA patients or

controls as confirmed by neuropathological examination in

agreement with the guidelines of the ethics committee of the

LUMC. Patient anonymity was strictly maintained. All tissue

samples were handled in a coded fashion, according to Dutch

national ethical guidelines (Code for Proper Secondary Use of

Human Tissue, Dutch Federation of Medical Scientific Societies).

Murine specificity of the selected VHH
To evaluate appropriate use of the APP/PS1 mouse model,

murine cryosections (10 mm) were stained according previous

protocols [9,12] with in addition a standard anti-mouse-to-mouse

kit (ARK, Dako Cytomation). Final preparations were analyzed

with an automated Pannoramic MIDI microscope (3DHistech).

Biodistribution and clearance
Radiolabeling. VHH were labeled according to two different

protocols. First, his-tagged VHH were labeled directly with

technetium-99m (99mTc) using a previously published protocol

[14]. Briefly, 20 ml of VHH in PBS solution (450–500 ng/ml) was

added to 8 ml of an aseptic mixture of 950 mg/l Sn(Cl)2.2H2O and

2 g/l Na4P2O7.10H2O (Technescan PYP, Covidien, Petten, the

Netherlands) in saline. After addition of 4 ml of 10 mg/ml of

KBH4 (crystalline, Sigma Chemical Co, St. Louis, MO) in 0.1 M

NaOH, and 100 ml of Na[99mTcO4] solution (approximately 200–

700 MBq/ml, Technekow, Covidien, Petten, the Netherlands) the

mixture was gently stirred at room temperature for at least 30 min

before use. Analysis of the labeling solution, referred to as 99mTc-

VHH, yielded a radiochemical purity of .95% without detectable

unreduced or free 99mTcO4 [15].

Secondly, untagged VHH were chelated for indium-111 (111In)

using diethylene triamine penta-acetic acid (DTPA). Untagged

pa2H was chelated in a total volume of 1.0 ml with 20-fold

molecular excess of p-SCN-Bn-DTPA (Macrocyclics, Dallas, TX)

at pH 8.5 in phosphate buffer for 5 hr at 37.5uC and purified by

dialysis using phosphate buffered saline (PBS). 111In chloride

(25 ml, 111 MBq/ml, Covidien, the Netherlands) was added to

DTPA-pa2H conjugate (0.1 ml) in 0.25 M ammonium acetate

buffer (0.8 ml) at pH 5.5 and incubated for 1 hr at room

temperature. The reaction was quenched with 50 mM ethylene

diamine tetra-acetic acid (EDTA) (50 ml) to chelate residual non-

bound 111In and the radiolabeled antibody was then purified using

Figure 1. Immunostaining on murine APP/PS1 sections using ni3A and pa2H. The upper panels (A–D) show 106magnifications of the
resulting staining with cryosections of aged APP/PS1 mouse brain tissue including negative controls, while the lower panels (E–H) show similar
staining performed with wildtype littermates.
doi:10.1371/journal.pone.0038284.g001
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a SephadexTM G-25 column (PD 10; GE Healthcare) eluted with

PBS. Radiochemical purity assessed by instant thin layer

chromatography (ITLC) yielded a purity of .95%.

Biodistribution and brain uptake. To study the biodis-

tribution, animals were injected intravenously with 0.2 ml

radiolabeled VHH diluted with saline (5–10 MBq/ml, 10 mg/

ml). At different intervals (t = 3–6–24 hrs) post-injection APP/PS1

(n = 4) and wildtype animals (n = 4) were sacrificed (Euthanasol,

AST Pharma). Similar biodistribution experiments using untagged

DTPA(111In)-pa2H were only performed at 24 hours post-

injection for APP/PS1 (n = 6) and wildtype mice (n = 6). Blood

was collected via cardiac puncture, and various organs were

removed, including the brain, which was divided into the

cerebrum and cerebellum. All were weighed and counted for

radioactivity (Wizard2, Perkin Elmer). After decay correction,

radioactivity was expressed as the percentage of the total injected

dose of radioactivity per gram tissue (%ID/g). Blood/cerebrum

ratios were calculated to correct for possible confounding effects

accountable by residual blood. Similarly, muscle/cerebrum

determined target-to-non-target ratios. Differences were regarded

significant when p#0.05 using an unpaired one or two tailed t-test.

Experiments at t = 24 hrs were repeated twice using 99mTc-pa2H.

Blood clearance and analysis. Simultaneously, blood half-

life was examined by collecting 5 ml tail samples at several time

Table 1. Biodistribution of 99mTc-ni3A in mice.

t = 3 hr t = 6 hr t = 24 hr

Tissue/organ Wildtypes APP/PS1 Wildtypes APP/PS1 Wildtypes APP/PS1

blood 1.20260.379 1.14660.131 0.77860.048 0.80860.115 0.45160.073 0.36360.051

heart 0.52560.129 0.50860.109 0.34760.049 0.33760.127 0.25260.041 0.21660.014

lungs 0.85060.184 0.81960.208 0.65960.184 0.74360.301 0.37560.113 0.29160.055

liver 1.07860.235 1.00060.293 1.07860.188 1.22360.424 0.56860.149 0.48860.164

kidneys 15.53162.986 15.19263.075 10.26661.657 14.29464.337 9.08966.152 9.90161.158

spleen 0.59060.257 0.53160.084 0.79260.144 0.75360.291 0.39760.056 0.46560.234

muscle 0.17160.075 0.12060.069 0.11160.088 0.08660.022 0.04360.007 0.04860.008

cerebrum 0.03560.009 0.03560.007 0.03160.007 0.03560.008 0.01860.003 0.01960.001

cerebellum 0.07360.031 0.06360.009 0.09860.009 0.09660.014 0.02960.005 0.02660.002

cerebrum/blood ratio 0.03060.003 0.03060.004 0.04060.010 0.04360.004 0.04060.001 0.05360.008*

cerebrum/muscle ratio 0.24260.142 0.33560.116 0.40760.270 0.42860.171 0.42260.029 0.40360.100

* = P,0.05 wildtype mice compared to APP/PS1 mice.
A bolus injection of 2 mg 99mTc-ni3A was administered intravenously into 12–14 month old APP/PS1 mice or their wild type littermates. At three time points after
injection the animals were sacrificed and various tissues and entire organs were removed, weighed and counted for radioactivity. Values are expressed as a percentage
of the injected dose per gram tissue (mean 6 SD).
doi:10.1371/journal.pone.0038284.t001

Table 2. Biodistribution of radiolabeled pa2H in mice.

99mTc-pa2H DTPA(111In)-pa2H

t = 3 hr t = 6 hr t = 24 hr t = 24 hr

Tissue/organ Wildtypes APP/PS1 Wildtypes APP/PS1 Wildtypes APP/PS1 Wildtypes APP/PS1

blood 0.56660.003 0.65460.015 1.00960.054 1.24460.123 0.57560.084 0.69660.049 0.00660.001 0.00460.002

heart 0.27360.121 0.24060.017 0.62360.101 0.76360.031 0.36760.059 0.39360.007 0.01760.084 0.01460.003

lungs 0.84360.256 0.53760.010 0.93060.242 1.08860.035 0.62060.160 0.62260.031 0.01660.011 0.01460.003

liver 2.61560.796 1.86660.016 3.01461.021 3.39261.932 1.43060.402 1.16160.470 0.06660.029 0.07560.0.23

kidneys 9.24361.787 6.24160.530 14.30664.105 15.61261.042 9.82462.810 8.60860.738 8.85963.623 7.68962.930

spleen 1.51560.503 1.31960.060 6.49861.623 6.25860.208 3.58461.381 1.74760.100 0.04460.022 0.04860.006

muscle 0.35660.379 0.05460.006 0.17460.022 0.34760.026 0.10260.023 0.11360.018 0.05960.020 0.05960.044

cerebrum 0.01460.003 0.01760.001 0.03360.005 0.04460.004 0.02760.004 0.03860.002* 0.00160.000 0.00160.001

cerebellum 0.02360.001 0.02660.001 0.05460.016 0.06760.001 0.03060.007 0.04560.000* 0.00360.001 0.00260.001

cerebrum/blood ratio 0.02560.005 0.02660.003 0.03360.004 0.03560.004 0.04760.003 0.05560.008 0.01360.011 0.04160.055

cerebrum/muscle ratio 0.08360.081 0.30960.067 0.19060.007 0.17760.135 0.27060.032 0.34660.377 0.11360.066 0.20360.146

* = P,0.05 wildtype mice compared to APP/PS1 mice.
A bolus injection of 2 mg radiolabeled pa2H was administered intravenously into 12–14 month old APP/PS1 mice or their wildtype littermates. At three or one time
points after injection of radiolabeled pa2H respectively with or without additional peptide tags, the animals were sacrificed and various tissues and entire organs were
removed, weighed and counted for radioactivity. Values are expressed as a percentage of the injected dose per gram tissue (mean 6 SD).
doi:10.1371/journal.pone.0038284.t002
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points between 3–90 minutes post-injection of radiolabeled VHH

into transgenic or wildtype mice (n = 4–6). Combined with the

cardiac blood samples corresponding half-lives were calculated

using GraphPad Prism.

Similarly, 10 ml samples obtained at 10 and 90 minutes post-

injection were mixed with 90 ml heparin (34 U/ml saline) and

900 ml PBS. Centrifugation for 10 minutes at 7,000 rpm separated

plasma from the cell pellet. Radioactivity was measured separately

to determine the blood distribution of radiolabeled VHH over

time.

Specificity of radiolabeled pa2H. Ab specificity of pa2H-

his after 99mTc-radiolabeling was tested by quantitative competi-

tion autoradiography. Human and murine brain cryosections

(20 mm) were blocked with 1% bovine serum albumin (BSA)/PBS

at 37uC for 1 hour followed by similar application of the labeling

solution, which was diluted to 1 mg/ml by 1%BSA/PBS with or

without additional 1 hour pre-incubation with excess monomeric

or fibrillar Ab1–40 (rPeptide) at 37uC. Fibrils were produced using

existing protocols [16].

After rinsing 3 times with PBS, radioactivity was counted for

15 minutes by a gamma camera (Toshiba GCA7100/UI). A

similar region of interest was fitted for each scintigram to assess

binding of 99mTc-pa2H-his with 0.1 ml of diluted labeling solution

as a reference. Binding was expressed as the % of radioactivity

compared to the section without any competitor. Experiments

were performed in triplicate.

In vivo Ab targeting by VHH
Fluorescent labeling. Tagged VHH were fluorescently

labeled with Alexa Fluor 594 protein labeling kit (Molecular

Probes, Invitrogen) according to the manufacturer’s guidelines,

except using only half of the recommended amount of dye. Briefly

spun to remove possible aggregates, extensive dialysis removed

Figure 2. Blood clearance. These graphs represent the blood half lives of tagged 99mTc-ni3A and -pa2H (A), and untagged DTPA(111In)-pa2H (B) in
APP/PS1 mice and wildtype littermates. Data is shown as percentage of injected dose per gram of blood (%ID/g) over time. Based upon this plot the
clearance is suggested to respectively consist of a fast and a slow phase, or only a single phase.
doi:10.1371/journal.pone.0038284.g002

Table 3. Blood half lives of radiolabeled VHH.

Fast tK Slow tK

VHH genotype (min) (95% C.I.) % (min) % (95% C.I.)

99mTc-ni3A APP/PS1 14.71 (8.65–
49.13)

89.7 580 10.3 (101.8–‘)

Wildtype ND ND ND ND

99mTc-pa2H APP/PS1 21.89 (14.24–
39.38)

79.8 2562 20.2 (975.0–‘)

Wildtype 10.78 (7.27–
20.76)

87.1 5861 12.9 (969.3–‘)

DTPA(111In)-
pa2H

APP/PS1 19.69 12.63–
44.60

100 - -

Wildtype 15.83 9.30–
53.37

100 - -

Half lives were determined by fitting a one or a two phase exponential decay
model based on blood obtained from both tail vein and cardiac puncture at
several time points after intravenous bolus injection of 2 mg radiolabeled VHH in
12–14 month old APP/PS1 mice and wildtype littermates, as depicted in
Figure 2. Please note that DTPA(111In)-pa2H was produced without any
additional peptide tags.
doi:10.1371/journal.pone.0038284.t003

Table 4. Blood distribution of 99mTc-pa2H.

Sample Time p.i. Fraction APP/PS1 Wildtype

(min) (%) sd (%) sd

99mTc-pa2H 10 Plasma 88,9 6,2 80,3 5,2

Cell Pellet 11,1 19,7

90 Plasma 83,6 8,7 72,0 8,2

Cell Pellet 16,4 28,0

At different time point after bolus injection of 99mTc-pa2H blood collected from
the tail vein of 12–14 month old APP/PS1 mice or wildtype littermates.
Separated into the cell pellet and plasma, samples were counted for
radioactivity. Fractions are expressed in percentage of total activity at that time
point. No significant differences were calculated using a student t-test (p,0.05).
doi:10.1371/journal.pone.0038284.t004

In Vivo Detection of Ab Using HCAb Fragments
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excess free label. The labeling degree and protein concentration

(200–600 ng/ml) were determined using the Nanodrop ND1000

(Isogen Life Sciences). Protein integrity was confirmed by mass

spectrometry.

Immunofluorescence using VHH-Alexa594. To examine

whether the fluorescent labeling affected antigen recognition,

human and murine cryosections (10 mm) were rinsed with PBS,

fixed in ice-cold acetone for 10 minutes before overnight

incubation with VHH- Alexa594 in 1% BSA/PBS in a wet

chamber. Washed 365 minutes with PBS, sections were mounted

and analyzed using a fluorescence microscope (Leica

DMR5500B).

In vivo Ab imaging by topical application. Four APP/PS1

animals received permanent cranial windows to allow serial in vivo

imaging of the brain by multiphoton microscopy. Animals were

anaesthetized using 2% isoflurane gas inhalation, and the exposed

skull was partly replaced by a round glass coverslip glued into

place using KrazyglueH according to previous surgical protocols

[17,18]. Prior to fixation of the cranial window, a drop of 40–60 ml

of VHH-Alexa594 (275–400 ng/ml) was applied directly onto the

exposed brain for 30 minutes and briefly rinsed with PBS.

Colocalization with the Ab deposits was based either upon their

typical green autofluorescence or by intraperitoneal injections of

Methoxy-X04 one day prior surgery [16]. Animals were imaged

immediately following surgery, which was typically less than

90 minutes after beginning of the procedure, and re-imaged under

isoflurane anaethesia (2%) for several days to study the washout.

Images were acquired with a Bio-Rad 1024 multiphoton

microscope equipped with a Ti:Sapphire laser (Mai Tai, Spectra

Physics) and external photodetectors (Hamamatsu Photonics).

Areas were imaged to approximately 200 mm deep in 5 mm steps

with a 206 objective (UMPlanFl, NA = 0.95; Olympus). Maxi-

mum intensity projections were reconstructed using ImageJ.

Specific in vivo Ab binding after BBB disruption. A

systemic approach to study the in vivo behaviour of the VHH

throughout a larger area within the brain involved intracarotid

infusion (60 ml/min) of 100 ml pa2H-his-Alexa594 along with

600 ml 15% mannitol selectively into the right carotic artery to

disrupt the BBB [19]. At t = 2 and 24 hours post-injection.,

transgenic (n = 9) and wildtype animals (n = 3) were euthanized

(Euthanasol, AST Pharma), and perfused with 4% paraformalde-

hyde (PFA). Resected brains were stored in 4% PFA with 10%

sucrose for 4 hours followed by overnight fixation in 4% PFA with

30% sucrose. Next, the brains were snap frozen and sectioned

completely to obtain consecutive 30-mm-thick cryosections.

Besides standard Thioflavin T staining for amyloid, adjacent

sections were immunostained for Ab (6F/3D, DakoCytomation)

[20] with 1:100 goat-antimouse-Alexa488 (Invitrogen) to assess

colocalization. Images obtained by a Leica DM5500B microscope

were merged using Adobe Photoshop CS3.

Results

Murine specificity of the selected VHH
Immunostained brain sections of aged APP/PS1 and wildtype

littermates using tagged VHH ni3A and pa2H were made to assess

their capacity to selectively recognize different types of deposits.

(Figure 1) Pa2H stained positive for all forms of Ab depositions. In

this transgenic mouse model, ni3A did not show selective affinity

for vascular Ab; both vascular and parenchymal Ab depositions

were clearly labeled. Compared to ni3A, equivalent staining

protocols with pa2H resulted in higher specificity for Ab combined

with a low unspecific background binding. For neither VHH

specific affinity was detected within the brain sections of wildtype

animals.

Biodistribution and clearance
Biodistribution and brain uptake. The distribution of a

bolus injection of radiolabeled tagged ni3A and pa2H over time is

shown in Table 1 and 2. No significant differences in organ uptake

between wildtype and transgenic animals were found, except for

the brain uptake of 99mTc-pa2H after 24 hours. Although the

amount was low (0.038%I.D./g), cerebral uptake was 40% higher

in the transgenic animals. The cerebrum/blood ratio did not

differ, indicating that this difference was not caused by different

VHH concentrations within the blood pool. For the cerebellum

similar results were found. Repeated experiments for this

particular endpoint resulted in similar findings.

To investigate whether these findings were not confounded by

either the non-specific radiolabeling procedure or the presence of

additional peptide tags, the biodistribution experiment was

repeated with untagged DTPA(111In)-pa2H. (Table 2) With this

labeling protocol, we no longer observed a significantly higher

cerebral uptake in amyloid-bearing mice. Regardless of the tag,

the majority of radiolabeled VHH was excreted via the kidneys.

Cellular involvement as shown by distinctive hepatic clearance or

splenal activity was low. In comparison to 99mTc-ni3A, 99mTc-

pa2H showed about 3 times higher clearance via liver and spleen.

Also, the clearance rate for 99mTc-pa2H was lower, independent

of genotype. However, within the first 3 hours 99mTc-ni3A

resulted in a higher general organ uptake, with exception of the

aforementioned liver and spleen.

Blood clearance and analysis. Blood clearance of the

tagged 99mTc-VHH consisted of a fast and a slow component.

(Figure 2A) In general, the majority of the radiolabeled VHH was

cleared from the blood with a half-life of 10–20 minutes (Table 3).

The actual half-life of the slow component of 99mTc- VHH could

only be calculated with limited accuracy, since the half-life was

longer than the blood sampling period. In line with the above

biodistribution, six hours post-injection, the blood levels of 99mTc-

pa2H were remarkably higher compared to earlier time points,

which is characteristic for a second passage. Within the first

90 minutes about 80% of the 99mTc-VHH remained within the

blood plasma, indicating that no significant cellular uptake

occurred. (Table 4)

In contrast to tagged 99mTc- VHH, the blood clearance of

untagged DTPA(111In)-pa2H was mono-exponential, with a

similar rapid clearance within 20 minutes, but without a slow

component. (Figure 2B)

Table 5. Quantitative autoradiography.

Brain tissue
Binding of 99m

Tc-VHH Competion binding

Monomeric Ab Fibrillar Ab

ng (± sd) ng (± sd) ng (± sd)

APP/PS1 98.8 (620,7)* 60.1 (622.2) 31.4 (614.3)

Wildtype 86.4 (614.8) 56.4 (619.5) 27.1 (612.5)

AD human 190.1 (673.5)* 81.4 (6 N.D.) 42.3 (629.2)

Control human 102.3 (630.2) 27.2 (6 N.D.) 49.9 (617.4)

Differences in radioactivity were measured after application of 1 mg 99mTc-pa2H
to human and murine APP/PS1 brain sections.
*Statistical difference (p,0.05) between either murine or human control versus
Ab bearing sections.
doi:10.1371/journal.pone.0038284.t005

In Vivo Detection of Ab Using HCAb Fragments
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Specificity of 99mTc-pa2H. After radiolabeling of the

tagged pa2H it’s specificity for Ab was unaffected, as shown by

scintigraphic analysis; binding of 99mTc-pa2H was higher in those

sections including Ab. (Table 5) Furthermore, binding was

significantly (p,0.001) reduced when the tracer was pre-incubated

with either monomeric or fibrillar Ab.

In vivo Ab targeting by VHH
In vivo Ab imaging by topical application. After direct

application onto the exposed mouse brain, fluorescent VHH were

followed up for at least 48 hours by in vivo multiphoton

microscopy. (Figure 3) Specific in vivo labeling of Ab plaques by

ni3A-Alexa594 was initially confirmed by colocalization with

Methoxy-X04, a known in vivo amyloid targeting fluorophore.

Beside possible binding competition with the VHH, Methoxy-X04

hampered good validation due to signal cross-over into the red

channel. However, colocalization based on the typical autofluo-

rescence patterns of the different Ab deposits resulted in similar

findings. Selectivity was confirmed by lack of nonspecific

background signal. Although both VHH were capable of targeting

Ab in vivo, only pa2H-Alexa594 was detectable after two days,

mainly bound to vascular amyloid.

Specific in vivo Ab binding after BBB disruption. Based

on the above findings, co-injections of pa2H-Alexa594 with

mannitol were done in the right carotid artery to selectively open

the BBB in the ipsilateral hemisphere to study the in vivo

characteristics throughout the brain. Two hours post-injection,

fluorescence was detected in the right hemisphere, co-localizing

with Ab. (Figure 4) Even within the deeper brain structures, no

nonspecific binding was observed. Ab related fluorescent signal

remained detectable for at least 24 hours post-injection. Without

BBB disruption or within wildtype littermates, no apparent Ab
labeling could be detected.

Immunofluorescence using VHH-Alexa594. Selectivity for

specific Ab deposits was not altered after fluorescent labeling of the

VHH, since on human sections, ni3A-Alexa594 selectively stained

vascular Ab (Figure 5 A–C), and pa2H-Alexa594 stained both

parenchymal and vascular Ab.(Figure 5 G–I) On murine material

all Ab deposits were stained by both fluorescent VHH.(Figure 5

D–F & J–L)

Discussion

In this study, we assessed two previously described VHH for

their potential to cross the blood-brain barrier and distinctively

detect vascular and parenchymal Ab deposits in vivo.

Specific detection of parenchymal and vascular amyloid
in APP/PS1 mice

Both VHH stained positive for Ab upon APP/PS1 brain sections

confirming appropriate use of this transgenic model. In vivo

binding to parenchymal and vascular Ab was confirmed when the

BBB was circumvented. Signal remained detectable for at least

24 hours while in vivo pa2H showed a high affinity combined with

a low off-rate. However, previously shown selectivity for solely

vascular Ab in human post-mortem brain sections by ni3A was not

Figure 3. In vivo Ab imaging after direct brain application. Topical application of ni3A- or pa2H-Alexa594 (red) as visualized over time by
intravital multiphoton microscopy in APP/PS1 mice clearly shows the specific in vivo labeling of different Ab deposits. In the left, vascular and
parenchymal Ab deposits, detected by prior labeling with Methoxy-X04 (blue), colocalize with ni3A-Alexa594 (red) directly following topical
application. One day later, labeling of the plaques has diminished to almost none with some residual left bound to CAA. With interpretation
hampered by Methoxy-X04, middle images show a similar experiment. Colocalization with Ab deposits based upon autofluorescence (green) gave
comparable results and almost complete wash out after two days. Pa2H-Alexa594 (red), as shown in the right images, remains bound to vascular Ab
even two days after application, when the plaques remained undetected. All images are maximum intensity projections of a 3D cortical volume with
a field of view 6156615 mm.
doi:10.1371/journal.pone.0038284.g003
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Figure 4. Specific in vivo Ab binding after BBB disruption. After disruption of the BBB using a co-injection of 15% mannitol with pa2H-
Alexa594 into the right carotid artery of an aged APP/PS1 mouse sacrificed 2 hrs post injection, amyloid plaques are clearly depicted in both
hemispheres using a Thioflavin T (ThT) staining (A), while the pa2H-Alexa594 signal is only detected in the right hemisphere (B). More careful
examination shows all Alexa594 signal colocalizes with ThT in the right hemisphere, while in the left only some autofluorescense can be detected.
Furthermore, immunofluorescense anti-Ab staining of the plaques using Alexa488 within the left hemisphere (C) results only in green signal, while
within the right hemisphere (D) the red signal from pa2H-Alexa594 nicely colocalizes within the plaques. Experiments performed in a similar setting
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observed within this mouse model (Figures 1,3,5). Fluorescent or

radiolabeling prior in vivo application did not affect their specificity.

The unique specific reactivity of ni3A for vascular amyloid

deposition on human brain material is not yet completely

understood [9]. Known differences in morphology and composi-

tion of human and murine Ab deposits might help to understand

ni3A’s specific reactivity [21,22]. Human plaques consist of

discontinuous patches with decreased density and random fibrillar

orientation within the amyloid core; murine plaques are generally

built up by long organized fibrils, resulting in densely packed

amyloid plaques with a relatively large core [23]. Besides

morphological differences, posttranslational modifications of Ab
differ from mouse to man leading to alterations of the Ab molecule

itself [21,24,25]. Differences in metal ion content are known to

influence the tertiary structure [26,27]. Previous epitope mapping

revealed that ni3A has no other cross reaction but to Ab1–42 [9],

which is highly abundant in parenchymal and vascular deposits in

both humans and APP/PS1 mice. All together, this leads to the

conclusion that the selective reactivity of ni3A must depend on the

structural presentation of Ab1–42, in which case murine paren-

chymal plaques probably show structural similarities to human

CAA.

In vivo blood-brain barrier passage
Previous in vitro data suggested that our VHH actively migrated

across the BBB in a more efficient way than FC5, a VHH

specifically selected to pass the BBB [12]. However, the in vivo

experiments resulted only in a small cerebral uptake of the tagged
99mTc-pa2H at 24 hours after intravenous administration, and the

current brain uptake levels were insufficient to assess the uptake

kinetics in vivo with for example SPECT imaging. (data not shown)

Additional experiments with untagged DTPA(111In)-pa2H further

confirmed the current limitations as hardly any cerebral uptake

was observed with this labeling protocol. The increased brain

uptake for 99mTc-pa2H compared to DTPA(111In)-pa2H may be

due to the slower blood clearance for 99mTc-pa2H. The observed

fast blood clearance and relatively high renal retention for the

VHH in this study is in line with previous reports [28,29], and

but sacrificed 24 hrs post-injection, showed similar results with pa2H-Alexa594 still nicely corresponding to the green labeling of the anti-Ab staining
within the right hemisphere (E).
doi:10.1371/journal.pone.0038284.g004

Figure 5. Immunofluorescence with VHH-Alexa594. Shown are the results of immunofluorescence staining with ni3A- and pa2H-Alexa594 on
cryosections of APP/PS1 murine and human AD/CAA brain tissue, including wildtype or healthy controls. Both VHH stain positive for CAA in all
sections (A, D, G, J). Only ni3A-Alexa594 stained negative for human parenchymal Ab (B), while pa2H stained positive for several types of
parenchymal Ab deposits (G, H, J, K) in both humans and mice. In either human of murine control tissue no such staining patterns were observed.(C,
F, I, L)
doi:10.1371/journal.pone.0038284.g005
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typical for peptides and proteins smaller than the filtering

threshold of the glomerular membrane (,60 kDa) [30]. However,

in general, a short blood residential time effectively reduces the

blood-to-brain transfer.

In vivo studies with the BBB crossing VHH FC5 demonstrated

4%ID/g brain uptake, which is much higher than our findings

[31]. This discrepancy may be due to the lower dose that we used,

but several other factors may also play a part. For FC5 it is known

it uses receptor-mediated endocytosis via the a(2,3)-sialoglycopro-

tein [32]. For our VHH, in vitro active transport mechanisms are

involved, but the specific receptors are as yet unknown [12].

Possibly, the in vivo BBB passage may be limited by the availability

of these receptors in our mouse model.

To improve BBB penetration for the amyloid-targeting VHH,

one could increase the blood circulation time by multimerization

or by conjugating the VHH to an albumin-targeting moiety or

VHH [33,34]. An alternative approach would be to incorporate

the VHH into a BBB-targeting nanoparticle. Recently, several

nanoparticle carrier systems have been developed for brain

delivery of therapeutics that would also be suitable for loading

with VHH [35].

Diagnostic and therapeutic value of VHH
In general, VHH constitute many unique characteristics that

make them interesting tools for either diagnostics or therapeutics.

Compared to conventional monoclonal antibodies or Fab’, VHH

express a similar unique level of specificity and affinity, but

because of their single domain, production and modification is

relatively easy and cost-efficient [29].

Currently used amyloid-targeting ligands, like 11C-PiB recog-

nize amyloid plaques rather than Ab. In contrast, we already

showed that VHH may be more specific to a certain sub-types of

Ab accumulation [9]. Further selection may allow the in vivo

detection of the full range of Ab aggregates from oligomers to

dense core plaques to CAA.

Besides diagnostics, several VHH have shown their potential

therapeutic value in vitro, preventing aggregation of amyloid

fibrils, oligomeric forms of Ab and polyA-binding protein nuclear

1 [36–39]. In the latter case, even complete clearance of existing

aggregates was reported. Whether VHH evaluated in this study

possess similar abilities is currently under investigation. However,

within the data presented here, we observed that several Ab
plaques, as detected by their autofluorescence, could no longer be

seen two days after VHH application. (Figure 3) Whereas current

passive immunotherapies targeting Ab are hampered by unwanted

immunogenic side effects, repetitive administration of VHH has

shown to be non-immunogenic [4,40]. Furthermore, their selective

binding to different Ab species, like ni3A’s specific binding for

CAA, could shift Ab brain efflux in the favored direction, which

could be used to tailor anti-Ab therapy to further reduce therapy-

induced complications, e.g. CAA related microbleeds [4,5,41].

These initial in vivo studies to investigate whether Ab specific

VHH can be exploited as diagnostic tools show promising results

for further development. Although capable of strong specific

binding in vivo with low unspecific background binding and

favorable wash-out, issues regarding higher brain uptake and

clearance need to be addressed in the future.
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