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Abstract

The superfamily 2 bacterial helicase, RecG, is a monomeric enzyme with a role in DNA repair by reversing stalled replication
forks. The helicase must act specifically and rapidly to prevent replication fork collapse. We have shown that RecG binds
tightly and rapidly to four-strand oligonucleotide junctions, which mimic a stalled replication fork. The helicase unwinds
such DNA junctions with a step-size of approximately four bases per ATP hydrolyzed. To gain an insight into this
mechanism, we used fluorescent stopped-flow and quenched-flow to measure individual steps within the ATPase cycle of
RecG, when bound to a DNA junction. The fluorescent ATP analogue, mantATP, was used throughout to determine the rate
limiting steps, effects due to DNA and the main states in the cycle. Measurements, when possible, were also performed with
unlabeled ATP to confirm the mechanism. The data show that the chemical step of hydrolysis is the rate limiting step in the
cycle and that this step is greatly accelerated by bound DNA. The ADP release rate is similar to the cleavage rate, so that
bound ATP and ADP would be the main states during the ATP cycle. Evidence is provided that the main structural
rearrangements, which bring about DNA unwinding, are linked to these states.
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Introduction

DNA helicases are motor proteins with essential roles in many

aspects of DNA metabolism such as replication, recombination

and repair. The chemical energy of nucleoside triphosphate

hydrolysis, generally ATP, is used to drive the mechanical action

of nucleic acid strand separation and translocation by the helicase.

Work is presented here on RecG, a bacterial helicase from

Superfamily 2 (SF2), which comprises the largest superfamily

containing several subfamilies including DEAD-box RNA heli-

cases [1], the RecQ-like family [2] and the Snf2-like enzymes

[3,4].

Bacterial DNA replication is only partially continuous and

processive. Efficient replication is essential but DNA polymerase

complexes often fail to complete that process, as they are hindered

by numerous factors, such as lesions or proteins bound to DNA.

This causes stalling, which can lead to replication fork collapse,

and so creates free DNA ends, which can lead to genome

rearrangements. Therefore, complete replication is dependent

upon efficient repair to bypass or remove lesions and recombina-

tion events to resolve stalled replication forks [5]. One such

mechanism is fork regression, which facilitates the removal of

a lesion in one of the strands via the formation of a four-stranded

DNA structure, called a Holliday junction. RecG catalyzes this

process by unwinding newly replicated arms from the junction,

annealing nascent strands and re-annealing parental strands.

Subsequently, the Holliday junction can be migrated and resolved

by RuvABC [6,7], allowing replication to continue.

A single structure of RecG has been solved [8] but the DNA

substrate was not long enough to interact with the motor domains.

Thus, there is limited information about structural aspects of the

translocation mechanism, or conformation changes that occur in

the protein during the ATPase cycle. However, a scheme was

proposed for linking duplex translocation from a DNA binding

loop to the ATP binding site [9]. A greater understanding of the

chemo-mechanical coupling of this helicase will allow this model

to be more rigorously tested.

A kinetic analysis of the ATPase cycle for Thermotoga maritima

RecG is presented here to determine the main intermediates

during the cycle and what biochemical steps may be coupled to

translocation. The ATPase cycle was investigated by measuring

rate constants for individual processes in the cycle. The complete

cycle was measured using the analogue mantATP ((29(39)-O-(N-

methylanthraniloyl)ATP), to provide a consistent view of the cycle,

as some steps cannot be measured with the natural ATP substrate.

However, because the nucleotide modification caused changes in

kinetics for some parts of the ATPase cycle, several key steps were

measured with the natural substrate, so that the ATPase

mechanism with the ATP analogue could be related to that with

unlabeled nucleotide. In particular mantATP is hydrolytically

cleaved ,10-fold slower than ATP and the release of mantADP is

very slow. Despite these differences, the fluorescent ATP allowed

definition of an ATPase mechanism and how this might be related

to structural changes. Finally, DNA unwinding and corresponding

ATPase measurements were used to relate the ATP usage with

translocation for an expanded range of model substrates. This
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included homologous sequence throughout to mimic a stalled

replication fork (Figure 1). These substrates contain four

oligonucleotides, so that partial unwinding produces a chicken-

foot structure and on complete unwinding two separate duplexes

result.

Results

Steady-state ATPase Rate Measurements
Steady-state measurements were made to gain an overall

assessment of the reaction and the affinities of various nucleotides

before investigating the individual steps in the ATPase cycle.

These steps are described by the basic scheme shown in Figure 2A.

A two-strand DNA junction, which contains two 20-bp regions of

complementary and non-complementary sequences (A40:B40

Figure 1 and Table S1), was used in all these measurements. This

forms a Y-shape structure and RecG translocates one single-

stranded arm, but then remains bound to the end of the junction

still hydrolyzing ATP [10]. Use of this junction simplifies the

system as the DNA substrate is unmodified by RecG action and

more significantly, ssDNA is not produced.

In the absence of DNA, the ATPase activity was very low: DNA

activates ATPase activity 50-fold (Table 1a). Figure S1A shows the

rate of ATP hydrolysis as a function of nucleotide concentration in

the presence of the DNA junction, giving a Km value of 9 (62) mM
for ATP and a kcat of 8.3 (61.7) s21. The values of kcat and Km
differ from that previously reported with values of 5.2 s21 and

42 mM, respectively, as the latter were measured at a much lower

concentration of DNA [10], resulting in a lower concentration of

RecG?DNA complexes. The fluorescent ATP analogue, mantATP

gave Km as 1.9 (60.6) mM and kcat 0.3 (60.1) s21 (Figure S1B),

rather different values from those with ATP. The mantATP kcat
value is unlikely to be defined well due to inhibition resulting from

the high affinity of mantADP (see below).

The steady state assay was also used to assess the tightness of

binding of other nucleotides through competitive inhibition

measurements (Table 1b). ADP binds quite tightly (Ki 7.3

(62.1) mM), but the affinity of mantADP was over two orders of

magnitude greater (Ki 30 (610) nM). The ‘‘non-hydrolyzable’’

ATP analogue, AMPPNP bound weakly and so was not likely to

be useful as a mimic of ATP in binding studies here. In contrast,

another analogue, ATPcS bound tightly with an affinity similar to

ATP, but was slowly hydrolyzed at a rate of 0.1 s21. MantATP,

and other fluorescent nucleotides modified at the ribose ring (data

not shown) were all hydrolyzed more slowly than non-modified

Figure 1. DNA junctions and unwinding scheme. (A) Schematic representation of a model DNA substrate. The template strand forms the Ax
series, where x is the number of nucleotides. The leading strand forms the Bx, if non-complementary, or the B9x series, if complementary. The lagging
strand forms the Cx series. The strand complementary to the leading strand forms the Dx series. (B) Cartoon scheme showing unwinding of
a complementary DNA junction by RecG. This example has a 59-Cy3 label (white circle) on the template strand and a 39-Dabcyl on the lagging strand
(black circle).
doi:10.1371/journal.pone.0038270.g001

Figure 2. ATPase reaction schemes. (A) Minimal mechanism for ATP hydrolysis by RecG (R) with DNA (D). Steps are numbered, such that step
n has forward and reverse rate constants, k+n and k-n, respectively, and equilibrium constant, Kn. (B) Scheme for two-step binding of mantATP.
doi:10.1371/journal.pone.0038270.g002

ATPase Cycle of RecG Helicase
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ATP. However, the fluorescence signal and high affinity did

provide advantages in order to investigate the ATPase mechanism.

Assessment of mantATP as a Substrate for RecG
In order to investigate the kinetics of the ATPase cycle, signals

are required that report on each step. The scheme in Figure 2A

shows a minimal ATPase cycle, expected to occur during

translocation. RecG is assumed to remain bound to the DNA

throughout: initial RecG binding to this DNA substrate was

measured previously [10]. Fluorescent adenine nucleotides poten-

tially provide signals for their binding to and release from proteins.

While fluorescent labeling can perturb the affinity, mant

nucleotides are frequently used and it is one of the smallest such

modification available [11]. Use of the fluorescent nucleotide,

albeit with changed kinetics, allows a model mechanism to be

made and then tested with ATP itself. This would not be possible

using ATP alone, as some steps give no signal and the weak

nucleotide affinity precludes measurements requiring quantitative

complex formation. Although signals are not available for all

processes, some steps can be measured with ATP as a substrate

and these will be described later.

MantATP Binding to RecG?DNA
MantATP binding to RecG?DNA(A40:B40) was measured

under pseudo-first-order conditions, that is mantATP in large

excess over the protein. Using the stopped-flow apparatus, several

concentrations of mantATP were rapidly mixed with RecG?DNA

and fluorescence followed with time. Each trace was fitted by

a single exponential (Figure 3A) and the concentration dependence

of the observed rate constants were fit well by a hyperbola

(Figure 3B). This suggests that the binding occurs in two steps with

the first step being rapid and the second step having the

predominant fluorescence change, as shown in the scheme

(Figure 2B). As mantATP is also hydrolyzed, the rate of the

forward reaction needs to be included, in this case limited by the

cleavage step 2, as described later. The fit gives 1/K1a as 24

(64) mM, k+1b + k21b + k+2 as 26.1 (61.8) s21 and the intercept

gives k21b + k+2 as ,1 s21. Given that k+2 is 0.2 s–1 (see below),

k21b is ,0.8 s21. Potentially, an alternative explanation for such

a hyperbolic relationship could be preferential binding of either

the 29- or 39-isomer of mantATP and then isomerization of the

non-favored isomer. However, the observed rates in these

measurements were several orders of magnitude faster than the

likely isomerization rate [12]. In order to assess whether the two

isomers of mantATP and their interconversion are factors in any

fluorescence traces for mantATP, an equivalent measurement was

made using 39-mant-29-deoxyATP. The data (not shown) was

similar to the mixed isomers. Rate constants for individual steps in

the mantATPase mechanism are summarized in Table 2.

Extra information relating to changes in a single ATPase cycle

can be obtained by mixing excess RecG?DNA(A40:B40) with

mantATP (Figure 4A). The traces showed an initial small increase

in fluorescence (inset Figure 4A), which represents ,20% of the

overall change, followed by a slower, but larger increase. The first

change in fluorescence is presumably due to binding. After fitting

to a double exponential, the observed rate constant for the initial

change was linearly dependent on RecG concentration over the

small range possible (0.5 mM –2.5 mM), limited by protein

precipitation at higher concentrations. Due to the low concentra-

tions, a hyperbolic dependence would not be observed. The

observed rate constant of the second increase in fluorescence, 0.22

(60.05) s21 (Figure 4A), was independent of RecG concentration.

Table 1. Steady-state ATPase kinetics for RecG.

(a)

Nucleotide kcat (s
21) Km (mM)

ATP 8.3 (61.7) 9 (62)

ATP (no DNA) 0.2 (60.1) 7.5 (63.1)

MantATP 0.3 (60.1) 1.9 (60.6)

Mant-deoxyATP 1.3 (60.5) 3.1 (61.4)

(b)

Nucleotide Ki (mM)

ADP 7.3 (62.1)

AMPPNP 44 (64.7)

MantADP 0.03 (60.01)

Mant-deoxyADP 0.1 (60.05)

ATPcS 0.9 (60.4)

All measurements were carried out at 20uC in the presence 10 mM MDCC-PBP,
10 nM RecG and 500 nM DNA junction (A40:B40) in a buffer described in the
materials and methods. (a) kcat and Km for nucleoside triphosphates (b) Ki for
non-hydrolyzable or slowly hydrolyzing nucleotides, using 10 mM ATP and
varying inhibitor concentration.
doi:10.1371/journal.pone.0038270.t001

Figure 3. MantATP binding to RecG?DNA. MantATP at the
micromolar concentrations shown was mixed in the stopped flow
apparatus with 0.5 mM RecG and 2.5 mM DNA Junction (A40:B40) at
20uC in the buffer described in materials and methods. Individual traces
(offset from each other) were fitted to single exponentials and the
dependence of the rate constants on concentration was then fitted by
a hyperbola. The points shown are averages of at least 3 measurements.
The fit gives 1/K1a as 24 (64) mM and k+1b + k21b + k+2 as 26.1 (61.8)
s21 and the intercept was ,1 s–1 (Scheme in Figure 2B).
doi:10.1371/journal.pone.0038270.g003

ATPase Cycle of RecG Helicase
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This second phase is likely to be due to the cleavage step, leading

to the formation of bound mantADP. The fluorescence intensity

does not change subsequently because almost all mantADP would

remain bound at the concentrations used.

The two phases of this fluorescence increase with excess

RecG?DNA would therefore relate to formation of bound

mantATP (1.5-fold intensity increase relative to free nucleotide)

and bound mantADP (4.9-fold). This interpretation was supported

by titrations of RecG into the fluorescent nucleotides in the

absence of DNA. MantATP exhibited a 1.3-fold increase in

fluorescence, while mantADP had a 4.8-fold increase in fluores-

cence (data not shown).

Cleavage Step and Pi Release
Single turnover measurements of the cleavage step and Pi

release were performed with excess RecG?DNA over mantATP

using conditions of the mantATP fluorescence measurements,

described above. Quench-flow measurements allowed the forma-

tion of nucleoside diphosphate to be monitored with high time

resolution. MantATP was rapidly mixed with excess RecG?DNA,

and the reaction mix was quenched in acid at particular time

points. The mix was then analyzed by HPLC to quantify

mantATP and mantADP, giving the time course of mantADP

formation (Figure 4A). This time course had similar kinetics to the

slow phase of the mant fluorescence trace (0.2 s21), supporting the

idea that this phase is mantADP formation.

Using the phosphate biosensor, MDCC-PBP [13], the kinetics

of Pi release were measured under the same conditions (Figure 4A).

Fitting the trace by a lag then a single exponential increase gave

rate constants of 3.3 s21 and 0.21 s21. This rate constant for the

lag was similar to the observed rate constant for binding at this

concentration. The exponential increase had the same rate

constant for the slow phase of the mant fluorescence and for the

quench-flow measurement of mantADP formation. Thus Pi
release occurs rapidly, following the rate-determining cleavage

step.

MantADP Diphosphate Binding
MantADP binding to RecG?DNA complex was measured

under pseudo-first order conditions by stopped-flow fluorescence.

The traces showed a single exponential increase. Figure 5 shows

a linear dependence between observed rate constants and

mantADP concentration, giving a second order rate constant

(k24 in the scheme of Figure 2A) of 1.1 (60.4) mM21 s21 and

a dissociation rate constant (k+4) of ,1 s21 from the intercept

(Table 2).

Using the same conditions as the hydrolysis and Pi release

measurements, it was possible to compare the fluorescence

intensity seen when mantATP binds. The trace showed a large

(4.5-fold) increase in fluorescence, which is consistent with the end

point of the fluorescence change of mantATP binding (Figure 4A)

being related to bound mantADP.

Table 2. Summary of individual rate constants for the
hydrolysis cycle of mantATP.

Parameter Value S.E.

1/K1a 24 mM 4 mM

k+1b 25.1 s21 1.8 s21

k21b ,0.8 s21

k+2 0.22 s21 0.05 s21

k22 ,0.01 s21

k+3 .10 s21

k+4 ,1 s21

k24 1.1 mM21s21 0.2 mM21s21

The parameters are defined from the scheme in Figure 2A and B and the values
are for 20uC.
doi:10.1371/journal.pone.0038270.t002

Figure 4. Kinetic measurement of mantATP with excess of RecG
and DNA: binding, hydrolysis and Pi release. The concentrations
for all experiments were 0.5 mM mantATP, 2.5 mM RecG, 5 mM DNA
(A40:B40) and 10 mM MDCC-PBP (for Pi measurement). All measure-
ments were carried out at 20uC in the buffer described in Materials and
Methods. (A) Time course of mant fluorescence (solid line), mantADP
formation (circles) and Pi release (dashed line), measured as described in
materials and methods. The inset shows the initial change in mant
fluorescence. (B) Simulation of these time courses, based upon a global
model for a single turnover of mantATP as described in the text. (C) The
time course of mant fluorescence upon mixing 0.5 mM mantATP and
2.5 mM RecG with 5 mM DNA junction (A40:B40) after a first mixing of
5 mM RecG and 1 mM mantATP and aging for 1 s.
doi:10.1371/journal.pone.0038270.g004

ATPase Cycle of RecG Helicase
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Oxygen Exchange Measurements
In order to get information about the reverse of cleavage step

2 (scheme in Figure 2A), phosphate-water oxygen exchange

measurements were done using (c-18O3)mantATP. Intermediate

exchange can occur between terminal oxygens of the nucleotide

and water during hydrolysis, giving information about the value

of k+3/k22, as previously described [14]. In this case,

(c-18O3)mantATP was used as substrate and partial hydrolysis

occurred in the presence of RecG?DNA, as described in the

materials and methods section. The distribution are shown in

Table S2. The Pi had very similar distribution of oxygen-18 as

with (c-18O3)mantATP, consistent with essentially little reversal

of the cleavage step (k+3/k22$9). This is consistent with a rapid

release of Pi.

ATPase Measurements with a Three-strand Junction
In the ATPase cycle measurements described above, RecG does

not separate any double-stranded DNA (dsDNA) and so it was

important to determine whether the kinetic mechanism was

similar, when unwinding. Therefore, mantATP binding, quench-

flow and phosphate measurements were carried out using with

sub-stoichiometric mantATP, but with a non-complementary

three-strand DNA junction (A40:B40:C19) to form a lagging

strand duplex (as defined in Figure 1A). With excess mantATP, the

duplex arm of this junction was unwound by the helicase, leaving

RecG bound to the two-strand junction with the third strand

displaced. With sub-stoichiometric mantATP, there was only

a single turnover, so only partial unwinding of this DNA substrate

occurred. The kinetics (Figure S2) were similar to those with the

two-strand junction with mantATP binding at 4.2 (60.4) s21,

hydrolysis at 0.39 (60.1) s21 and fast Pi release. Thus, the DNA

substrate does not affect the ATPase kinetics significantly.

A Model of the ATPase Cycle
In order to test the data obtained with mantATP for

consistency, a simple kinetic model for the ATPase mechanism

was used to simulate the data in Figure 4A. The model was based

on the scheme in Figure 2A, but included a two-step triphosphate

binding as in Figure 2B. The model assumed that Pi release is

irreversible and mantADP remains bound under these conditions

as its Kd (,50 nM) is much less than the experimental

concentrations. The difference in fluorescence intensity between

protein-bound mantATP and mantADP was included in the

modeling with bound mantATP representing 20% of the overall

increase, as shown experimentally. The best-fit simulation is shown

in Figure 4B, which gave mantATP binding at 5.7 s21, followed

by a rapid step (‘‘conformation change’’) of 30 s21, hydrolysis at

0.25 s21 and Pi release is fast (.10 s21). This shows that the data

fit to a model with rate-limiting hydrolysis. There is a discrepancy

with the fit to the data at long times, as the experimental traces are

slightly biphasic, which could be due to a small proportion of the

protein having modified activity due to damage, for example.

Measurements in the Absence of DNA
The kinetics of specific steps of the ATPase cycle were

investigated in the absence of DNA, to determine which are

modulated by the interaction with DNA. For the association

measurements between RecG and mantATP, RecG was mixed

with excess mantATP in the stopped-flow apparatus and the

fluorescence followed with time. Following fitting by single

exponentials, there was a linear relationship between the observed

rate constant and nucleotide concentration (Figure S3A). Inter-

preting the increase in terms of single-step binding gives a second

order association rate constant of 0.4 (60.15) mM21s21 and an

intercept of 1.7 (60.6) s21 and, therefore, a Kd of 4.25 mM, not

greatly different from the values with DNA.

As done for the RecG?DNA complex, measurements were also

taken with an excess of RecG over mantATP (Figure S3B). A

large, relative rapid, increase in mant fluorescence was observed

followed by a small gradual increase. The rate constants are

consistent with those at excess mantATP. Under the same

conditions of excess RecG over mantATP, mantATP cleavage

(acid quench) and Pi release were measured (Figure S3B). The

hydrolysis time course, measured by manual quench, was similar

to that obtained for Pi release, although the reaction did not go to

completion in the time scale of the measurements (3000 s). The

cleavage step rate constant was 461024 s21, ,103 slower than in

the presence of DNA. The phosphate measurement suggested that

Pi release follows rapidly after cleavage. The cleavage step was

greatly stimulated by DNA.

As the cleavage step is so slow in the absence of DNA, a double-

mix, stopped-flow experiment was performed in order to see if the

biphasic increase in mant fluorescence could be separated into the

individual processes of mantATP binding and hydrolysis. An

excess of RecG was mixed with mantATP and this mix aged for

1 s to allow binding but not hydrolysis. This solution was then

mixed with DNA. It was demonstrated in a separate measurement

that DNA binding was fast for a variety of junctions (Table S3).

The fluorescence trace (Figure 4C) showed a single exponential

increase in mant fluorescence with a rate constant of 0.3 (60.04)

s21. This rate was similar to that of the slower phase, measured

above, consistent with this phase being due to DNA-induced

hydrolysis.

Measurements with Unlabeled ATP and ADP
There is no intrinsic change in protein tryptophan fluorescence

upon binding ATP or ADP. Furthermore, the weak affinity for

ATP means it was not feasible to form the RecG?DNA?ATP

complex quantitatively in order to measure the steps in the

ATPase cycle, as could be done with mantATP. However, it was

possible to measure two key processes, Pi and ADP release and so

indirectly obtain information about the other steps. These are

important measurements, given the different affinities between

labeled and unlabeled nucleotides. Through these measurements

Figure 5. MantADP binding kinetics to RecG?DNA. MantADP at
various concentrations was mixed in the stopped flow apparatus with
0.5 mM RecG and 2.5 mM DNA (A40:B40) under the conditions of
Figure 4. Traces (not shown) were fitted by single exponentials. The rate
constants are shown as a function of concentration and the best linear
fit, gives a slope of 1.1 (60.4) mM21s21 and an intercept of ,1 s21.
doi:10.1371/journal.pone.0038270.g005

ATPase Cycle of RecG Helicase
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tthe mechanism described with mantATP can be related to that

with ATP.

The rate of Pi release was measured after mixing RecG?DNA

with excess ATP, using the phosphate biosensor, in the stopped-

flow apparatus (Figure 6A). The traces showed a slight lag,

followed by a fairly linear rate of Pi release. Both phases are

dependent on ATP concentration. The lag decreased, while the

rate of the linear phase increased with greater concentrations of

ATP. The lag is due to the steps prior to Pi release, namely ATP

binding and cleavage. These traces represented multiple ATP

turnovers and showed no burst of Pi release during the first

turnover: therefore ADP release is not rate limiting in the cycle.

Such a burst phase would result from the relatively fast Pi release

of the initial cycle before the Pi release of subsequent cycles was

limited by slow ADP release.

A scheme of the ATPase cycle (Figure 2) was used to simulate

the data to assess the individual rate constants. The data do not

distinguish between cleavage and Pi release steps, so the simulation

assumed a slower hydrolysis step is followed by rapid Pi release, as

determined by measuring these steps with the mantATP. The

simulated traces (Figure 6B) were obtained from a global fit to the

experimental data. This was done by allowing only the rate

constants that have maximum influence on the curve shapes to

vary. Cleavage and Pi release were assumed to be irreversible. For

the fit, Pi release was fixed at 100 s–1, ADP release at 12.5 s–1, as

the fitting was relatively insensitive to changes in these constants.

ADP binding was therefore fixed at 1.7 mM21s–1 to be consistent

with the value of the Ki determined for ADP (Table 1b). The

resulting best fit gave rate constants for ATP binding as 0.65

(60.02) mM21s21, dissociation of ATP as 10.0 (60.6) s21,

cleavage as 7.1 (60.1) s21. The fit gave a cleavage rate constant

similar to the value of kcat from the steady-state analysis (Table 1a).

The rate constant for ADP release may be only slightly larger than

that of cleavage step.

The equivalent oxygen exchange experiment was performed

with ATP hydrolysis, as described above with mantATP, and

shown in Table S2. There was also a low extent of exchange

supporting the idea of rapid Pi release, assumed above.

ADP Dissociation Kinetics
A direct measurement of ADP dissociation kinetics was possible

because of its relatively tight binding to RecG, which allowed

quantitative formation of the ADP complex. RecG?DNA was pre-

bound to ADP before mixing with a large excess of mantADP in

the stopped-flow apparatus. The very tight binding of mantADP

(Table 1b) made that a suitable trap for free RecG?DNA, after

dissociation of ADP. The rate constant for dissociation was

determined from a single exponential fit as 11.4 (62) s21

(Figure 6C). This value fits well with the model whereby the

dissociation rate constant is calculated as $12.5 s21. Using the

dissociation rate constant (11.4 s21) and the Ki value (7.3 mM), the

estimated association rate constant is 1.6 mM21s21.

Overall, the data presented here with unlabeled nucleotides fits

to the model described by the mant nucleotides, whereby there is

rate limiting cleavage. By measuring the product release (Pi and

ADP) with the unlabeled nucleotides, it is clear that ADP release is

fast and that cleavage is the limiting step.

Unwinding of Homologous DNA Junctions
After measuring the ATPase kinetics and determining how they

relate to interactions with DNA, it is important to correlate

helicase activity with detailed enzymatic activity. Previously,

unwinding measurements were reported with non-complementary

three-way junctions [10]. RecG activity requires the substrate

DNA to be a three-way junction, but the junction arms can be

made up of completely duplex DNA or one arm, or both arms can

be single strand, as used above. This diversity of DNA structures

mimics the potential DNA substrates in the cell, depending on the

precise extent of strand replication prior to the premature

termination. It was therefore of interest to measure RecG activity

on four-strand homologous junctions (Figure 7). The final products

of unwinding are fully complementary, double strands. The

Figure 6. ATPase cycle measurements with unmodified nucleo-
tides. (A) Phosphate measurements at different ATP concentrations.
0.5 mM RecG, premixed with 2.5 mM DNA (A40:B40), was then mixed in
the stopped-flow apparatus with ATP at the micromolar concentrations
shown, in the presence of 10 mM MDCC-PBP. (B) Best fit time courses of
the Pi release, based upon a model of the ATPase cycle, as described in
the text. Curves were obtained by glogal fitting the curves at different
concentrations, using Global kinetic Explorer [40]. Note that in
comparison, the experimental time courses show a small transient of
Pi at times ,100 ms. This is likely to be due to free Pi and this behavior,
overlaying a lag, has been observed previously in multi-turnover
measurements [13]. (C) ADP Release kinetics. 10 mM RecG?DNA
(A40:B40) was pre-bound with 10 mM ADP before mixing with an
excess of mantADP (20 mM): these concentrations are final in the mixing
chamber. The increase in fluorescence was fitted to single exponential
giving the dissociation rate constant of 11.4 (62.2) s21. Rate constants
were independent of mantADP concentration in the range of 20–
80 mM.
doi:10.1371/journal.pone.0038270.g006
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kinetics of unwinding such DNA were measured with a Cy3/

Dabcyl fluorophore/quencher pair at the distal end of the lagging

strand, as done previously [10,15]. In such substrates, the Dabcyl

interacts with the Cy3 and quenches its fluorescence. However, on

completion of unwinding, the two labels separate and the

fluorescence increases (Figure 1B).

Rapid mixing of preformed complexes, RecG?DNA junctions

(A:B9:C:D, Figure 1A), under conditions of single turnover with

respect to DNA, and excess ATP resulted in fluorescence time

courses showing a lag phase, followed by an increase in

fluorescence (Figure 7A). After a transient peak in fluorescence,

the intensity dropped to a constant lower level. The magnitude of

the overall fluorescence change decreased as the length of the

substrate junction arms increased. The duration of the lag phase

increased linearly with duplex length (Figure 7C), giving a trans-

location rate of 26.9 (61.6) bp s21. This rate is similar to that

previously reported for non-complementary junctions [10].

The measurement was repeated with the two labels at the distal

end of the leading strand duplex (Figure 7B) to determine if

unwinding of both arm duplexes is completely synchronous. An

ATP-dependent increase in fluorescence following a lag period

was observed, similar to when the lagging strand was labeled. The

amplitudes and shapes of the traces were considerably different in

this case as there was a slow increase in fluorescence after the main

rise phase. This presumably is due to different interactions

between Cy3 and RecG, depending on the arm labeled, which

imposes a different fluorescence intensity change. Analyzing the

data as before, a plot of lag durations against substrate junction

arm length showed a linear relationship (Figure 7C), giving

a translocation rate of 27.2 (61.5) bp s21. Thus, unwinding the

lagging and leading arm duplexes occurs at a similar rate,

consistent with the processes being fully synchronized and

controlled by the pulling of the template strand across the RecG

surface in response to changes in the ATP binding site.

ATP Hydrolysi0073 Rate during Unwinding
The rate of ATP hydrolysis and total ATP usage during

unwinding were measured using the phosphate biosensor

(Figure 8), following rapid mixing of ATP with the RecG?DNA

complex. A measurement of Pi production during unwinding

showed a break point in the trace when heparin was used as a trap

(Figure 8 inset). Heparin is a potent inhibitor of many helicases,

mimicking the DNA substrate and binding tightly to the enzyme,

once the latter dissociates from the DNA, and so prevents

rebinding of the helicase to fresh DNA substrates. The initial,

rapid phase, which represents unwinding of the first DNA

junction, was unaffected by the presence of heparin. However,

the subsequent change in rate is slow, suggesting that the

interaction with heparin is slow, possibly due to slow release of

RecG from the end of the DNA, or due to inherently slow

interaction of RecG with heparin. RecG will continue to

hydrolyze ATP while bound to the DNA substrate. Therefore,

this does not produce an abrupt change in rate at the end of

unwinding the first DNA substrate.

The ATPase measurement was repeated with different lengths

of lagging and leading strands, as used in the unwinding

measurements, in the presence of heparin (Figure 8 main panel).

The break point increases with length, albeit not sharply. The

initial rate was independent to the length of the substrate junction

arms, except the shortest, suggesting a constant rate of ATP

hydrolysis during unwinding. The 9-bp arm may be too short to

have full interaction with RecG. The rate of ATP hydrolysis

during this unwinding phase was 5.8 s21. Taking the mean

unwinding rate of 27 bp s21, gives a coupling ratio around 4 bp

ATP21 for the fully complementary junctions. The ATPase rate

measured here is similar to the steady-state and hydrolysis rate

constants measured in the above sections, supporting the idea that

the ATP hydrolysis reaction is not greatly affected by the type of

junction.

Discussion

Many helicases have significant unwinding activity only when

associated as part of a larger complex, either as a homo-oligomer

Figure 7. Unwinding 4-strand complementary junctions. (A)
Fluorescence changes during unwinding under single turnover condi-
tions junctions (A:B9:C:D) of varying arm lengths (shown in b.p.), labeled
with Cy3 and Dabcyl on the template strand duplex. Final concentra-
tions are 30 nM DNA junction, 60 nM RecG and 200 mM ATP. The
reaction was initiated by rapid mixing with ATP. (B) Fluorescence
changes during unwinding under single turnover conditions of 4-strand
complementary junctions (A:B9:C:D), of varying arm lengths (shown in
b.p.), labeled with Cy3 and Dabcyl on the leading strand duplex. Final
concentrations DNA junction 30 nM, RecG 60 nM and ATP 200 mM. The
reaction was initiated by rapid mixing with ATP. Fluorescence levels are
expressed relative to the starting value. (C) Change in lag durations with
arm length of complementary junctions.: 4-strand with lagging strand
labeled (triangles), 3-strand with lagging strand labeled (circles) and 4-
strand with leading strand labeled (squares). The length of lags were
obtained by the intercept of best fits to the lag phase and the tangent
to the rise phase, Lines are linear fits to the data points, and the
reciprocal gives rates of unwinding 26.9 (61.6) bp s21 for the lagging
strand and 26.9 (61.6) bp s21 for the leading strand.
doi:10.1371/journal.pone.0038270.g007
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or with additional proteins. For example, PcrA on its own is a poor

helicase [16,17] but, when associated with an plasmid replication

initiator protein such as RepD, its activity is greatly increased and

it has a processivity up to plasmid lengths of DNA [16]. This is not

the case with RecG, where the helicase alone can readily catalyze

DNA unwinding and it must be able to remain bound to the DNA

junction on its own otherwise the replication fork could collapse.

This does not preclude the helicase interacting with other proteins,

but this is more likely to occur during recruitment. Such a behavior

requires the helicase to bind to the DNA rapidly and stably. Low

and high affinity states allowing translocation may then be linked

to stages of the ATPase cycle. To explore these possibilities further,

the individual steps in the ATPase cycle were measured, along

with the helicase activity on DNA substrates, which mimic those in

the cell.

Four-strand oligonucleotide junctions (Figure 1A) were used to

measure unwinding kinetics, as these structures more closely

mimic the natural substrates than our previous study of RecG

[10]. By differential labeling of lagging and leading strands, it was

shown that both arms are unwound synchronously. This would be

expected for a mechanism by which the parental duplex (template

arm) is translocated, drawing the two daughter strands towards the

helicase. The motor domain translocates dsDNA and draws the

substrate across the wedge domain, which catalyzes the rearrange-

ment of the substrate and so translocates the Holliday-junction-like

structure. The motor domain is likely to be largely unperturbed by

the DNA structure that interacts with its accessory domain, as it

only binds to the parent strand.

When unwinding four-strand homologous junctions a mean

unwinding rate of 27 bp s21 and an ATP turnover rate of 5.8 s21,

indicated a coupling ratio of ,4 bp per ATP hydrolyzed. This is

somewhat higher than the value of ,3 reported previously with

a three-strand non-complementary substrate [10]. In any case, the

data suggest that for a variety of DNA junctions the coupling ratio

is significantly greater than 1, the value found with several

helicases, particularly from Superfamily 1. Thus, PcrA has a ratio

of 1 for both single and double stranded DNA translocation

[18,19], as suggested from structural studies, which show in-

dividual base binding pockets [20]. The complete interactions of

RecG motor domain with DNA are not clear from the structure

[8], although the DNA is double-stranded in this region, therefore

the motor domain is unlikely to have specific interactions with

bases. The main factor limiting the step size may well be the size of

the conformation change as the motor domain reaches along the

dsDNA. These changes in structure may involve specific

interactions with DNA grooves and DNA sliding. The binding

and release, or sliding, would be linked to stages in the ATPase

cycle. With the 4-way homologous junction there is no net

formation of ssDNA and no net base pair separation, so that the

energetics of the translocation are not significant, in relation to the

energy available from hydrolysis of an ATP molecule.

The detailed ATPase mechanism was investigated by measuring

individual rate constants to determine which steps control the rate

of overall reaction and which were modulated by DNA, and,

therefore, which nucleotide intermediates are the main ones

present during translocation. These data are summarized in

Table 2 and can be used to determine when and where

conformation changes may occur. Mant-nucleotides were used

for this together with a two-strand junction, so there were

fluorescent signals for different steps of the cycle to establish a full

kinetic mechanism for the ATPase cycle. Measurements with the

natural unlabeled nucleotides were also done, when possible, to

address the differences in rate constants due to ribose-linked labels

and test the ATPase model from derived from the mant

measurements.

MantATP has a five-fold higher affinity and 30-fold lower

ATPase activity than ATP. The low activity of mantATP is due

both to slower cleavage and mantADP release. However, both

these key rate constants can be measured for the natural substrate.

Importantly, the increased mant affinities allow quantitative

complex formation with RecG and therefore all parts of the

ATPase cycle could be investigated with this nucleotide: this would

not be possible with unmodified nucleotides. This allowed the

complete the ATPase cycle to be modeled and then tested against

all available data with the unlabeled ATP. While absolute rate

constants may differ, the key components of the motor, such as

rate limiting step and DNA activated steps are not necessarily

affected by these affinity changes. Significant changes in ATPase

activity and nucleotide affinity have been reported with other

motor proteins [21] and helicases: an RNA helicase showed a two-

fold changes in affinity and activity [22]. In the case of PcrA and

mantADP, an increase in affinity of over an order of magnitude

was observed [23].

Using the mantATP it was possible to measure binding,

hydrolysis and Pi release under the same conditions and show

that hydrolysis is rate limiting followed by very rapid Pi release.

These key features were then derived with unlabeled ATP. In

order to achieve this, the kinetics of Pi release were measured at

various concentrations of ATP. The traces were fitted very well

using the model derived from mantATP measurements, namely

rate limiting hydrolysis, followed by rapid Pi release with

a relatively tight ADP affinity. Furthermore, the absence of a burst

phase in the Pi release data confirms that ADP release does not

contribute significantly to rate limitation. Even so, ADP release is

not rapid suggesting that there could be more complexity in the

release of this product. The kinetic measurements suggest that

RecG?DNA?ATP is the major intermediate present during

translocation and unwinding. There is also be significant

Figure 8. ATP hydrolysis during unwinding 4-strand comple-
mentary junctions. Junctions of varying arm lengths (shown in b.p.)
were used to measure the rate of ATP hydrolysis during unwinding.
RecG was pre-incubated with junction and the reactions were initiated
by rapid mixing with ATP and heparin. Final concentrations are
200 nM DNA junction (A:B9:C:D), 10 nM RecG, 200 mM ATP, 1 mg ml21

(55.5 mM) heparin and 5 mM MDCC-PBP. The reactions were performed
in the presence of a Pi mop, described in materials and methods. Inset:
Effect of heparin on ATPase activity of RecG during unwinding. The
reactions were initiated by rapidly mixing the pre-incubated RecG.DNA
(A40:B940:C19) with ATP with or without heparin. In another
measurement (‘‘control’’), RecG was pre-incubated with heparin and
then rapidly mixed with DNA junction (A40:B940:C19) plus ATP. Final
concentrations are 200 nM DNA junction, 10 nM RecG, 200 mM ATP,
2 mg ml21 (111 mM) heparin and 5 mM MDCC-PBP with Pi mop.
doi:10.1371/journal.pone.0038270.g008
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RecG?DNA?ADP and so these two intermediates are likely to

represent the main conformations, whose interconversion pro-

duces the movement along DNA. Rate limitation by hydrolysis

was also reported for PcrA [23] and an RNA helicase, DbpA [22].

The modeled nucleotide association rate constants are well below

those expected for a diffusion-controlled process, a situation

observed with various other helicases [22,23,24,25]. In any case, at

physiological concentrations of millimolar ATP, its binding would

still be rapid, relative to cleavage.

DNA accelerates the ATPase rate by enhancing the rate of the

cleavage step. Due to the limited structural information, it is not

directly clear what DNA-driven changes occur. It was proposed

that the DNA binding site is directly linked with the ATP catalytic

site [9] providing a likely mode for this rate enhancement.

Additionally, the ATPase rate maybe regulated by controlling

access of Mg2+ to the catalytic site, as proposed for PcrA [26]. An

equivalent residue (K402) exists in RecG to the one implicated in

PcrA.

The relatively tight binding of ADP would lead to the ATP-

bound and ADP-bound states being the main states with similar

concentrations at steady state. It is likely that the main structural

differences that are responsible for translocation are shown in

these two states. Therefore, it is likely that ADP release correlates

with one of the significant structural changes. This is supported by

measurements of the mant fluorescence, which showed a large

fluorescence change following binding and presumably represent-

ing a conformation change during hydrolysis. Such a conformation

change is likely to be reversed upon ADP release, so the main

structural changes occur upon hydrolysis and ADP release.

However, an additional structural change upon nucleotide binding

cannot be discounted with our data, given the two steps required

by the data (Figure 3). This model is different to known SF1

helicases (PcrA, Rep and UvrD) [27,28,29], whereby binding and

hydrolysis are likely to be the significant structural changes. The

larger translocation step size (4 bp ATP21) of RecG will likely

result from this different mechanism compared to SF1 helicases

with a typical step size of 1 bp ATP21 [19,30]. The ATPase cycle

of a DEAD-box superfamily 2 RNA helicase, DbpA, has also been

studied [22,31]. This helicase is likely to have a two-step ADP

release similar to that proposed for RecG but both hydrolysis and

phosphate release may contribute to rate limitation as they occur

at similar rates. There is also significant reversal of the hydrolysis

step. While there are few examples of investigating the individual

steps of a helicase ATP cycle, many studies have measured the

overall ATPase rate. In all cases this is enhanced by the presence

of the appropriate nucleic acid substrate.

Further high resolution studies looking at the conformation

changes during the translocation mechanism is required to

determine an accurate mechanism like those for SF1 enzymes.

This highlights the different ways in which DNA-based motor

proteins function, even when catalyzing similar processes.

Materials and Methods

Materials
RecG from T. maritima was expressed and purified as described

previously [10] with the modification that the final blue Sepharose

column was not required as the protein was .95% pure following

the first two columns. Coumarin-labeled phosphate binding

protein (MDCC-PBP) was prepared as described [32,33].

(18O4)Pi and (c-18O3)ATP were synthesized from (18O)water

(97% enriched) as described [34]. MantATP, mantADP and

(c-18O3) mantATP were synthesized from their parent nucleotides

by a modification of the method of Hiratsuka [11,35,36]. Labeled

and unlabeled oligonucleotides were from Eurogentec Ltd (South-

ampton, UK). Oligonucleotide junctions with sequences defined in

Table S1 were prepared by assembling separately equimolar

amounts of the oligonucleotides corresponding to the template and

leading strand arms of the junctions. RecG was mixed with the

substrate complexes and stored on ice prior to use. Oligonucle-

otide junctions were formed just prior to use by pre-incubating the

DNA in the reaction buffer at 20uC for 10 min. All oligonucleo-

tides, labeled with the fluorophore Cy3, were modified at the 59-

position and all oligonucleotides, labeled with the quencher

Dabcyl, were modified at the 39-position. All other biochemical

reagents were from Sigma.

Oxygen Exchange Measurements
For intermediate exchange during ATP hydrolysis, 0.5 mM

RecG and 1 mM (c-18O3)ATP or (c-18O3)mantATP were in-

cubated for 10 min (+1 mMDNA A40:B40, Table S1) or 20 min (-

DNA) at 25uC in a volume of 100 ml in the buffer described below.

Pi was analyzed for distribution of different 18O-labeled species on

a mass spectrometer as described previously [14,37] except that

during purification, the 18O-labeled Pi was detected by MDCC-

PBP, rather than radioactive tracers.

Quenched Flow Measurements
These were carried out using a HiTech RQF-63 apparatus

using different length loops and flow rates to age reactions before

quenching using 10% perchloric acid. Samples were analyzed for

the ratio of mantATP to mantADP by HPLC, as described [23].

Optical Measurements
Stopped-flow experiments were performed in a HiTech

SF61DX2 apparatus (TgK Scientific Ltd, Bradford-on-Avon,

UK) with a mercury-xenon light source and HiTech KinetAsyst

3 or Kinetic Studio 1 software. For MDCC-PBP fluorescence, the

excitation wavelength used was 436 nm and a 455 nm cut-off filter

(Schott glass) used to collect emitted light. The signal was

calibrated using known concentrations of Pi. The solutions

contained the Pi mop, to minimize phosphate contamination

and comprising 0.01 unit ml21 bacterial purine nucleoside

phosphorylase and 200 mM 7-methylguanosine [38]. For mant

fluorescence, 366 nm was used to excite and a 400 nm cut-off

filter (Schott glass) used to collect light. Measurements of Cy3

fluorescence used 547 nm excitation and a 570 nm cut-off filter.

In experiments described, the quoted concentrations are those in

the mixing chamber, except where stated. Data were fitted to

theoretical curves using the HiTech software or Grafit.

Steady-state fluorescence was measured using a Cary Eclipse

fluorimeter (Varian) with a xenon light source. Absorbance

spectroscopy was performed using a Beckman DU640 spectro-

photometer.

Kinetic Measurements
All reactions with RecG and DNA were done at 20uC in a buffer

containing 50 mM Tris?acetate (pH 8.0), 30 mM potassium

acetate, 3 mM magnesium acetate and 1 mM DTT. ATPase

measurements using MDCC-PBP were taken in the presence of

a Pi mop, as described above. Steady-state ATPase measurements

were taken in a solution (60 ml) at 20uC, containing 10 nM RecG,

500 nM DNA junction (A40:B40, see Table S1) and 10 mM
MDCC-PBP with varying nucleotide concentrations as substrate

or inhibitor [23].
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Analysis of Kinetic Data
Data were fitted to theoretical equations using the stopped-flow

software or Grafit [39]. Kinetic simulations were performed using

Berkeley Madonna (Version 8.3, University of California at

Berkeley) and using Global Kinetic Explorer (Kintek) [40]. Global

fits were performed using Global Kinetic Explorer.

Supporting Information

Figure S1 Steady state ATPase activity of RecG. The

measurements were carried out at 20uC with solution conditions as

described in Materials and Methods with 10 nM RecG, 500 nM

DNA Junction (A40:B40), 10 mM MDCC-PBP and triphosphate

nucleotide at the concentrations shown. (A) Steady-state measure-

ments for ATP. The lines are best fits to the Michaelis-Menten

equation and give a Km of 9 (62) mM and a kcat of 8.3 (61.7) s21.

(B) Steady-state measurements for mantATP. The best fit gives

a Km of 1.9 (60.6) mM and a kcat of 0.3 (60.1) s21.

(TIF)

Figure S2 Kinetic measurements of mantATP with
excess of RecG and a Three-strand DNA Junction. The

concentrations for all experiments were 0.5 mM mantATP,

2.5 mM RecG, 5 mM DNA Junction (A40:B40:C19) and 10 mM
MDCC-PBP (for Pi measurement). All measurements were carried

out under the conditions of Figure 4. Time course of mant

fluorescence (continuous line), mantADP formation (circles) and Pi
release (dashed line). The insert shows the initial change in mant

fluorescence.

(TIF)

Figure S3 Kinetic measurements in the absence of DNA.
(A) Association kinetics with mantATP. Dependence of the

observed rate constants on mantATP concentration from mixing

0.5 mM RecG with excess mantATP under the same conditions as

Figure 3. Points shown are typically an average of three individual

measurements. The best linear fit gives a slope of 0.4

(60.15) mM21 s21 and intercept 1.7 (60.6) s21. (B) Fluorescence

trace upon mixing 2.5 mM RecG with 0.5 mM mantATP under

the conditions of Figure 4. The trace was fitted by an exponential

and a slope giving rates of 0.42 (60.12) s21 for the former. Note

that as the fluorescence slowly increases beyond the time course, it

was not possible to calibrate the ordinate. Inset: Hydrolysis and Pi
release for these conditions. The circles represent single time

points for a quenched-flow measurement of mantADP formation.

Pi release kinetics (continuous line) were measured for the same

mixture containing 10 mM MDCC-PBP.

(TIF)

Table S1 Oligonucleotide sequences. They are all are

written 59 to 39. The E19 oligonucleotide is complementary to the

B40 oligonucleotide and was used to create 4 strand non-

complementary junctions.

(PDF)

Table S2 Oxygen exchange during ATP or mantATP
hydrolysis by RecG: distributions of oxygen-18 in the Pi

product. Experiments were performed as described in Materials

and Methods. The data were corrected for isotopic enrichment of

the starting nucleotide, 93% for (c-18O3)mantATP and 98% for

(c-18O3) ATP. The table shows the distributions of isotope in the

product Pi after unlabeled Pi was subtracted (along with natural

abundance in the (18O1)Pi position), likely to be mainly

contamination. Each distribution is the average of three mass

spectral assays. Thus the distributions are for the product Pi as

though the starting enrichment was 100%. In all cases there was

very little oxygen exchange as shown by the large peak of (18O3)Pi,

in which all three c-oxygens of ATP are retained. The

distributions were then used to compute the ratio of rate constants

for Pi release (k+3) and on-enzyme ATP resynthesis (k22) as in

Figure 2 [14,37]. The Pi from ATP hydrolysis consistently gave an

abnormal distribution (as shown by higher percentage of (18O1)Pi,

suggesting the possibility of a second minor activity. However, the

analysis assumed a single pathway.

(PDF)

Table S3 Kinetic parameters describing RecG binding
to various model substrates under pseudo-first order
conditions. The junctions are made up from the individual

oligonucleotides, as defined in Table S1, but with a Cy3 at the 59-

end of the single strand part of the junction. Binding kinetics were

measured with conditions as described in the Materials and

Methods at 10 nM RcG and varying the junction concentration in

the range 100 nM to 1000 nM. After fitting the fluorescence

curves to single exponentials, the observed rate constants were

plotted as a function of DNA concentration. Assuming a single

step binding, the rate constants were obtained and their ratio gave

the Kd values. Some experiments were done in the presence of

200 mM adenosine nucleotide. The major differences are in the

association rate constant: the dissociation varies little.

(PDF)
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