
Abstract

The advent of humanoid robots has enabled a new approach to investigating the acquisition of language, and we report on
the development of robots able to acquire rudimentary linguistic skills. Our work focuses on early stages analogous to some
characteristics of a human child of about 6 to 14 months, the transition from babbling to first word forms. We investigate
one mechanism among many that may contribute to this process, a key factor being the sensitivity of learners to the
statistical distribution of linguistic elements. As well as being necessary for learning word meanings, the acquisition of
anchor word forms facilitates the segmentation of an acoustic stream through other mechanisms. In our experiments some
salient one-syllable word forms are learnt by a humanoid robot in real-time interactions with naive participants. Words
emerge from random syllabic babble through a learning process based on a dialogue between the robot and the human
participant, whose speech is perceived by the robot as a stream of phonemes. Numerous ways of representing the speech
as syllabic segments are possible. Furthermore, the pronunciation of many words in spontaneous speech is variable.
However, in line with research elsewhere, we observe that salient content words are more likely than function words to
have consistent canonical representations; thus their relative frequency increases, as does their influence on the learner.
Variable pronunciation may contribute to early word form acquisition. The importance of contingent interaction in real-time
between teacher and learner is reflected by a reinforcement process, with variable success. The examination of individual
cases may be more informative than group results. Nevertheless, word forms are usually produced by the robot after a few
minutes of dialogue, employing a simple, real-time, frequency dependent mechanism. This work shows the potential of
human-robot interaction systems in studies of the dynamics of early language acquisition.
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Introduction

The advent of humanoid robots has enabled a new approach to

investigating the acquisition of language, and in this article we

report on the development of robots able to acquire linguistic

skills. Our work focuses on early stages analogous to some

characteristics of a human child of about 6 to 14 months, the

transition from babbling to first word forms, a critical stage in the

development of linguistic skills [1]. No knowledge of segmentation

into words or syllables is assumed. As well as being necessary for

learning word meanings, the acquisition of anchor word forms

facilitates the segmentation of an acoustic stream through other

mechanisms. The work described here is conducted through the

ITALK project [2], which elsewhere includes research into the

concomitant acquisition of referential meaning and syntax [3].

We take the position that numerous factors contribute to

language acquisition but it can be worthwhile to examine these

separately. We investigate one mechanism among many that may

contribute to the acquisition of word forms, a key factor being the

sensitivity of the learner to the statistical distribution of linguistic

elements. We show how word forms can be acquired, assessing the

extent to which our model presents a plausible analogy to human

linguistic development, and how it diverges. An apparent problem

with variable pronounciation may in fact aid word form

acquisition.

The learning of word forms is concomitant with, or possibly a

prerequisite for, learning word meanings. ‘‘The detection and

exploitation of […] statistical properties of ambient speech thus

allows infants to find candidates in running speech before they

know the meanings of words’’ [4] (page 137). Learnt word forms

may then come to be associated with particular objects or events

[5,6].

Furthermore, whether or not the meaning is known, isolated

word forms contribute to the segmentation of an acoustic stream of

sound into discrete components [7–9].

Our approach accords with recent neuroscientific research and

developmental psychology which indicate that dual systems are

needed for language processing. Ventral pathways are concerned

with relating sounds to meaning, while the dorsal pathway is

involved with relating sounds to articulatory productions, detect-

ing phonological patterns and word forms [10,11]. In the work

described in this paper we investigate processes analogous to some

in the dorsal pathway alone.
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A critical component of early human language learning is

contingent interaction with carers [12–17]. Therefore we have

conducted experiments, described here, in which human partic-

ipants interact with the humanoid iCub robot [2], aiming to teach

it some word forms. (In this article the terms ‘‘participant’’ and

‘‘teacher’’ are used interchangeably.) We show how word forms

may be learnt through a dialogue, in which naive participants talk

naturally, and find some of the characteristics of child directed

speech (CDS) or motherese in their talk to the child-like humanoid

robot. Initially, the robot babbles random syllables, but as the

interaction progresses its productions become biased towards the

teacher’s speech, which is a step on the way to learning single-

syllable word forms. The algorithm is described below. The

syllabic structure of possible English syllables is presupposed in our

system. A corpus of sentences which provide almost total coverage

of permissible demi-syllables in English (which combine to make

syllables) can be found in [18].

The speech of the participant is perceived by the robot as a

stream of phonemes, not segmented into syllables or words, which

leads to numerous possible ways of representing the speech as

syllabic segments. In addition the pronunciation of many words in

spontaneous running speech is variable. Phonetic variability of

function words is comparatively high, and so the corresponding

phoneme sequence may not be stable across occurrences.

However, in line with research elsewhere that has influenced our

work [19], we observe that salient content words often emerge

among the more frequent syllables with consistent phonemic

representation and their frequency will have an effect on the

robot’s talk.

The robot’s output is syllabic. Since it is not in general possible

to produce consonant phonemes in isolation (apart from a few

exceptions such as shh) syllables must normally contain a vowel.

This syllabic basis is not inconsistent with the key role played by

phonemes, for instance in distinguishing minimal pairs - similar

words that differ in one sound, such as dog and fog. As has long

been understood, phonemes themselves are abstractions from the

acoustic signal; there is no invariant mapping of acoustic cues to

phonemes as the realization of a phoneme depends on its context

[20,21]. Phonemic signatures are hard to identify in the acoustic

stream by automated processes: how humans do this is an active

area of research [22,23], while practical applications sidestep the

problem with ingenious engineering approximations [24].

In contrast to this infants in their first few months can

distinguish different phonemes, even before they can produce

them. Examples of work in this field include [22,25–27].

Our approach is based on observations that in human infants

there is a close connection between perception and production of

speech sounds, one of several facets of language learning. The

neural mechanisms that effect this connection are widely debated

[28], but infants learn the sounds of their own ambient language,

and practice what they hear (see, for instance, [29–31]). Children

born profoundly deaf cannot learn to speak normally. The typical

production of syllabic babble has been reported from extensive

observations of many children, and the practice of these sounds

primes the same neurons that will engage with the perception of

such syllables, if they are within repertoire. There is an auditory-

articulatory loop [32]. However, while motor involvement in

speech production is critical, in speech perception it is not

essential, though often observed [33].

Word Form Acquisition and Segmentation
As well as being a stage in the process of understanding the

meaning of words, word form acquisition contributes to the task of

segmenting the acoustic stream of speech into syllables and words.

A number of mechanisms are involved in segmentation, including

factors relating to prosody, sonority, utterance length, temporal

structure, distributional statistics and phonotactic constraints, and

these mechanisms produce candidate segments. Now, given a

string of phonemes to be segmented into syllables, the number of

possible candidate partitions increases exponentially with length. If

the length is restricted by occurrences of known anchor items this

can make a significant contribution [7–9]. Such words may have

been heard as isolates [34] or may have been acquired through a

process analogous to that displayed in our experiments.

Methodology in Context
Interest in child language acquisition goes back to the earliest

recorded times. The ancient Greek historian Herodotus, circa 450

BC [35], writes about an experiment in which two infants were

shut up alone together, fed by a shepherd who was ordered never

to talk to them, to see what words they would produce. They

eventually came up with the word ‘‘bekos’’ for food. There are also

other accounts in later times of cruel experiments with children

deprived of human contact.

Many records of child language acquisition were produced in

the 19th century, based on diaries reporting the development of

single children, Clark [36] (page 15) gives a list. In the 20th

century quantitative as well as qualitative approaches were

adopted. Gesell researched the stages in child development

through systematic observation of large numbers of children.

Piaget’s theories drew on studies of small groups of children,

Vygotsky observed the crucial role of social interaction, and

Skinner’s work on behaviourism was very influential.

In contrast to these empirical approaches Chomsky’s rationalist

theories came to play a prominent role in the second half of the

20th century. At the core of his theories was his view that an innate

universal grammatical faculty underpinned all human languages,

and the task of researchers was to uncover this universal grammar.

‘‘ ‘Knowledge of language’ involves in the first place knowledge of

grammar - indeed, […] language is a derivative and perhaps not

very interesting concept’’ he wrote [37] (page 90).

Towards the end of the 20th century empiricism reasserted

itself. A corpus based approach was widely undertaken, involving

the shallow examination of large quantities of data in contrast to a

deep analysis of small samples of language. Increasing computer

power made large scale analysis feasible, and other technical

advances associated with an empirical approach, such as the

development of information theory and neural computing,

produced promising results. Meanwhile the rationalist search for

that alluring goal, an underlying core grammar, seemed ever more

elusive.

Recent Developments
In recent decades two significant changes have altered the

landscape. The development of neuroscientific investigative

techniques has enabled some theories of language processing to

be subjected to empirical tests. For instance, Chomsky’s idea that a

Language Acquisition Device might have a specific location in the

brain has not been substantiated. Instead, language processing has

been shown to be distributed. Chomsky himself has said that ‘‘the

faculty of language’’ is ‘‘more or less on a par with the systems of

mammalian vision’’ [38] (page 2). Other results of neuroscientific

research have illuminated the acquisition and processing of

language - one example that significantly influences our work is

evidence for dual processing pathways [10,11].

The second development is the potential to investigate language

acquisition through computer simulations and experiments with

robots. Steels undertook pioneering work in modelling the
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evolution of communication between embodied software agents,

such as his ‘‘Talking Heads’’ experiments [39].

These two factors come together in models and simulations of

neural processes. An influential model of speech acquisition and

production has been developed by Guenther, Ghosh and Tourville

[40]. This focuses on the sensorimotor transformations underlying

the control of articulator movements, taking as input a speech

sound string and outputting articulatory commands to a simulated

vocal tract. Their work shows how an initial auditory target

prompts the production of a speech sound through a sequence of

feed forward commands and feed back controls. To instantiate the

target, a syllable, word or short phrase is presented to the model by

a human speaker: ‘‘[the] model is given a phoneme string by the

modeler, and the model produces this string in the specified order’’

(ibid, page 294). The human teacher presenting the model with an

isolated word contrasts with with our own system in which the

teacher produces spontaneous, unscripted continuous speech in a

proto-conversation with the robot. Salient words can be learnt

without restricting the human to a prescribed isolated word.

Our work takes a similar approach to that of Breazeal, in which

robots interact with humans providing a variety of social cues to

support engagement via natural, personal interactions [41]. As in

her work, we study interactions with naive participants, in contrast

to experiments using people with technical expertise. In the

linguistic field a similar approach is adopted by Steels and Kaplan

[42], in which the robot Aibo learns the meaning of words through

social interaction. It differs in that word forms are assumed known

(ibid, page 18), whereas our work focuses on the preliminary stage

of learning word forms. Like them, our goal is to examine specific

issues on the emergence of communication, and one advantage is

that we can analyse and extract data from internal states in the

learning process. In our case this is described below in the Results

section.

We take a constructivist approach to language learning, as

described by Tomasello [43]. Though the work reported here

focuses on preliminary word form learning, this approach has also

inspired research into semantic language learning, grounding

words with objects through audio, visual, proprioceptive and

spatial cues, e.g. [3,44–47]. Computational models of the

acquisition of linguistic competencies includes Oudeyer’s work

on categorical perception, demonstrating the development of

phonemic categories through self-organization [48]. Research in

this field also includes work with populations of interacting

synthetic agents, for instance the acquisition of vowel systems

modelled by de Boer [49], extended to syllables by Oudeyer [50].

A functional model which aims to integrate different phenomena

involved in phonological processing and word form learning has

been developed by Gupta and Tisdale [51].

Since our work concerns the acquisition of a human language

by a robot we are inspired by the process in humans. Thus the

basis of our experimental work is a real-time interactive situation

where a human participant talks to a robot, using his or her own

spontaneous words. We identify some of the key processes that can

be observed, and though these processes are typically interlinked

in complex networks of associations, for the purpose of our

research we initially look at them independently to see what

contribution different mechanisms can make.

It is worth stressing that synthetic language, such as robot to

robot communication, is fundamentally different from human

language, which comes with its accumulated evolutionary

baggage, and exaptations of primitive processes [52]. For example

consider how a ‘‘logical’’ language in which each phonetic string of

sounds would map onto one and only one meaning [53] contrasts

with the observed frequency of homophones in English, French,

Chinese, Japanese and other languages, possibly all (‘‘one, won’’,

‘‘two, to, too’’ etc.). In English in a corpus of about 1 million

words, 20 of the 50 most frequently occurring words are

homophones [54]. We usually have no difficulty in disambiguating

them by taking short sequential contexts, re-using primitive

sequential processing mechanisms.

From extensive psycholinguistic research we take as a premise

the observation that infants are sensitive to the distributional

frequencies of the sounds they hear in speech directed towards

them [25,26]. Our work, focusing on analogies with infants aged

about 6 to 14 months, models possible mechanisms contributing to

the transition from babbling to first words. We propose methods

by which the robot might perceive and produce syllabic output,

and by analysing the spontaneous speech of the participant

teachers we see how the robot might learn emerging salient words.

Methods

Ethics Statement
This research was approved by The University of Hertfordshire

Ethics Committee for Studies Involving Human Participants.

Informed consent was obtained in writing from all participants.

Scenario - Dialogue with Robot DeeChee
As the purpose of these experiments is to investigate word form

learning through interaction with a human teacher, it is critical for

the robot to elicit an appropriate approach in the teacher, and

therefore it is important that our system appears to be embodied in

a real robot, rather than a software agent. We take our robot to

have neutral gender but participants seemed to consider it was a

boy.

The experimental scenario is a real-time, on-line dialogue

between a human ‘‘teacher’’ and the small humanoid iCub robot

named DeeChee, as shown in Figure 1 and in the video clip in

Video S1. The video clip can also be seen at http://youtu.be/

eLQnTrX0hDM (note that the ‘0’ is zero).

On a table between them are some blocks of different colours

with various shapes on them. The participant is asked to talk to

DeeChee, using his or her own words, as if it was a small child,

and to try to teach it the names of colours and patterns. It so

happens, as shown in Table 1, that in this scenario nearly all the

salient words, 20 out of 24, have one syllable, and are of the form

CzVCz, where C is a consonant and V is a vowel. The notation

Cz means one or more instances of C. For convenience in this

paper we represent Cz by C, and investigate the learning of CVC

word forms.

The participating ‘‘teachers’’ are volunteers not involved with

the project. Five sets of experiments were conducted with 34

participants, who were varied in age, occupation, gender,

experience of children and familiarity with computers. Their

spontaneous speech ranged from the extremely loquacious to the

quite inarticulate. They were paid £5 in recognition of their help.

Most were either university administrative staff or PhD students

from other disciplines.

There were 7 different participants in each of sets 1,2, 4 and 5,

and 6 in set 3. In sets 1, 3, 4, 5 conditions only varied in the

humanâH ‘‘robot interface, while set 2 was based on a variation in

the learning algorithm, described later. Reference is also made to 2

preliminary sets of experiments: one with 8 participants talking to

another robot in a similar scenario but then processed off line [55];

the second with 2 participants in a real-time interaction but with a

simulated reinforcement mechanism [56].

Language Learning by Robots
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Experimental Programme
The 5 sets of experiments described here were conducted in

sequence. Due to the embodied and situated nature of the scenario

we followed an iterative approach to interaction design, aiming to

improve performance in terms of learning word forms.

A feature of all the experiments was that teachers had to listen

to DeeChee’s babble and take notice of any words. With set 1 it

was found that teachers often missed hearing words uttered by

DeeChee in among the babble and thus did not give reinforce-

ment. The program was adapted for set 2 by introducing a filter,

designed to facilitate the teachers task of identifying words in a

stream of babble. On the supposition that the task would be easier

if there were less syllables to chose from, a filter was introduced, so

the robot had a smaller syllabic vocabulary. This filter, the

syllabifier, was trained on a corpus of known words, and aimed to

identify and exclude syllables that were unlikely to be words.

However, it filtered out a large number of syllables that were

candidate words and was not used for the subsequent sets. Sets 3, 4

and 5 reverted to the original program, but we had the intention of

lowering the cognitive load on teachers, and thus hopefully

increasing their word recognition rate, by progressively simplifying

the guidelines each time. As examples the guidelines for set 1 and

for set 5 are in Appendix S1.

In all experiments participants were asked to try to teach

DeeChee the names of shapes and colours, and to take turns

speaking. They were asked to talk with DeeChee as if it was a small

child, to listen to its babble and make an approving comment if it

uttered a proper word form. In set 1 and 2 teachers were told to

talk when DeeChee smiled, pause when DeeChee blinked and

stopped smiling. However, it seemed that the task of listening to

the babble needed a significant degree of concentration, as a

number of correct word forms were missed, and watching

Figure 1. The scenario for the human-robot dialogue.
doi:10.1371/journal.pone.0038236.g001

Table 1. List of salient words used by participants.

One syllable words of form CVC Other salient words

big arrow

black blue

box circle

cross crescent

cube

green

heart

moon

red

ring

round

shape

shapes

small

smile

square

squares

star

sun

white

Salient content words which were spoken by participants in these experiments.
Recall that in our notation C represents one or more instances of a consonant.
doi:10.1371/journal.pone.0038236.t001
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DeeChee’s facial expression was a distraction. For sets 3, 4 and 5

the guidelines were simplified, on the assumption that too heavy a

cognitive load might contribute to the low level of teacher response

when DeeChee uttered correct word forms. Explicit description of

the facial expressions were omitted from the guidelines, though

they remained as before, as implicit support for turn taking. Also in

these sets the need to listen carefully was emphasized.

The different guidelines were:

Set 3: instructions on procedure without an explicit instruction

to make an approving comment if DeeChee uttered a proper

word.

Set 4: instructions on procedure similar to previous, but with

explicit instruction to make an approving comment.

Set 5: instruction on procedure reduced to a single request to

listen to DeeChee, and make an approving comment if

appropriate. Other instructions, such as on the use of the

microphone etc. were moved to introductory material.

Hypotheses
We hypothesize that.

1. A synthetic agent embodied in a humanoid robot can learn

one-syllable word forms through interaction with a human

teacher talking naturally;

2. Word form learning is augmented by contingent reinforce-

ment, if the teacher makes an approving comment when a

proper salient word form is uttered.

Algorithm
Robot DeeChee perceives the teacher’s speech as a stream of

phonemes, not segmented into syllables. An overview of the

algorithm is shown below. An example of an unsegmented stream

of phonemes, using letters as pseudo-phonemes, would be ‘‘a r e d

b o x’’. The set of all possible syllables (each of which must include

a vowel) would be a, ar, re, red, e, ed, bo, box, o, ox, which assumes no

syllable segmentation knowledge. A ‘‘real word form’’ is any

proper word, not necessarily one with the right meaning in a given

context, a ‘‘salient’’ word is an information carrying word that the

participant is trying to teach.

At the start of each experiment DeeChee produces random

syllabic babble. It can turn its head and change its facial expression

minimally, smiling and blinking. Its arms can move towards or

away from the blocks which are being shown by the teacher.

Assumptions
The following assumptions are made:

N DeeChee practices turn taking in a proto-conversation

N It can perceive phonemes, analogous to human infants

N It is sensitive to the statistical distribution of phonemes,

analogous to human infants

N It can produce syllabic babble, but without the articulatory

constraints of human infants, so unlike a human of this age it

can produce consonant clusters

N It has the intention to communicate so reacts positively to

reinforcement, such as approving comments

Real-time reinforcement is based on the teacher uttering

approving comments, such as ‘‘well done’’, ‘‘good’’, ‘‘clever’’,

etc. When DeeChee recognizes one of these terms then a one-

syllable word from its previous utterance is saved in its lexicon.

Now, DeeChee’s previous utterance will be multi-syllable, and the

appropriate part must be identified. This is done using a heuristic,

based on frequency, recency of use by the teacher and type of

syllable. The heuristic produces a score calculated for each

syllable, and the CVC syllable with the highest score is reinforced,

(recall that in our notation ‘C’ represents one or more instances of

a consonant) where

time = elapsed time since syllable was last uttered by teacher

score~
1

time
� frequency

The approving comments themselves, against which DeeChee’s

perception is matched, were taken from preliminary experiments

[55].

Method of Investigation
Each of the experiments consists of 2 consecutive 4-minute

dialogue sessions between a teacher and DeeChee, giving the

participant a break in the middle. For each participant learning

was carried forward from the first to second session. Learning was

separate for each participant and started anew each time. The 4

minute session length was chosen after some preliminary trials,

since with longer sessions attention flagged with some participants.

We noted that some critical experiments with human infants, on

learning to detect phonemic patterns, were conducted for only 2

minutes [25].

Initially DeeChee produces random syllabic babble, then the

teacher speaks, and the turn taking continues. The phonemic

alphabet used is the CMU phoneme set [57], as shown in Table 2.

The syllabic babble that DeeChee produces is of the form V, CV,

VC or CVC where V is a vowel and C is either a single consonant

or a cluster of consonants. Thus, in our notation syllables such as

square and box, (s k w eh r) and (b aa k s), are denoted by the form

CVC rather than CzVCz. Almost all allowable English

combinations are possible, as described in the SCRIBE corpus

[18], with clusters of up to 3 consonants. (Clusters of more than

three consonants are excluded, such as in glimpsed.) ‘‘Allowable’’

Initial state: DeeChee produces random syllabic babble

Repeat until dialogue time ends:

utterance T : Teacher speaks, speech represented by a
stream of phonemes

process : DeeChee perceives input as set of all
possible syllables from stream, frequency
table for each of these syllables is incremented

utterance D : DeeChee produces quasi-random
babble, biased to teachers input

process : Teacher listens to babble, to hear for a real
salient word form

process : if DeeChee perceives reinforcement then

Language Learning by Robots
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means clusters that occur in the ambient language. Some clusters

can only occur at the beginning of a syllable, such as (g r) as in green,

some only at the end, such as (k s) as in box, some at either position,

such as (s t) in star and last.

The teacher’s speech is converted to a stream of phonemes,

using an adapted version of Microsoft SAPI 5.4 [56]. It is

perceived by DeeChee as a stream of phonemes, with consonant

clusters found. All possible syllables are extracted as the teacher’s

phoneme stream is expressed, and stored by DeeChee in

frequency tables. Recall that these syllables, of the four types

described above, will be overlapping as there is no segmentation

knowledge.

Prior to the main experiments participants were trained for

about 10 minutes on the speech recognizer, since an adapted

version of this was used to represent the teacher’s speech as a

stream of phonemes.

Turn taking is based on a timing mechanism for utterances:

DeeChee babbles for 4 seconds then listens for 4 seconds before

babbling again. A dynamic method would be more realistic, and

this method sometimes produced an unforeseen problem discussed

in Section Results below: some participants did not stick to their

turn but talked over the start of DeeChee’s utterance. DeeChee

has a neutral expression as it babbles but blinks as it stops and its

expression changes to a smile when it starts listening. Participants

completed a short questionnaire after the experiment and most

often had the impression that they were interacting directly with

the robot.

DeeChee’s babble, a sequence of syllables composed of V and C

phonemes, is converted to an audible output using the eSpeak

synthesizer [58].

DeeChee’s output is determined first by a random choice of one

of the four syllable types. Then, as the syllable frequency counts

increase, DeeChees babble, still quasi-random, becomes biased

towards the teachers speech: syllables that have been frequently

perceived are more likely to be produced. To explain the

algorithm suppose 3 syllables of the chosen type have been

perceived. If syl1 occurs once, syl2 occurs 3 times and syl3 6 times,

then the chances of DeeChee producing these syllables are

respectively 1/10, 3/10, 6/10. Any of these 3 syllables may be

produced, but with varying probabilities. The random generator

was adopted because we have no principled reason to adopt any

other method.

Then, if the teacher hears DeeChee utter, by chance, a salient

(single-syllable) word he/she may make an approving comment.

The term ‘‘may’’ is used because the behaviour of the human

participants is not determinate. DeeChee ‘‘may’’ then perceive this

approving comment. Here the term ‘‘may’’ is used because the

phoneme recognizer does not always detect the comment.

However, once the approving comment is recognized the word

form is then lodged in DeeChee’s lexicon. This is the reinforce-

ment process. The dialogue continues with learnt word forms now

occurring more often in the quasi-random babble. When the

random selector initially selects a syllable type the word in the

lexicon will be a candidate to be chosen, along with the four

syllable types. Thus, if there are two words in the lexicon, there

will be six candidate items. Once in the lexicon a word form has a

higher chance of being produced.

An overview of the system architecture is shown in Figure 2.

In the preliminary experiments the reinforcement was simulat-

ed. The programmer made a list of salient words that it was hoped

DeeChee would learn. If there was a match between one of these

words and DeeChee’s output, then that word was entered in the

lexicon [55,56]. In contrast the reinforcement mechanism in the

experiments described here depended on the teacher hearing a

desired word uttered by DeeChee and responding with an

approving comment. Then DeeChee should recognize this

comment and select the appropriate one-syllable word from its

utterance to be put in its lexicon, the selection of the appropriate

syllable depending on the heuristic. In this work only CVC types

are candidates for selection, because of the observed occurrence of

syllable types, as shown in Table 1, and also for simplicity.

Results

The questions which these experiments are designed to answer

and results are summarised as follows:

Table 2. The CMU phoneme set.

Phoneme Example Phoneme Example

aa odd k key

ae at l lee

ah hut m me

ao ought n knee

aw cow ng ping

ay hide ow oat

b be oy toy

ch cheese p pee

d dee r read

dh thee s sea

eh Ed sh she

er hurt t tea

ey ate th theta

f fee uh hood

g green uw two

hh he v vee

ih it w we

iy eat y yield

jh gee z zee

zh vision

doi:10.1371/journal.pone.0038236.t002
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1. As the dialogue progresses, does DeeChee’s babble begin to

include some proper one-syllable word forms? Yes (Hypothesis 1).

2. (a) Does the teacher respond to the production of proper

word forms? Sometimes.

(b) Does DeeChee recognize this reinforcement? Usually.

(Hypothesis 2).

One example of a successful learning interaction is from

participant 4A, and an excerpt extracted from her dialogue is

shown below. The utterances from DeeChee and 4A are

represented using CMU phonemes, as shown in Table 2. The

term ilex, derived from ‘‘infant’s lexicon’’, refers to DeeChee’s

memory store of learnt syllables.

The three non-words that were reinforced were derived from

errors in the phonemic representation, coupled with over generous

praise from 4A, as discussed further below.

Note that in these experiments we investigate the learning of

CVC word forms, since these represent almost all the salient words

in our scenario - see Table 1. The frequency of the other syllable

types will be at least as high: for instance if r eh d occurs n times

then r eh of form CV will occur n times or more, but this would not

be reinforced.



Detailed Analysis of Learning Interactions
Participants are shown the experimental set up (Figure 1) and

asked to teach DeeChee the names of shapes and colours.

Essentially, no restrictions on participant’s speech are given - they

are left to use their own words; see Guidelines in Appendix S1. As

the participants use their own words there may be a variety of

terms for a shape, for instance ring, round, circle, or moon, smile,

crescent. Then there are other non-salient proper words such as this,

that, look. There are also non-words which may be learnt and

reinforced in error. Some of these come from adjacent words run

together such as y uw s from ‘‘can you see’’. Other non-words come

from a mismatch between the teacher’s utterance and its

representation by the phonemic recognizer. Such mismatches

are usually errors in the phonemic recognizer, but also may be

idiosyncratic pronunciation. As the participants are asked to talk to

DeeChee as if it is a small child, in some cases this results in

excessive praise, whether DeeChee has produced a real word form

or not. Thus non-words get reinforced.

In the following results we analyse both the interactive

reinforcement, the actual real-time learning results in experiments

with the participants, and also the ‘‘simulated reinforcement’’. The

latter is another way of interpreting data from these experiments

which reflects what the robot would have learned if all the salient

words that it uttered had been reinforced by the teacher. By

uttering these words DeeChee showed that some learning had

taken place, but the reinforcement step did not follow on. It is

called ‘‘simulated reinforcement’’ since in preliminary experiments

word forms uttered by DeeChee were compared to a list of salient

words, and were treated as reinforced if there was a match.

As has been noted before, an advantage of this type of research

method is that we can dissect a process and analyse internal states

[42]. In this case we can break up the process into the following

components of the interaction:

N The speech of the participants

N The perception of this speech by the robot as sets of all possible

syllables in phonemic form

N The syllabic utterances of the robot and the production of

candidate words

N The recognition by the participant of words in the robot’s

babble followed by real-time reinforcement

Speech of the Participants
Table 3 gives statistics for the participants’ speech. There is very

marked variation among the participants, with the number of

words spoken varying from 83 to 876. The number of different

Figure 2. Overview of the system architecture.
doi:10.1371/journal.pone.0038236.g002

Language Learning by Robots

PLoS ONE | www.plosone.org 7 June 2012 | Volume 7 | Issue 6 | e38236

From individual example 4A
Brackets around DeeChee’s output show syllables

DeeChee: (ao ks) (ow dz) ae (r eh d) (ao s)
4A: w eh l d ah n

reinforcement term "well done"
heuristic applied to previous utterance
(r eh d) found, moves into ilex, DeeChee’s lexicon

contents of ilex: (r eh d)

…….

DeeChee: (iy n) (r ey n) (r ey n) (m ao dl) (kr ao s)
4A: v eh r iy d g uh d eh n d

contains reinforcement term "good"
(kr ao s) found, moves into ilex

contents of ilex: (r eh d) (m ao dl) (r ey n) (gr iy n) (kr ao s)

3 words reinforced correctly: red, green, cross
3 non-words also reinforced by the end
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words used ranges from 7 to 145. The amount of repetition is

indicated by the ratio of word count to the number of different

words, and this ratio varies from nearly 4 to nearly 12. These

figures show that experiments with naive participants must expect

very varied performances.

The speech used by participants, though very varied, typically

had some of the characteristics of Child Directed Speech (CDS):

short utterances, limited vocabulary, simple constructions,

pronounced prosody, repetition [3,4,59], and, in some cases,

praise of DeeChee’s speech regardless of its actual performance.

It has been reported that humans speak to children and robots

in different registers [60], but in these cases there was no user

expectation that the robot was child-like. Whether the robot is

simulated or embodied is also relevant. We found characteristics

of CDS in other experiments with a humanoid robot in a

similar scenario [3].

Perception of Speech by the Robot
The speech from the participant is presented to DeeChee as a

stream of phonemes, from which all possible syllables are formed

and stored. The performance of phoneme recognizers is hard to

assess; Greenberg reports that even with linguistically trained,

highly experienced transcribers inter labeler agreement ranged from

80% to 72% on labelling 4 hours of spontaneous speech [19]. As we

focus on one-syllable salient content words of the form CVC (see

Table 1) we only looked at the recognition rates for these. Again,

results were very varied. Taking the number of correct recognitions

of the 3 most frequently spoken salient words for each participant

the averages were 45% for set 3, 49% for set 4 and 61% for set 5.

There is a wide range in the total number of different syllables

perceived by the robot for each participant, from 549 to 52, since

they are derived from the variable input speech and variable levels

of phoneme recognition. As well as the word counts for the

teachers’ speech Table 3 shows the total number of different

syllables, of the 4 types V, CV, CVC and VC, and the number of

different CVC syllables perceived by the robot. The number of

salient CVC items out of the top 10 most frequent for the

transcribed speech and for the perceived syllables in phonemic

form exhibit significant correlation (Pearson correlation

r~0:53, pv0:01).

Table 4 gives further data for set 1 as an example.

Note that not all the participants’ speech is always perceived by

the robot. The transcription of the participants’ speech is taken

from the audio recordings, showing all that is spoken. However, at

times the participant will talk over DeeChee instead of stopping at

the end of his/her time-based turn, and DeeChee will then miss

what is said.

In spite of the fact that there is no knowledge of word

boundaries, and numerous candidate syllabic segments are

generated, the salient one-syllable words are well represented in

the top 10 most frequent syllables. This means they will probably

influence DeeChee’s speech, who will thus be more likely to

produce a word that will elicit reinforcement. We do not expect

the frequent salient syllables to include all those that are spoken

Table 4. Comparison of word counts with syllable counts as perceived by the robot: Set 1 as an example.

Participant
Number of different words
spoken

Number of different CVC words
spoken

Number of different CVC syllables as perceived
by robot

1A 38 16 96

1B 76 50 126

1C 53 26 99

1D 78 36 116

1E 84 42 199

1F 121 55 189

1G 79 35 117

Note the difference in number of CVC words, when the speech stream is segmented into words, in contrast with the much larger number of syllables as perceived by
the robot with no knowledge of syllable boundaries. This is in spite of the fact that some small part of the participant’s speech is not perceived when he/she talks over
DeeChee out of turn.
doi:10.1371/journal.pone.0038236.t004

Table 5. Words produced by the robot and those missed by the teacher for reinforcement.

Set number
Number of
participants

Salient words produced
by the robot

Number of words missed
by participants

Word reinforced but heurisitc
failed (included in col. 4)

1 7 22 17 1

2 7 8 4 0

3 6 14 11 2

4 7 18 12 1

5 7 17 10 0

total 34 79 54 4

Aggregated figures.
Note the significant number of words uttered by DeeChee but not noticed by participant. ‘‘Simulated reinforcement’’ would find these matches.
doi:10.1371/journal.pone.0038236.t005
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but hypothesize that enough are perceived to bootstrap the

learning of some word forms.

There are three reasons for a single-syllable CVC word to lack a

matching CVC syllable in phonemic form. Firstly, the speaker

may not articulate the word in a canonical, dictionary form, as

frequently happens in spontaneous running speech. Secondly, the

words spoken may be outside the speaker’s turn, and thirdly the

phoneme recognizer may not be operating effectively.

The Robot’s Productions and Candidate Words
DeeChee produces syllabic babble that becomes biased towards

the most frequently heard syllables from the teacher’s speech.

Table 5 shows the results of analysing the number of salient one-

syllable word forms in DeeChee’s output. We expect this to be

correlated to the number of frequent salient CVC syllables, since

in the quasi-random output more frequent syllables have a higher

probability of being expressed (Pearson correlation

r~0:52, pv0:01).

Table 3 shows the relationship between the number of high

ranking, frequent CVC syllables and the words produced by

DeeChee. Note how many of these words are not noticed by the

participants (Table 5).

The variable number of words produced depends partly on the

vocabulary used by the teacher. In one case where DeeChee only

output one proper word the teacher disregarded the guidelines on

the ‘‘boring’’ task of teaching shapes and colours, and started

giving a history lesson on the fall of Constantinople, with a

vocabulary lacking the salient words in our scenario.

Word Learning through Real Reinforcement
A summary of results is shown in Table 6. In set 1 a significant

number of words uttered by robot DeeChee were not noticed by

the teachers, not reinforced, and in successive sets of experiments

we attempted to address this.

In set 2, in order to try and facilitate the teacher’s task of noting

words in DeeChee’s babble a filtering process was introduced.

This reduce the number of syllables in the teacher’s speech as

perceived by DeeChee, using the Syllabifier software. Instead of

collecting all possible syllables, the syllabifier processed the speech

stream to exclude phoneme strings that were unlikely to be one-

syllable words. The number of candidate strings reduced

significantly, see Table 3, while the number of correct words

perceived and reinforced by the teacher was close to that in set 1 (3

rather than 4). In contrast, other salient one-syllable words spoken

by DeeChee were filtered out before they could be candidates for

the teacher to notice. On average, 56% of salient words with

canonical phonemic representation were excluded, and we

decided not to use it again.

However, it indicated that, given a smaller candidate set of

syllables, performance of the process with full reinforcement was of

a similar standard to set 1. Results indicated that a filtering process

could be worth investigating further.

Sets 3, 4 and 5 used the same program as set 1, but the

guidelines given to participants differed. We tried to progressively

lower the cognitive load so that the participant would focus on

listening to DeeChee’s speech and detecting any words. Examples

of the guidelines for the first and fifth set are given in Appendix S1.

One explanation of low scores on word learning is that a

few teachers praised DeeChee whatever it said, in one case 10

times in the first 4 minutes, so non-words were erroneously

reinforced.

Evaluation of Word Learning in Set 1 to Set 5
We hypothesized that performance would improve from set 1 to

set 5. To evaluate this we wanted to score each set for words

correctly learnt (true positives) balanced against non-words learnt

(false positives), both for simulated reinforcement and for real

reinforcement. In the latter case we need to take into account false

negatives: the words that DeeChee has produced but the teacher

missed, or where the heuristic failed. In the case of simulated

reinforcement there are by definition no false negatives.

We can look at false positives in two ways: first, we can take the

‘‘non-words’’ learnt in error, ignoring ‘‘other words’’ learnt, like

‘‘this’’ and ‘‘that’’, proper but non-salient words. Secondly, we can

take both ‘‘non-words’’ and ‘‘other words’’.

A standard method commonly used in natural language

processing, is to derive the F-measure [61,62]. This is appropriate

for binary classification tasks on highly skewed distributions - see

for example the typical distribution in Figures 3 and 4.

Let tp be true positives, fp be false positives, fn be false negatives.

Using standard terminology, P is Precision, R is Recall, F is the

F-measure where

P~
tp

tpzfp

R~
tp

tpzfn

then

F~
2PR

PzR

on the assumption that P and R are equally weighted. (The

formula can be adapted to give more weight to one or the other.)

Table 6. Words learnt.

Set number Number of participants Salient words learnt non-words learnt Other words learnt

1 7 5 11 2

2 7 4 9 5

3 6 3 11 6

4 7 6 11 4

5 7 7 13 5

total 34 25 55 22

One-syllable words uttered by DeeChee, perceived by teacher, reinforced, and entered in lexicon as learnt. ‘‘Other words’’ are proper but non-salient words, such as
‘‘this’’ or ‘‘that’’.
doi:10.1371/journal.pone.0038236.t006
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The higher the F-measure the better the performance. If all true

positives are learnt with no false positives or false negatives the F-

measure will have a maximum value of 1.0.

Using this approach we can get an F-measure for each set under

each of 2 conditions - real reinforcement and simulated, F1-1 and

F1-2. We also repeated the analysis using the different definition of

false positives: this second time we included the ‘‘other’’ words in

the false positives, to give scores F2-1 and F2-2.

The results shown in Table 7 are discussed in Section

Discussion below. A significant finding is the difference beween

real and simulated reinforcement, the gap between what salient

words were reinforced and what words could have been if they had

Figure 4. Zipfian relationship between frequency of CV syllables and rank. Zipfian relationship between frequency of CV syllables, in
phonemic form, as perceived by the robot, and rank of the syllable. Example taken from participant 4A.
doi:10.1371/journal.pone.0038236.g004

Figure 3. Zipfian relationship between frequency of CVC words and rank. Zipfian relationship between frequency of one-syllable CVC
words in phonemic form, as perceived by the robot, and rank of the word. Recall that ‘C’ represents a consonant or a cluster of consonants, V
represents a vowel. Example taken from participant 4A.
doi:10.1371/journal.pone.0038236.g003
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been noticed by participants. The F-measures also show that there

is a trade off between real salient words learnt and non-words

erroneously learnt.

There is an indication that word learning improved as the

experimental programme progressed, but samples are too small for

statistical significance.

An Individual Case
It is illuminating to examine single cases where the

participants interacted with DeeChee in a way that promoted

learning. With participant 4A DeeChee had a high rate of

phoneme recognition, and there was also effective dialogue

leading to reinforcement. Three words were learnt, as well as

three non-words. In this case no proper words were uttered by

DeeChee but missed by 4A; an excerpt from her dialogue is

shown above.

Table 8 shows the word frequencies in the top ranks, while the

frequencies of the CVC syllables as perceived by DeeChee in

dialogue with 4A are shown in Table 9.

Of these the words red, green, cross were uttered by DeeChee,

heard by 4A who responded with well done, good or yes. The

heuristic selected the intended syllable from DeeChee’s previous

multisyllable utterance which then passed into DeeChee’s lexicon.

The relationship between the frequency of those syllables and their

rank is shown in Figure 3. The distribution has a Zipfian character

and the salient learnt words are among the highest ranking. The

distribution of CV syllables has similar characteristics as shown in

Figure 4.

Discussion

DeeChee successfully acquires some salient one-syllable word

forms in real-time through unconstrained embodied linguistic

interactions with naive participants.

An experiment lasting just 8 minutes cannot compare with a

child’s experience, immersed in a linguistic environment. Howev-

er, some experiments with infants, learning the statistical

distribution of phonemes, report results after just 2 minutes [25].

An appropriate analogy for a robot language learning experiment

is with a situation where a carer is explicitly aiming to teach a

child, for instance in a therapeutic setting.

We wanted to explore human-robot interaction and were

deliberately not prescriptive. However, leaving participants to talk

naturally opened up possibilities of a wide range of behaviour,

possibilities that were certainly realized. Some participants were

better teachers than others: some of the less good produced very

sparse utterances, while other talkative participants praised

DeeChee whatever it did, which skewed the learning process

towards non-words.

A factor that affected the results was the level of phoneme

recognition through the SAPI 5.4 recognizer. This may have been

exacerbated by the unavoidable use of noisy fans in the small room

with the robot where experiments took place.

Turn taking was implemented on a timed basis and some

participants over ran their turn, speaking at the same time as

DeeChee, in which case a small amount of the participant’s

speech was not perceived by the robot. Thus the statistics for

words spoken by the teacher and syllables perceived by the

robot need to be interpreted with this in mind (Table 3).

The overall level of performance was much lower with real-time

human reinforced learning than with simulated reinforcement

against a stored lexicon. This is shown by the F-measures in

Table 7. We can see some indications of learning performance, but

samples are too small to be statistically significant. Specific points

to note are that the performance of set 2 was affected by the

syllabifier excluding many valid words. The F1-1 and F2-1

measures were not out of line with those of the other sets, but the

scope for improvement was limited by the exclusion of many

candidate words uttered but not recognized, as shown in Table 5

and indicated by the F1-2 and F2-2 measures. However, it did

suggest that by reducing the choice cognitive load declines and

performance improves.

The poor performance of set 3 could be partly attributed to the

Guidelines: the explicit instruction to make an approving

Table 7. F-measures.

Set number F1-1 F1-2

Real reinforcement ‘‘Simulated reinforcement’’

1 0.26 0.80

2 0.38 0.64

3 0.21 0.72

4 0.34 0.77

5 0.38 0.72

F2-1 F2-2

1 0.25 0.77

2 0.31 0.53

3 0.18 0.62

4 0.32 0.71

5 0.33 0.65

F-measure for each set under each of 2 conditions: real reinforcement and
‘‘simulated reinforcement’’, F1-1 and F1-2. ‘‘Simulated reinforcement’’ is based
on the number of salient content words spoken by the robot. Most of these
were not noticed and so not reinforced by the participant. The analysis is
repeated using the different definition of false positives, to include the ‘‘other’’
words in the false positives, giving scores F2-1 and F2-2. ‘‘Other’’ words are
proper words like ‘‘this’’ and ‘‘that’’ but not salient content words, the names of
shapes and colours. See text.
doi:10.1371/journal.pone.0038236.t007

Table 8. Word frequencies from orthographic transcriptions,
participant 4A.

Rank Word Frequency

1 a 53

2 red 51

3 thats 33

4 green 32

5 you 26

6 and 24

7 cross 21

8 blue 21

9 heart 20

10 circle 17

11 we 15

12 that 14

Excerpt from ranked frequencies of words spoken by participant 4A. First 12 of
92 shown.
doi:10.1371/journal.pone.0038236.t008
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comment if DeeChee uttered a proper word was left out, leaving

the participant to act spontaneously without setting up any

expectation of reinforcement. This set also had the lowest

phoneme recognition rate.

The performance with sets 4 and 5 is marginally improved (see

Tables 6 and 7), but the samples are too small to be statistically

significant.

By looking at group results the variability in performance means

that some interesting results from effective participants are

masked. We suggest that it can be more informative to examine

individual cases, as above. This is analogous to some research

practices in child language and developmental neurocognition

research, where children are selected for investigation because

they display the characteristics in which the researcher is interested

while others do not [63] (page 412).

Why it Works
We have shown that in some cases the robot was able to

bootstrap the learning of some word forms through interaction

with a naive participant. This indicates that a mechanism like the

one described here could be a contributory factor in the

acquisition of word forms.

The first reason that words were learnt is that they were, as

expected, repeatedly spoken by the teacher, as illustrated in

Table 8.

A second reason is that non-salient word strings are typically

quite variable, so that their frequencies are spread about. This

observed phenomenon is the basis of a number of automated

plagiarism detectors, where precise matches of short lexical strings

indicate copying, e.g [64].

A third reason is that the phonemic representation of speech

from the teacher to DeeChee is not a uniformly stable mapping of

sounds to canonical phonemic word forms, as illustrated in

Table 9. The frequencies of syllables in words with variable

phonemic forms may be attenuated compared with those in salient

content words, or parts of such words. It has long been realized

that there is in practice a great deal of variation in spontaneous

speech, as described by Greenberg in an analysis based on the

Switchbord corpus [19]. One example of his findings is that the

word ‘‘and’’ is represented phonetically in 80 different ways in 4

hours of manually annotated spontaneous telephone speech (ibid

page 163).

It is worth comparing results from the Switchboard (ibid page

169) and TIMIT corpora [65]. The latter is also derived from

spontaneous telephonic speech, but in this case the speech is

transcribed and then read. The phonetic realization of words is

found to be closer to their canonical form in the read TIMIT

material than in the case of Switchboard which is taken directly

from the original speakers. For CVC syllables (recall that ‘‘C’’ is

either a consonant or a cluster of consonants in our notation) the

onset is usually realized in canonical form for both corpora, but

the nucleus and, more particularly, the coda are realized in more

variable ways in the Switchboard corpus.

However, the variability in pronounciation of words in

spontaneous spoken language, which at first appears a problem,

may in fact contribute to the learning of early word forms. This is

because salient content words are more likely to have a consistent

canonical phonemic representation than function words, thus their

frequency builds up and so does their consequent influence on the

learner’s utterances.

Words of high information valence (these are typically

infrequently occurring referential constituents of a nominal phrase

[i.e., nouns or adjectives]) tend to be pronounced in canonical

fashion, while common lexical items, particularly pronouns,

conjunctions and articles, generally depart from canonical form

with regularity. [19] (page 172, brackets in the original).

This was also noted by Pierrehumbert and Hirschberg,

commenting on the observation that stress in speech sounds is

related to information carried, and also that.

Syllables with greater stress are more fully articulated than

syllables with less stress [66] (page 272).

The information valence of words affects not only their prosodic

characteristics, but also their phonological realization. Function

words are often more common in orthographic form, as are

syllables bridging words that include a function word (such as s ih z

from this is, the Sandhi effect). However, their phonological form

may vary, and the frequency of salient content words as perceived

sounds may be just as significant. Since it has been well established

that infants are sensitive to the distributional statistics of sounds

they hear [25,67] the frequency of phonemically represented

content words may play a role in word form acquisition as it does

Table 9. Syllable frequencies perceived by robot DeeChee.

rank CVC CV

phonemic form orthographic form frequency phonemic form orthographic form frequency

1 r eh d red 27 r eh part of red 51

2 gr iy n green 25 dh ae* part of that(s) 34

3 dh ae ts thats 20 gr iy part of green 26

4 kr ao s cross 17 kr ao part of cross 17

5 k ah l part of circle 13 k ah part of circle 16

6 r eh ds part of red circle 10 dh ah* the/that(s) 16

7 hh ah t heart 10 t ah 15

8 s er k part of circle 9 hh ah part of heart 13

9 y eh s yes 8 dh eh* the/that(s) 13

10 dh ae t that 8 bl uw blue 11

Example from participant 4A.
Excerpts from ranked frequencies of CVC syllables spoken by participant 4A, as perceived by DeeChee. First 10 of 180 shown. Note the starred entries showing variable
phonemic form for some function words. See graphical representations in Figures 3 and 4.
doi:10.1371/journal.pone.0038236.t009
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in our model, as Figure 3 illustrates. See also that the frequencies

of CV syllables in Figure 4 include parts of these salient words at

the top of the range, among orthographically frequent function

words.

Research in child language acquisition has not fully assimilated

the facts concerning phonological variability. Though acoustic

variation has sometimes been recognized, and attempts made to

address the issue [68,69], this is not always the case. In some

received work canonical representation is assumed: Child Directed

Speech (CDS) is transcribed orthographically into words, which

are then represented phonemically by looking up entries in a

dictionary. One example is the well known Brent corpus [70]. In a

recent collection of articles on computational models of child

language learning MacWhinney cites four authors who use this

corpus to evaluate their models [71] (page 478). Research in the

field has not ignored this problem, and various approaches have

been taken to amend the orthographic transcript. For instance,

after words are replaced by phonemic forms, using an on-line

dictionary, these forms are input to a set of rewrite rules that

introduce phonological alternations into the string, such as

assimilation and vowel reduction [72], but such approaches do

not fully compensate for the loss of information. Some special

purpose lexica have been developed with entries for the most

common phonological variations, but though they can produce

modest improvements these are reported as not matching the

performance of the human listener [19].

Words that carry little information are more likely to have

variable phonetic representation, so increments in their frequen-

cies are spread about and ‘‘diluted’’. On the other hand

information bearing words are more likely to have consistent

canonical forms, so their frequency builds up and they

consequently have a significant influence on the productions of

the learner. Salient words can emerge as more frequent sounds.

The variable phonetic representation of spontaneous spoken

language and its phonemic realization, which at first appears a

problem, may in fact contribute to the learning of early word

forms. We are back to the injunction of the philosopher

Wittgenstein: ‘‘Don’t think but look! … the more we examine

actual language, the sharper becomes the conflict between it and

our requirement […] the crystalline purity of logic’’ [73] (sections

66 and 107).

The Wider Context of Human Robot Interaction (HRI) and
Future Work

This work contributes a thread to the wider context of

developmental robotics. It is in line with the tenets of a programme

scaffolding linguistic learning on individual and social learning

[74] (page 188) in that:

N it does not require substantial innate hardwiring - sensitivity to

frequencies of sounds is the key motivator that enables learning

N it is grounded in recurrent patterns of embodied experience

and social interactions. The problems associated with real,

naive participants interacting contingently with a robot could

be avoided by having off-line experiments and trained

participants. However, this would mean obscuring the real

world environment that we want to investigate.

The process described here precedes the acquisition of

sophisticated cognitive capabilities and the ability to analyse more

highly structured linguistic input. But it feeds into these higher

level functions by contributing to the detection of salient terms,

and hence to the wider field of associating meaning and usage with

word forms [3]. In the immediate future the next step is to

investigate how different factors in salience detection are

correlated and can be integrated, in particular with prosodic

information. Prosodically marked up speech data from subsequent

experiments in similar scenarios is available and awaiting analysis.

Our work demonstrates a HRI platform in which it is possible to

sustain interaction to achieve rudimentary word form acquisition

in real-time using a simple frequency dependent probabilistic

generation mechanism, together with human reinforcement. This

work shows the potential of human-interaction systems to be used

in studies of language acquisition, and the iterative development

methodology highlights how the embodied nature of interaction

may bring to light important factors in the dynamics of language

acquisition that would otherwise not occur to modellers.
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