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Abstract

In this article, we discuss the problem of establishing relations between information measures for network structures. Two
types of entropy based measures namely, the Shannon entropy and its generalization, the Rényi entropy have been
considered for this study. Our main results involve establishing formal relationships, by means of inequalities, between
these two kinds of measures. Further, we also state and prove inequalities connecting the classical partition-based graph
entropies and partition-independent entropy measures. In addition, several explicit inequalities are derived for special
classes of graphs.
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Introduction

Complexity of a system, in general, deals with the intricate

design and complex interrelations among the components of the

system. Complexity analysis can be categorized in three types

based on functional behavior, topological properties, and/or at the

compositional level of a system [1]. Over the years, all these

categories have been implemented and contemplated concurrently

in several branches of science and social science. In this paper, we

study the complexity of graphs with respect to its underlying

structure. It is often referred to as topological complexity [2], as

the measures are used to associate high complexity with low

symmetry and larger diversity of the system’s components, while

low complexity is related to high symmetry, uniformity and lack of

diversity. The quantitative estimation (using measures/indices) of

topological complexity has been proven useful when characteriz-

ing the networks and has widely spread into all branches of natural

sciences, mathematics, statistics, economics and sociology; for e.g.,

see [3–12].

In the study of complexity, information theory has been playing

a predominant role. That is, the measures based on Shannon

entropy have been very powerful and useful in determining the

structural complexity of networks; see [1,2,10,13]. Apart from

Shannon entropy, its generalizations such as Rényi entropy [14],

Daròczy entropy [15] have also been identified as useful measures

for characterizing network-based systems; see [16].

In this paper, we deal with a novel aspect when analyzing the

complexity of network-based systems. Namely, we establish

relations between information-theoretic complexity measures

[17,18]. Investigating relations (in the form of inequalities) among

measures is useful when studying large scale networks where

evaluating the exact value of a measure might be computationally

challenging. In addition, they also serve as a tool for solving

problems: In the field of communication theory, the study of

inequalities has led to the development of so-called algebra of

information where several rules have been established between the

mutual information among events [19] and their respective

entropy measures. For example, Young’s inequality, Brunn-

Minkowski inequality, Fisher’s information inequalities to name

a few in this context [20–22].

Inequalities involving information measures for graphs are also

referred to as information inequalities [23]. They can be classified in

two types, namely implicit information inequalities and explicit information

inequalities. In particular, when information measures are present

on either side of the inequality, we call it an implicit information

inequality [23], while in the latter, the information measure is

bounded by a function of parameters (or constants) involved. For

some of the recent contributions in this direction, we refer to

[17,23–26].

Recently, we have established relations [17] involving only

Shannon entropy measures, under certain assumptions. In this

article we extend the study to analyze the relation between entropy

measures belonging to different concepts. In particular, the main

contribution of this paper, is to establish implicit information

inequalities involving Shannon entropy and Rényi entropy

measures when being applied to networks. Further, we present

implicit inequalities between Rényi entropy measures having two

different types of probability distributions with additional assump-

tions. To achieve this, we analyze and establish relations between

classical partition-based graph entropies [13,24,27] and non-

partition-based (or the functional) based entropies [28]. Finally, we

apply the obtained inequalities to specific graph classes and derive

simple explicit bounds for the Rényi entropy.
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Methods

In this section, we state some of the definitions of information-

theoretic complexity measures [18,29–31]. These measures are

based on two major classifications, namely partition-based and

partition-independent measures. Some basic results on inequalities

on real numbers [22,32] are also presented at the end of the

section.

Let G~(V ,E) be a graph on N vertices where

V~fv1,v2, . . . ,vNg and E(V|V . Throughout this article, G

denotes a simple undirected graph. Let X be a collection of subsets

of G representing a graph object. Let C be an equivalence relation

that partitions X into k subsets X1,X2, . . . ,Xk, with cardinality DXi D,
for 1ƒiƒk. Let fp1,p2, . . . ,pkg denote the probability distribu-

tion on X w.r.t C, such that pi~
DXi D
DX D (1ƒiƒk), is the value of

probability on each of the partition.

For graphs, the Shannon’s entropy measure [33] is also referred

to as the information content of graphs [13,27,34] and is defined as

follows:

Definition 1 The mean information content, HC(G), of G with

respect to C is given by.

HC(G)~{
Xk

i~1

pi log2 pi~{
Xk

i~1

DXi D
DX D

log2

DXi D
DX D

: ð1Þ

Note that while the above definition is based on partitioning a

graph object, another class of Shannon entropy has been defined

in [29] where the probability distribution is independent of

partitions. That is, probabilities were defined for every vertex of

the graph using the concept of information functionals.

Suppose f : V?Rz is an arbitrary information functional [29]

that maps a set of vertices to the non-negative real numbers and

let.

p(v)~
f (v)P

v[V

f (v)
: ð2Þ

p(v) is the probability value of v[V .

Definition 2 The graph entropy, Hf (G), representing the structural

information content of G [18,29] is then given by,

Hf (G)~{
XN

i~1

p(vi) log2 p(vi)~{
XN

i~1

f (vi)XN

j~1

f (vj)

log2

f (vi)XN

j~1

f (vj)

: ð3Þ

As a follow-up to Shannon’s seminal work [31], many

generalizations of the entropy measure were proposed in the

literature [14,15,35]. These generalized entropies were recently

[16], extended to study graphs. In the following, we present one

such generalization from [16], namely the Rényi entropy for

graphs.

Definition 3 The Rényi entropy Ha,C (G), for 0vav? and a=1,

of a graph G [16] is given by,

Ha,C(G)~
1

1{a
log2

Xk

i~1

(pi)
a

 !
~

1

1{a
log2

Xk

i~1

DXi D
DX D

� �a
 !

: ð4Þ

Here, C is the equivalence relation on a graph object and pi

(1ƒiƒk) denotes the probabilities defined on the partition

induced by C.

It has been proved that Rényi entropy is a generalization of

Shannon entropy and in the limiting case when a?1, the Rényi

entropy equals the Shannon entropy [35].

Similar to expression (3), the Rényi entropy can be immediately

extended [16] to partition-independent probability distributions

defined on G.

Definition 4 Let Ha,f (G), for 0vav? and a=1, denote the Rényi

entropy [16] defined using an information functional f. Then.

Ha,f (G)~
1

1{a
log2

XN

i~1

(p(vi))
a

 !

~
1

1{a
log2

XN

i~1

f (vi)XN

j~1

f (vj)

2
66664

3
77775

a
0
BBBBB@

1
CCCCCA:

ð5Þ

Next we state some interesting inequalities from the literature

that are crucial to prove our main results. One of the well-known

result for real numbers is stated as follows [32].

Lemma 1 [32] Let x,yw0 and x=y be real numbers. Then.

ryr{1(x{y)vxr{yr
vrxr{1(x{y),

if rv0 or rw1,
ð6Þ

rxr{1((x{y)vxr{yr
vryr{1(x{y),

if 0v rv 1:
ð7Þ

A simplified form of Minkowski’s inequality has been expressed

in [32].

Lemma 2 [32] If rw0, then.

(
X

i

(aizbiz � � �zli)
r)R

ƒ(
X

i

(ai)
r)R

z(
X

i

(bi)
r)Rz � � �z(

X
i

(li)
r)R

ð8Þ

where R~1, if 0vrƒ1 and R~
1

r
, if rw1.

As an extension of discrete Jensen’s inequality, the following

inequality has been derived in [22].

Lemma 3 [22] Let xk[(0,?), for 1ƒkƒn, and pk§0 such thatXn

k~1
pk~1. Then.

0ƒ log2

Xn

k~1

pkxk

 !
{
Xn

k~1

pk log2 xk

ƒ

1

2 ln 2

Xn

k,i~1

pkpi

xkxi

(xi{xk)2:

ð9Þ

Inequalities for Generalized Graph Entropies
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Results and Discussion

In this section, we present our main results on implicit

information inequalities. To begin with, we establish the bounds

for Rényi entropy in terms of Shannon entropy.

Theorem 4 Let p(v1),p(v2), . . . ,p(vN ) be the probability values on

the vertices of a graph G. Then the Rényi entropy can be bounded by the

Shannon entropy as follows:

When 0vav1,

Hf (G)ƒHa,f (G)vHf (G)z
N(N{1)(1{a)ra{2

2 ln 2
: ð10Þ

When aw1,

Hf (G){
(a{1)N(N{1)

2 ln 2:ra{2
vHa,f (G)ƒHf (G), ð11Þ

where r~ maxi,k
p(vi)

p(vk)
.

Proof: It is well known [35] that the Rényi entropy satisfies the

following relation with the Shannon entropy.

Ha,f (G)§Hf (G), if 0vav1, ð12Þ

and

Ha,f (G)ƒHf (G), if aw1: ð13Þ

To prove the bound for Ha,f (G), let r~ maxi,k
p(vi)

p(vk)
. Consider,

the inequality (9) from Lemma 3 with pk~p(vk) and

xk~p(vk)a{1. We get,

log2

XN

k~1

p(vk)a

 !
{(a{1)

XN

k~1

p(vk) log2 p(vk)

ƒ

1

2 ln 2

XN

i,k~1

p(vk)p(vi)

(p(vk)p(vi))
a{1

(p(vi)
a{1{p(vk)a{1)2:

ð14Þ

Now we prove the theorem by considering intervals for a.

Case 1: When 0vav1.

Dividing by (1{a) on either side of the expression (14), we get.

Ha,f (G){Hf (G)ƒ
1

2 ln 2(1{a)

XN

k,i~1

p(vk)p(vi)

(p(vk)p(vi))
a{1

(p(vi)
a{1{p(vk)a{1)2:

ð15Þ

Applying inequality (6) from Lemma 1 to the term

p(vi)
a{1{p(vk)a{1 with r~a{1v0 in the above sum, we obtain.

XN

k,i~1

(p(vi)
a{1{p(vk)a{1)2

(p(vi)p(vk))a{2

v

XN

k,i~1

i=k

(a{1)2p(vi)
a{2(p(vi){p(vk))2

p(vk)a{2
,

ð16Þ

ƒ

XN

k,i~1

i=k

½(a{1)(p(vi){p(vk))�2ra{2

(since r : ~ max
i,k

p(vi)

p(vk)
),

ð17Þ

v

XN

k,i~1

i=k

(a{1)2ra{2(since p(vi){p(vk)v1), ð18Þ

~ra{2(a{1)2N(N{1): ð19Þ

Now expression (15) becomes.

Ha,f (G){Hf (G)v
1

2 ln 2(1{a)
ra{2(1{a)2N(N{1)
� �

~
ra{2(1{a)N(N{1)

2 ln 2
:

ð20Þ

Thus,

Ha,f (G)vHf (G)z
ra{2(1{a)N(N{1)

2 ln 2
:

is the desired upper bound in (10).

Case 2: When aw1.

In this case dividing by (1{a) on either side of the expression

(15), we get,

Ha,f (G){Hf (G)§
1

2 ln 2(1{a)

XN

i,k~1

p(vk)p(vi)

(p(vk)p(vk))a{1
(p(vi)

a{1{p(vk)a{1)2:

ð21Þ

When 1vav2, we have a{1v1. Therefore by applying

inequality (7) to the term p(vi)
a{1{p(vk)a{1 with r~a{1 in the

above sum we get,

Inequalities for Generalized Graph Entropies

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38159



XN

k,i~1

(p(vi)
a{1{p(vk)a{1)2

(p(vi)p(vk))a{2

w

XN

k,i~1

i=k

(a{1)2p(vi)
a{2(p(vi){p(vk))2

p(vk)a{2
,

ð22Þ

§

XN

k,i~1

i=k

½(a{1)(p(vi){p(vk))�2

ra{2
, ð23Þ

w

XN

k,i~1

i=k

(a{1)2

ra{2
,(p(vi){p(vk)w{1,

(since 0vp(v)v1),

ð24Þ

~
(a{1)2N(N{1)

ra{2
: ð25Þ

Note that when aw2, by applying inequality (6), as before, to

the term p(vi)
a{1{p(vk)a{1 with r~a{1w1 and by simplifying

we get the same expression as above. When a~2, by direct

simplification we get a similar expression. Hence we conclude that

the expression (25) holds, in general for aw1.

Therefore by substituting inequality (25) in (21), we get.

Ha,f (G){Hf (G)w
1

2 ln 2(1{a)

(1{a)2N(N{1)

ra{2

" #

~
(1{a)N(N{1)

2 ln 2:ra{2
:

ð26Þ

Thus,

Ha,f (G)wHf (G)z
(1{a)N(N{1)

2 ln 2:ra{2

.is the desired lower bound in (11).

Corollary 5 In addition, suppose ~ maxi,k (p(vi){p(vk)), then.

Hf (G) ƒHa,f (G)v Hf (G)z
n(n{1)(1{a)2ra{2

2 ln 2
, ð27Þ

when 0vav1 and

Hf (G)§ Ha,f (G)w Hf (G){
(a{1)n(n{1)

2 ln 2:ra{2
, ð28Þ

when aw1.

Remark 6 Observe that Theorem 4, in general, holds for any

arbitrary probability distribution with non-zero probability values.

The following theorem illustrates this fact with the help of a

probability distribution obtained by partitioning a graph object.

Theorem 7 Let p1, . . . ,pk be the probabilities of the partitions obtained

using an equivalence relation C as stated before. Then.

HC(G)ƒHa,C(G)vHC(G)z
k(k{1)(1{a)ra{2

2 ln 2
, ð29Þ

When 0vav1, and

HC(G) §Ha,C(G)w HC(G){
(a{1)k(k{1)

2 ln 2:ra{2
, ð30Þ

when aw1. Here r~ max
i,j

pi

pj

.

Proof: By proceeding similarly to Theorem 4, we get the

desired result.

In the next theorem, we establish bounds between like-entropy

measures, by considering the two different probability distribu-

tions.

Theorem 8 Suppose DXi Dvf (vi), for 1ƒiƒk, then.

Ha,C(G)vHa,f (G)z
a

1{a
log2

S

DX D

� �
, ð31Þ

if 0vav1,

Ha,C(G) w Ha,f (G){
a

a{1
log2

S

DX D

� �
, ð32Þ

if aw1. Here S~
PN

i~1 f (vi).

Proof: Let S~
PN

i~1 f (vi) and thus p(vi)~
f (vi)

S
. Now, given

DXi Dvf (vi), for 1ƒiƒk we have,

DXi D
DX D

v

f (vi)

DX D
~

Sp(vi)

DX D
: ð33Þ

By raising either side of the expression to the power a, we get.

DXi D
DX D

� �a

v

Sp(vi)

DX D

� �a

: ð34Þ

Applying summation over i from 1 to k on either side we get,

Xk

i~1

DXi D
DX D

� �a

v

Xk

i~1

Sp(vi)

DX D

� �a

, ð35Þ

Inequalities for Generalized Graph Entropies
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~
S

DX D

� �aXk

i~1

(p(vi))
a: ð36Þ

Taking logarithms on either side,we obtain

log2

Xk

i~1

DXi D
DX D

� �a

v log2

S

DX D

� �aXk

i~1

(p(vi))
a, ð37Þ

~ log2

S

DX D

� �a

z log2

Xk

i~1

(p(vi))
a, ð38Þ

v log2

S

DX D

� �a

z log2

XN

i~1

(p(vi))
a: ð39Þ

Now we distinguish two cases, depending on a as follows:

Case 1: When 0vav1, dividing by 1{a on either side of

equation (39), we get.

Ha,C(G)vHa,f (G)z
a

1{a
log2

S

DX D
: ð40Þ

Case 2: When aw1, dividing by 1{a on either side of

equation (39), we get.

Ha,C(G)wHa,f (G)z
a

1{a
log2

S

DX D
: ð41Þ

Expressions (40) and (41) are the desired inequalities.

Remark 9 A similar relation by considering HC (G) and Hf (G)
has been derived in [25].

We focus our attention to the Rényi entropy measure defined

using information functionals (given by equation (5)) and present

various bounds when two different functionals and their proba-

bility distributions satisfy certain initial conditions. A similar study

has been performed in [17,23] by using Shannon’s entropy only.

Let f1 and f2 be two information functionals defined on

G~(V ,E). Let S1~
PN

i~1 f1(vi) and S2~
PN

i~1 f2(vi). Let pf1
(v)

and pf2
(v) denote the probabilities of f1 and f2, respectively, on a

vertex v[V . Let Ha,f1
(G) and Ha,f2

(G) denote the Rényi entropy

based on the functionals f1 and f2 respectively.

Theorem 10 Suppose pf1
(v)ƒy:pf2

(v), Vv[V and yw0 a

constant, then.

Ha,f1
(G) ƒ Ha,f2

(G)z
a

1{a
log2 y, ð42Þ

if 0vav1,

Ha,f1
(G) § Ha,f2

(G){
a

a{1
log2 y, ð43Þ

if aw1.

Proof: Given.

pf1
(v) ƒ y:pf2

(v): ð44Þ

Then for aw0,

pf1
(v)a

ƒ (y:pf2
(v))a: ð45Þ

Applying summation over the vertices of G, we get.

X
v[V

pf1
(v)a

ƒ

X
v[V

(y:pf2
(v))a: ð46Þ

Taking logarithms on either side,we get

log2

X
v[V

pf1
(v)a

 !
ƒ log2

X
v[V

(y:pf2
(v))a

 !
, ð47Þ

~a log2 yz log2

X
v[V

(pf2
(v))a

 !
: ð48Þ

Case 1: When 0vav1. Dividing either side of the equation by

(1{a) yields the desired expression (42).

Case 2: When aw1. In this case, dividing either side of the

equation by (1{a) yields the expression (43) as desired.

Corollary 11 Suppose f1(v)ƒf2(v), Vv[V , then.

Ha,f1
(G) ƒ Ha,f2

(G)z
a

1{a
log2

S2

S1
, ð49Þ

if 0vav1,

Ha,f1
(G) § Ha,f2

(G){
a

a{1
log2

S2

S1

, ð50Þ

if aw1.

Proof: By assumption, we have pf1
(v)ƒ

S2

S1
pf2

(v). Therefore,

the corollary follows by letting y~
S2

S1
in the above theorem.

The next theorem can be used to study how a minor

perturbation in the probability distribution of the system can

affect the corresponding value of Rényi entropy measure. The

amount of deviation can then be estimated as follows.

Theorem 12 Suppose pf1
(v)ƒpf2

(v)zw, Vv[V and ww0 a

constant, then.

Inequalities for Generalized Graph Entropies
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Ha,f1
(G){Ha,f2

(G) v

1

1{a

N:waP
v[V

(pf2
(v))a , ð51Þ

if 0vav1,

Ha,f2
(G){Ha,f1

(G) v

a

a{1
: N1=a:w

P
v[V

(pf2
(v))a

� �1=a
, ð52Þ

if aw1.

Proof: Suppose pf1
(v)ƒpf2

(v)zw, Vv[V . Then.

X
v[V

pf1
(v)a

ƒ

X
v[V

(pf2
(v)zw)a: ð53Þ

Case 1: When 0vav1.

By applying Lemma 2 with r~a, R~1, ai~pf2
(v) and bi~w, in

expression (53) we get,

X
v[V

pf1
(v)a

ƒ

X
v[V

(pf2
(v))azN:wa: ð54Þ

Taking logarithms on either side,we get

log2

X
v[V

pf1
(v)a

 !
ƒ log2

X
v[V

(pf2
(v))azN:wa

 !
, ð55Þ

~ log2

X
v[V

(pf2
(v))a 1z

NwaP
v[V

(pf2
(v))a

0
@

1
A

2
4

3
5, ð56Þ

~ log2

X
v[V

pf2
(v)a

 !
z log2 1z

NwaP
v[V

(pf2
(v))a

0
@

1
A: ð57Þ

It is well known that log (1zx)vx, for xw{1. Using this

relation for the second term in the above expression, we get.

log2 1z
NwaP

v[V

(pf2
(v))a

0
@

1
Av

NwaP
v[V

(pf2
(v))a

0
@

1
A: ð58Þ

Thus, (57) can be expressed asp.

log2

X
v[V

pf1
(v)a

 !
v log2

X
v[V

(pf2
(v))a

 !
z

NwaP
v[V

(pf2
(v))a

0
@

1
A:ð59Þ

Dividing by 1{a, yields the desired expression (51).

Case 2: When aw1.

By applying Lemma 2 with r~a, R~ 1
a, ai~pf2

(v) and bi~w to

expression (53) we get,

X
v[V

pf1
(v)a

ƒ

X
v[V

(pf2
(v))a

 !1=a

z N:wað Þ1=a

2
4

3
5

a

: ð60Þ

Now,taking logarithms on either side,we get

log2

X
v[V

pf1
(v)a

 !

ƒ a log2

X
v[V

(pf2
(v))a

 !1=a

zN
1
a:w

2
4

3
5,

ð61Þ

~ a log2

X
v[V

(pf2
(v))a

 !1
a

1z
N

1
a:w

P
v[V

(pf2
(v))a

� �1
a

0
BBBB@

1
CCCCA

2
66664

3
77775, ð62Þ

~ log2

X
v[V

(pf2
(v))a

 !
za log2 1z

N1=a:w

P
v[V

(pf2
(v))a

� �1
a

0
BBBB@

1
CCCCA: ð63Þ

Using the relation log (1zx)vx (for xw{1), in the above

expression, we get.

log2

X
v[V

pf1
(v)a

 !
v log2

X
v[V

(pf2
(v))a

 !

z
a:N

1
a:w

P
v[V

(pf2
(v))a

� �1
a

:
ð64Þ

Dividing by 1{a, yields the desired expression (52).

Theorem 13 Let f (v)~c1f1(v)zc2f2(v), Vv[V . Then,

for 0vav1,

Ha,f (G) v Ha,f1
(G)z

a

1{a
log2 A1

z
1

1{a

Aa
2

Aa
1

P
v[V

(pf2
(v))a

P
v[V

(pf1
(v))a ,

ð65Þ
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and for aw1,

Ha,f (G) w Ha,f1
(G){

a

a{1
log2 A1

{
a

a{1

A2

A1

P
v[V

(pf2
(v))a

P
v[V

(pf1
(v))a

0
@

1
A

1=a

:

ð66Þ

Here, A1~
c1S1

c1S1zc2S2
and A2~

c2S2

c1S1zc2S2
.

Proof: Consider, f (v)~c1f1(v)zc2f2(v), Vv[V . Now let

S : ~
P

v[V f (v)~c1

P
v[V f1(v)zc2

P
v[V f2(v)~c1S1zc2S2.

Next consider,

pf (v)~
f (v)

S
~

c1f1(v)zc2f2(v)

S
, ð67Þ

~
c1S1

S
pf1

(v)z
c2S2

S
pf2

(v), ð68Þ

~A1pf1
(v)zA2pf2

(v): ð69Þ

Then for aw0, we have.

X
v[V

pf (v)a~
X
v[V

(A1pf1
(v)zA2pf2

(v))a: ð70Þ

Case 1: 0vav1.

Applying Lemma 2 with r~a, R~1, ai~A1pf1
(v) and

bi~A2pf2
(v) in expression (70), we get.

X
v[V

pf (v)a
ƒ

X
v[V

(A1pf1
(v))az

X
v[V

(A2pf2
(v))a, ð71Þ

~Aa
1

X
v[V

(pf1
(v))azAa

2

X
v[V

(pf2
(v))a: ð72Þ

Taking logarithms on either side, we get.

log2

X
v[V

pf (v)a
ƒ log2 Aa

1

X
v[V

(pf1
(v))azAa

2

X
v[V

(pf2
(v))a

 !
, ð73Þ

~ log2 Aa
1

X
v[V

(pf1
(v))a

 !
1z

Aa
2

P
v[V

(pf2
(v))a

Aa
1

P
v[V

(pf1
(v))a

0
@

1
A

2
4

3
5, ð74Þ

~ log2 Aa
1

X
v[V

(pf1
(v))a

 !
z log2 1z

Aa
2

P
v[V

(pf2
(v))a

Aa
1

P
v[V

(pf1
(v))a

0
@

1
A: ð75Þ

Using the relation log (1zx)vx (for xw{1), in the above

expression, we get.

log2

X
v[V

pf (v)a
va log2 A1z log2

X
v[V

(pf1
(v))a

 !

z

Aa
2

P
v[V

(pf2
(v))a

Aa
1

P
v[V

(pf1
(v))a

0
@

1
A:

ð76Þ

Dividing by 1{a, yields the desired expression (65).

Case 2: aw1.

Applying Lemma 2 with r~a, R~1, ai~A1pf1
(v) and

bi~A2pf2
(v) in expression (70), yields.

X
v[V

pf (v)a
ƒ

X
v[V

(A1pf1
(v))a

 !1
a

z
X
v[V

(A2pf2
(v))a

 !1
a

2
4

3
5

a

, ð77Þ

~ A1

X
v[V

(pf1
(v))a

 !1
a

zA2

X
v[V

(pf2
(v))a

 !1
a

2
4

3
5

a

: ð78Þ

Taking logarithms on either side, we get.

log2

X
v[V

pf (v)a

ƒa log2 A1

X
v[V

(pf1
(v))a

 !1
a

zA2

X
v[V

(pf2
(v))a

 !1
a

2
4

3
5,

ð79Þ

~a log2 A1

X
v[V

(pf1
(v))a

 !1
a

0
@

1
A 1z

A2

P
v[V

(pf2
(v))a

� �1
a

A1

P
v[V

(pf1
(v))a

� �1
a

0
BBBB@

1
CCCCA

2
66664

3
77775, ð80Þ

~a log2 A1

X
v[V

(pf1
(v))a

 !1
a

0
@

1
A

za log2 1z

A2

P
v[V

(pf2
(v))a

� �1
a

A1

P
v[V

(pf1
(v))a

� �1
a

0
BBBB@

1
CCCCA:

ð81Þ
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Using the relation log (1zx)vx (for xw{1), in the above

expression, we get.

log2

X
v[V

pf (v)a
va log2 A1

z log2

X
v[V

(pf1
(v))a

 !
z

a:A2

P
v[V

(pf2
(v))a

� �1
a

A1

P
v[V

(pf1
(v))a

� �1
a

,

ð82Þ

Dividing by 1{a, yields the desired expression (66).

Corollary 14 Let f (v)~c1f1(v)zc2f2(v), Vv[V .If 0vav1,

then

Ha,f (G)v 1
2
½Ha,f1

(G)zHa,f2
(G)�z a

2(1{a)
log2 (A1A2)

z 1
2(1{a)

Aa
2

Aa
1

P
v[V

(pf2
(v))aP

v[V

(pf1
(v))a

z
Aa

1
Aa

2

P
v[V

(pf1
(v))aP

v[V

(pf2
(v))a

2
4

3
5: ð83Þ

If aw1, then

Ha,f (G)w 1
2
½Ha,f1

(G)zHa,f2
(G)�{ a

2(a{1)
log2 (A1A2)

{ a
2(a{1)

A2
A1

P
v[V

(pf2
(v))aP

v[V

(pf1
(v))a

0
@

1
A

1=a

z
A1
A2

P
v[V

(pf1
(v))aP

v[V

(pf2
(v))a

0
@

1
A

1=a
2
64

3
75:ð84Þ

Here, A1~
c1S1

c1S1zc2S2
and A2~

c2S2
c1S1zc2S2

.

Proof: The proof follows similarly to Theorem 13. In case of

0ƒav1, the equation (73) can be expressed as follows:

log2

X
v[V

pf (v)a
ƒ log2 Aa

1

X
v[V

(pf1
(v))azAa

2

X
v[V

(pf2
(v))a

 !
, ð85Þ

~
1

2
log2 Aa

1

X
v[V

(pf1
(v))azAa

2

X
v[V

(pf2
(v))a

 !

z
1

2
log2 Aa

1

X
v[V

(pf1
(v))azAa

2

X
v[V

(pf2
(v))a

 !
,

ð86Þ

~
1

2
log2 Aa

1

X
v[V

(pf1
(v))a

 !
1z

Aa
2

P
v[V

(pf2
(v))a

Aa
1

P
v[V

(pf1
(v))a

0
@

1
A

2
4

3
5

z
1

2
log2 Aa

2

X
v[V

(pf2
(v))a

 !
1z

Aa
1

P
v[V

(pf1
(v))a

Aa
2

P
v[V

(pf2
(v))a

0
@

1
A

2
4

3
5:
ð87Þ

Finally by proceeding as before and by simplifying each of the

terms in the above equation, we get the desired expression (83).

Similarly as in the case of aw1, the expression (79) can be

expressed by,

log2

X
v[V

pf (v)a

ƒa log2 A1

X
v[V

(pf1
(v))a

 !1
a

zA2

X
v[V

(pf2
(v))a

 !1
a

2
4

3
5,

ð88Þ

~
a

2
log2 A1

X
v[V

(pf1
(v))a

 !1
a

zA2

X
v[V

(pf2
(v))a

 !1
a

2
4

3
5

z
a

2
log2 A1

X
v[V

(pf1
(v))a

 !1
a

zA2

X
v[V

(pf2
(v))a

 !1
a

2
4

3
5,

ð89Þ

~
a

2
log2 A1

X
v[V

(pf1
(v))a

 !1
a

0
@

1
A 1z

A2

P
v[V

(pf2
(v))a

� �1
a

A1

P
v[V

(pf1
(v))a

� �1
a

0
BBBB@

1
CCCCA

2
66664

3
77775

z
a

2
log2 A2

X
v[V

(pf2
(v))a

 !1
a

0
@

1
A 1z

A1

P
v[V

(pf1
(v))a

� �1
a

A2

P
v[V

(pf2
(v))a

� �1
a

0
BBBB@

1
CCCCA

2
66664

3
77775:
ð90Þ

Upon simplification of the above equation, we get the desired

expression (84).

Applications to chemical graphs
In this section, we consider various classes of chemical graphs

and illustrate the results from the previous section. To this

purpose, we consider a specific example of the equivalence relation

C on G and an information functional fP. In order to define

concrete graph entropies, we need to specify graph invariants and

information functionals to determine a probability distribution.

For the graph invariant we use the automorphism group of a

graph. We use this invariant due to their extensive investigations

available in the literature; for example see [27]. Note that there are

various other invariants such as distance, degrees and paths that

could be used. Observe that each graph belongs to an

automorphism group, where an automorphism is a permutation

of the vertices such that the adjacency relation of the graph is

preserved. An automorphism group divides the vertex set into

orbits where a vertex orbit is a collection of topologically

equivalent vertices [27].

Definition 5 Let C be an automorphism (equivalence relation) that

partitions the vertex set V of G into vertex orbits. Let V1, . . . ,Vk be the k

orbits of V such that DV D~DV1Dz � � �zDVkD.
As to the information functional, we reproduce the definitions of

two information functionals based on metrical properties of graphs

[18,29,30].

Let G~(V ,E) be a simple, undirected graph on n vertices and

let d(u,v) denote the distance between two vertices u and v, and let

g(G)~ maxfd(u,v) : u,v[Vg. Let Sj(u; G) denote the j-sphere of a

vertex u defined as Sj(u; G)~fx[V : d(u,x)~jg.
Definition 6 Parameterized linear information functional using j-spheres

[18,29]:

Inequalities for Generalized Graph Entropies

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e38159



fP’(vi)~
Xg(G)

j~1

cj DSj(vi; G)D, ð91Þ

where ckw0 for 1ƒkƒg(G).

Definition 7 Parameterized exponential information functional using j-

spheres [18,29]:

fP(vi)~b

Pg(G)

j~1

cj DSj (vi ;G)D

, ð92Þ

where bw0 and ckw0 for 1ƒkƒg(G).

Remark 15 The setting c1~ � � �~cg(G) is trivial as

HfP’ (G)~HfP
(G)~ log2 (n). But anyway, for all combinations of ci the

resulting measures are well defined.

Note that the constants cj in the above expressions contribute to

the weight of the j-spheres, see [36]. If c1~c2~ � � �~cg(G), see

Remark 15. When the cj are all distinct, the vertices belonging to

different j-spheres are weighted differently while the vertices

belonging to the same j-sphere are considered to have same

weight. Interestingly, the choice of constants

c1~g(G),c2~g(G){1, � � � ,cg(G)~1 has been proven useful for

solving problems in chemical graph analysis [36]. By doing so, the

emphasis of a particular vertex is mainly given by its nearest

neighbors and that the contribution of vertices at farthest distance

is low. For more examples, we refer to [29,37].

For the rest of the article, we consider two graph classes namely

the stars and the path graphs to show the application of results

from previous section. In addition, we also present the behavior of

certain information functionals for any general connected graphs.

A similar analysis on the relation between Shannon entropy

measure (only) has been performed in [17,25].

Stars
A Star Sn is a tree on n vertices where there is exactly one vertex

of degree n{1 and n{1 vertices of degree 1, see [38]. The unique

vertex of degree n{1, denoted by u, is also referred to as central

vertex. Star graphs have been of considerable interest, since they

represent trees with smallest possible diameter among all trees on n

vertices. Let C be an automorphism defined on Sn such that C
partitions V (Sn) into two orbits, V1 and V2, where V1~fug and

V2~V (Sn){fug.
Theorem 16 If C is the automorphism, as defined above, on Sn. Then.

for 0vav1,

Ha,C(Sn)

v log2 n{
n{1

n
log2 (n{1)z

(1{a)(n{1)a{2

ln 2
,
ð93Þ

and for aw1,

Ha,C(Sn) w log2 n{
n{1

n
log2 (n{1){

a{1

(n{1)a{2 ln 2
: ð94Þ

Proof: Let p1~
DV1D
DV D

~
1

n
and p2~

DV2D
DV D

~
n{1

n
. So,

r~ maxfp1

p2
,
p2

p1
g~n{1. Now, we have.

HC(Sn)~ log2 n{
n{1

n
log2 (n{1): ð95Þ

Observe that,

Ha,Gamma(Sn)~
1

1{a
log2 (1z(n{1)a){a log2 n½ �: ð96Þ

Now by Theorem 7, we have.

Ha,C(Sn) v HC(Sn)z
2(2{1)(1{a)ra{2

2: ln 2
, ð97Þ

for 0ƒaƒ1: Hence,

Ha,C(Sn) v log2 n{
n{1

n
log2 (n{1)

z
(1{a)(n{1)a{2

ln 2
:

ð98Þ

Similarly, for aw1, we have by Theorem 7,

Ha,C(Sn)wHC(Sn){
2(2{1)(a{1)

2: ln 2:ra{2
: ð99Þ

That is,

Ha,C(Sn) w log2 n{
n{1

n
log2 (n{1)

{
(a{1)

(n{1)a{2: ln 2
:

ð100Þ

Hence, the theorem follows.

Theorem 17 Let C be an automorphism on V (Sn) and let f be any

information functional defined on V (Sn) such that DV1Dvf (vi) and

DV2Dvf (vj) for some i and j, 1ƒi=jƒn. Then, for 0vav1,

Ha,f (Sn)w
1

1{a
log2 (1z(n{1)a){

a

1{a
log2 S, ð101Þ

and for aw1,

Ha,f (Sn) v

1

1{a
log2 (1z(n{1)a)z

a

a{1
log2 S ð102Þ

Here S~
P

v[V f (v).

Proof: Follows by using equation (96) in Theorem 8.

Remark 18 Observe that since DV1D~1 and DV2D~n{1, there

exists functionals satisfying the conditions of the theorem. For

instance, if f ~fP’ defined by equation (91) then.

f (v)~
c1(n{1), if v~u,the central vertex,

c1zc2(n{2), otherwise:

�
:
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When c1,c2§1, the conditions of the theorem are satisfied.

That is, 1~DV1Dvf (u) and n{1~DV2Dvf (v), for some v=u.

Note we obtain a family of functionals (depending on c1 and c2)

satisfying the conditions of the theorem. Also, we have

S~
P

v[V (Sn) f (v)~(2c1zc2(n{2))(n{1). By substituting the

value of S in expressions (101) and (102), we get the bounds for

Ha,fP’ (Sn).

Remark 19 Another interesting graph class possessing the

same automorphism group as the stars is the class of wheel graphs.

A wheel Wn is a graph obtained by joining a new vertex v to every

vertex of an (n{1)-cycle Cn{1. That is, Wn~Cn{1zfvg. While

studying the inequalities for this class of graph, we derived similar

expressions as of theorems 16 and 17. Hence, we conclude that the

theorems 16 and 17 also holds for the wheel Wn.

Paths
A path graph, denoted by Pn, are the only trees with maximum

diameter among all the trees on n vertices. This class of graph has

received considerable attention in chemistry when studying the

hydrogen-depleted hydrocarbon molecules. Let C be an automor-

phism defined on Pn, where C partitions the vertices of Pn into
n

2

orbits (Vi) of size 2, when n is even, and
n{1

2
orbits of size 2 and

one orbit of size 1, when n is odd.

In the following theorem, we consider Pn, when n is even.

Theorem 20 Let n be an even integer and f be any information

functional such that f (v)w2 for at least
n

2
vertices of Pn and let C be as

defined above. Then.

Ha,C(Pn)~ log2

n

2
, ð103Þ

Ha,f (Pn)w
1

1{a
log2 n{

a

1{a
log2 S{1,�i�f 0vav1, ð104Þ

Ha,f (Pn)v
1

1{a
log2 nz

a

a{1
log2 S{1,�i�f aw1, ð105Þ

where S~
P

v[V f (v).

Proof: Since n is even, C partitions V (Pn) into
n

2
orbits of size 2. That

is, for 1ƒiƒ
n

2
, DVi D~2. Therefore, pi~

DVi D
DV D

~
2

n
, for 1ƒiƒ

n

2
.

Ha,C(Pn) is derived as follows

Ha,C(Pn)~
1

1{a
log2

Xn=2

i~1

pa
i

 !
, ð106Þ

~
1

1{a
log2

Xn=2

i~1

2

n

� �a
 !

, ð107Þ

~
1

1{a
log2

n

2
: 2

n

� �a� �
, ð108Þ

~
1

1{a
log2

2

n

� �a{1
 !

, ð109Þ

~
a{1

1{a
log2

2

n

� �
, ð110Þ

~ log2

n

2
: ð111Þ

Next, by using this value of Ha,C(Pn) and X~V (Pn) in

Theorem 8, we get the desired expression for Ha,f (Pn).

When we consider Pn, n being odd, evaluating Ha,C(Pn) is not

immediate. Hence we invoke Theorem 7 and obtain the following

result.

Theorem 21 Let n be an odd integer and let C be defined as before.

Then.

log2 n{
n{1

n
ƒHa,C (Pn)v log2 n

z(n{1)
(nz1):(1{a)

ln 2:25{a
{

1

n

� �
,

ð112Þ

when 0ƒav1, and

log2 n{
n{1

n
§Ha,C (Pn)w log2 n

{(n{1)
(nz1):(a{1)

ln 2:2az1
z

1

n

� �
,

ð113Þ

when aw1. Further if f is an information functional such that

f (v)w2 for at least
nz1

2
vertices of Pn, then

Ha,f (Pn) w

1

1{a
log2 n{

a

1{a
log2 S{

n{1

n
, ð114Þ

if 0vav1,

Ha,f (Pn) v

1

1{a
log2 nz

a

a{1
log2 S{

n{1

n
, ð115Þ

if aw1. Here S~
P

v[V f (v).

Proof: Since n is odd, C partitions V (Pn) into
n{1

2
orbits of

size 2 and one orbit of size 1. That is, DV1~1, and for 2ƒiƒ
nz1

2
,

DVi D~2. Therefore, p1~
DV1D
DV D

~
1

n
, and for 2ƒiƒ

nz1

2
,

pi~
DVi D
DV D

~
2

n
.
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First we compute the Shannon entropy HC(Pn) as follows.

HC(Pn)~{
X(nz1)=2

i~1

pi log2 pi, ð116Þ

~{
1

n
log2

1

n
{

X(nz1)=2

i~2

2

n
log2

2

n
, ð117Þ

~
1

n
log2 n{

n{1

n
log2

2

n

� �
, ð118Þ

~ log2 n{
n{1

n
: ð119Þ

By using this value of HC(Pn) along with r~ maxi,j
pi

pj

~2 and

k~
nz1

2
in Theorem 7, we get the desired bounds for Ha,C (Pn).

Next we evaluate the bounds for Ha,f (Pn).

First let 0vav1. Consider expression (31) from Theorem 8.

That is,

Ha,f (Pn)wHa,C (Pn){
a

1{a
log2

S

DX D
, ð120Þ

§ log2 n{
n{1

n
{

a

1{a
log2

S

n
, by 112ð Þð Þ: ð121Þ

Upon simplification of the above expression, we get the desired

bound (114).

In the case of aw1, by proceeding similarly using expression

(32) from Theorem 8, we yield the other bound (115).

Remark 22 Observe that, the computation of the Rényi entropy even with

the classical partition-based distributions is not immediate for odd paths when

compared to even paths. Hence, getting a closed form expression for general

connected graphs is equally difficult.

Connected graphs
In this section, we consider any general connected graph G on n

vertices and the functionals fP’ and fP given by equations (91) and

(92) respectively. In the next two theorems, we present the explicit

bounds for the Rényi entropy Ha,f (G), when we choose the two

information functionals in particular.

Theorem 23 Let f ~fP’ given by equation (91). Let

cmax~ maxfci : 1ƒiƒg(G)g and cmin~ minfci : 1ƒiƒg(G)g
where ci is defined in fP’. Then the value of Ha,fP’ (G) lies within the

following bounds.

When 0vav1, ð122Þ

log2 n{
a

1{a
log2

cmax

cmin

ƒHa,fP’ (G)ƒ log2 nz
a

1{a
log2

cmax

cmin

,

and when aw1,

log2 n{
a

a{1
log2

cmax

cmin

ƒHa,fP’ (G)

ƒ log2 nz
a

a{1
log2

cmax

cmin

:

ð123Þ

Proof: Given f (v)~fP’(v)~
Pg(G)

j~1 cj DSj(v; G)D with cjw0 for

1ƒjƒg(G). Let cmax~ maxfcj : 1ƒjƒg(G)g and

cmin~ minfcj : 1ƒjƒg(G)g. We have,

f (v) ~
Xg(G)

j~1

cj DSj(v; G)Dƒ(n{1)cmax: ð124Þ

Similarly,

f (v) § (n{1)cmin: ð125Þ

Therefore, combining the Equations (124) and (125) and by

adding over all the vertices of G, we get.

n(n{1)cminƒ

X
v[V

f (v)ƒn(n{1)cmax: ð126Þ

Hence,

cmin

n:cmax
ƒpf (v)ƒ

cmax

n:cmin

: ð127Þ

Then for aw0,

cmin

n:cmax

� �a

ƒpf (v)a
ƒ

cmax

n:cmin

� �a

: ð128Þ

Applying summation over all the vertices of G, we obtain.

n:
cmin

n:cmax

� �a

ƒ

X
v[V

pf (v)a
ƒn:

cmax

n:cmin

� �a

: ð129Þ

Taking logarithms we get,
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log2 nza log2

cmin

n:cmax

ƒ log2

X
v[V

pf (v)a

 !
ƒ log2 nza log2

cmax

n:cmin

:

ð130Þ

Dividing the expression (130) by (1{a), and simplifying we get

the desired expressions given by (122) and (123) depending on the

value of a.

Let us illustrate the above theorem by the following example.

Let G~(V ,E) be the graph on 12 vertices as shown in Figure 1.

The corresponding value of the information functional

f (v)~fP’(v) is also depicted in Figure 1. Here, g(G)~6. Also,X
v[V

f (v)~26c1z36c2z34c3z20c4z12c5z4c6:

It is known that Ha,fP’ (G)~ log2 (12) (see Remark 15) if

c1~c2~ � � �~c6. Equivalently, by using Theorem 23, we arrive

at the same value, since
cmax

cmin

~1 and that log2

cmax

cmin

� �
~0.

Observe that, the upper and lower bounds of Ha,fP’ coincides with

this choice of constants.

Let us illustrate a nontrivial case by setting the constants for

f1~fP’ as follows [18,29]:

c1~g(G)~6,c2~g(G){1~5, . . . ,cg(G)~1: ð131Þ

Hence the Rényi entropy then becomes.

Ha,f1
(G)~

1

1{a
log2

2 39
560

	 
a
z2 49

560

	 
a
z2 51

560

	 
a

z2 53
560

	 
a
z2 47

560

	 
a
z2 41

560

	 
a

" #
: ð132Þ

Finally, we obtain.

log2 12{
a

1{a
log2 6ƒHa,f1

(G)ƒ log2 12z
a

1{a
log2 6, ð133Þ

if 0vav1, and

log2 12{
a

a{1
log2 6ƒHa,f1

(G)ƒ log2 12z
a

a{1
log2 6, ð134Þ

if aw1.

Theorem 24 Let f ~fP given by equation (92). Let

cmax~ maxfci : 1ƒiƒg(G)g and cmin~ minfci : 1ƒiƒg(G)g
where ci is as defined in fP. Then the value of Ha,fP’ (G) can be bounded

as follows.

If 0vav1,

.

log2 n{
a(n{1)X

1{a
log2 b ƒHa,fP

(Pn)

ƒ log2 nz
a(n{1)X

1{a
log2 b,

ð135Þ

and if aw1,

log2 n{
a(n{1)X

a{1
log2 b ƒHa,fP

(Pn)

ƒ log2 nz
a(n{1)X

a{1
log2 b,

ð136Þ

where X~cmax{cmin.

Proof: Given f (v)~fP(v)~b

Pg(G)

j~1
cj DSj (v;G)D

with cjw0 for

1ƒjƒg(G). Let cmax~ maxfcj : 1ƒjƒg(G)g and

cmin~ minfcj : 1ƒjƒg(G)g. We have,

f (v) ~ b

Pg(G)
j~1

cj DSj (v;G)D
ƒb(n{1)cmax : ð137Þ

Similarly,

Figure 1. A Graph G along with the value of fP’(v).
doi:10.1371/journal.pone.0038159.g001
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f (v) § b(n{1)cmin : ð138Þ

Therefore, combining the Equations (137) and (138) and adding

over all the vertices of G, we get.

n:b(n{1)cminƒ

X
v[V

f (v) ƒn:b(n{1)cmax : ð139Þ

Hence,

b(n{1)(cmin{cmax)

n
ƒ pf (v) ƒ

b(n{1)(cmax{cmin)

n
: ð140Þ

Let X~cmax{cmin. Now, by raising pf (v) to the power a and

adding over all the vertices of G, we have,

n:
1

n:b(n{1)X

� �a

ƒ

X
v[V

pf (v)a
ƒ n:

b(n{1)X

n

 !a

: ð141Þ

Taking logarithms we get,

log2 n{a log2 (n:b(n{1)X ) ƒ log2

X
v[V

pf (v)a

 !

ƒ log2 nza log2

b(n{1)X

n

 !
:

ð142Þ

(1{a) log2 n{a(n{1)X log2 bƒ log2

X
v[V

pf (v)a

 !

ƒ(1{a) log2 nza(n{1)X log2 b:

ð143Þ

Dividing the expression (143) by 1{a, and simplifying we get

the expressions (135) and (136) as desired.

Conclusion and Summary
In this article, we have studied the problem of establishing

relations between graph entropy measures. Among various

entropy measures, we have considered the classical Shannon

entropy and the Rényi entropy. In fact, there is only very little

work when applying Rényi’s entropy to graphs [16,39]. While this

research is an extension of our earlier work [17], the results

obtained here are complementing the earlier ones and of

competing interest. In particular, the main contribution of this

paper was to establish implicit information inequalities involving

the Shannon entropy and the Rényi entropy measures when

applied to networks. Also, we have presented implicit inequalities

between Rényi entropy measures having two different types of

probability distributions with additional assumptions. Further we

have shown the application of the derived results by using various

graph classes.

As mentioned earlier, investigating relations (by means of

inequalities) is crucial as relations of the values of the measures

have not yet been investigated extensively. To demonstrate the

importance of such inequalities exemplarily, suppose H1 and H2

are graph entropy measures and it holds, H1ƒH2 for some graph

G~(V ,E). If H1 has non-polynomial complexity and H2 is

computable in polynomial time, then H2 is an upper bound that

may be feasible in a general sense. In terms of measures such as

Körner’s entropy, relations between graph entropies could be

crucial. But note that in view of the vast amount of existing

measures, this is a daunting problem. Also, the meaning of the

Rényi graph entropy is not yet fully understood. Hence, we believe

that such relations can be useful when designing and understand-

ing complex graph-based systems. This might be especially

applicable when applying the information-theoretic network

measures such as Shannon’s and Rényi’s entropy to large complex

networks.
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32. Hardy GH, Littlewood JE, Pólya G (1988) Inequalities. Cambridge Mathemat-

ical Library. Cambridge University Press; 2 edition.

33. Shannon C, Weaver W (1997) The Mathematical Theory of Communication.

University of Illinois Press, Urbana, IL, USA.

34. Rashevsky N (1955) Life, information theory and topology. Bulletin of

Mathematical Biophysics 17: 229–235.

35. Arndt C (2004) Information Measures: Information and its Description in

Science and Engineering (Signals and Communication Technology). Springer.

36. Dehmer M, Emmert-Streib F (2008) Structural information content of networks:

Graph entropy based on local vertex functionals. Computational Biology and

Chemistry 32: 131–138.

37. Dehmer M, Barbarini N, Varmuza K, Graber A (2009) A large scale analysis of

informationtheoretic network complexity measures using chemical structures.

PLoS ONE 4: 1–13.

38. Harary F (1969) Graph Theory. Addison Wesley Publishing Company. Reading,

MA, USA.

39. Delgado-Soler L, Toral R, Tomás MS, Rubio-Martinez J (2009) Red: A set of

molecular descriptors based on renyi entropy. Journal of Chemical Modeling

and Information 49: 2457–2468.

Inequalities for Generalized Graph Entropies

PLoS ONE | www.plosone.org 14 June 2012 | Volume 7 | Issue 6 | e38159


