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In this article, we discuss the problem of establishing relations between information measures for network structures. Two
types of entropy based measures namely, the Shannon entropy and its generalization, the Rényi entropy have been
considered for this study. Our main results involve establishing formal relationships, by means of inequalities, between
these two kinds of measures. Further, we also state and prove inequalities connecting the classical partition-based graph
entropies and partition-independent entropy measures. In addition, several explicit inequalities are derived for special
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Introduction

Complexity of a system, in general, deals with the intricate
design and complex interrelations among the components of the
system. Complexity analysis can be categorized in three types
based on functional behavior, topological properties, and/or at the
compositional level of a system [1]. Over the years, all these
categories have been implemented and contemplated concurrently
in several branches of science and social science. In this paper, we
study the complexity of graphs with respect to its underlying
structure. It is often referred to as topological complexity [2], as
the measures are used to associate high complexity with low
symmetry and larger diversity of the system’s components, while
low complexity is related to high symmetry, uniformity and lack of
diversity. The quantitative estimation (using measures/indices) of
topological complexity has been proven useful when characteriz-
ing the networks and has widely spread into all branches of natural
sciences, mathematics, statistics, economics and sociology; for e.g.,
see [3-12].

In the study of complexity, information theory has been playing
a predominant role. That is, the measures based on Shannon
entropy have been very powerful and useful in determining the
structural complexity of networks; see [1,2,10,13]. Apart from
Shannon entropy, its generalizations such as Rényi entropy [14],
Daroczy entropy [15] have also been identified as useful measures
for characterizing network-based systems; see [16].

In this paper, we deal with a novel aspect when analyzing the
complexity of network-based systems. Namely, we establish
relations between information-theoretic complexity measures
[17,18]. Investigating relations (in the form of inequalities) among
measures is useful when studying large scale networks where
evaluating the exact value of a measure might be computationally
challenging. In addition, they also serve as a tool for solving
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problems: In the field of communication theory, the study of
inequalities has led to the development of so-called algebra of
information where several rules have been established between the
mutual information among events [19] and their respective
entropy measures. For example, Young’s inequality, Brunn-
Minkowski inequality, Fisher’s information inequalities to name
a few in this context [20-22].

Inequalities involving information measures for graphs are also
referred to as information inequalities [23). They can be classified in
two types, namely implicit information inequalities and explicit information
inequalities. In particular, when information measures are present
on cither side of the inequality, we call it an wmplicit information
inequality [23], while in the latter, the information measure is
bounded by a function of parameters (or constants) involved. For
some of the recent contributions in this direction, we refer to
[17,23-26].

Recently, we have established relations [17] involving only
Shannon entropy measures, under certain assumptions. In this
article we extend the study to analyze the relation between entropy
measures belonging to different concepts. In particular, the main
contribution of this paper, is to establish implicit information
inequalities involving Shannon entropy and Rényi entropy
measures when being applied to networks. Further, we present
mmplicit inequalities between Rényi entropy measures having two
different types of probability distributions with additional assump-
tions. To achieve this, we analyze and establish relations between
classical partition-based graph entropies [13,24,27] and non-
partition-based (or the functional) based entropies [28]. Finally, we
apply the obtained inequalities to specific graph classes and derive
simple explicit bounds for the Rényi entropy.
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Methods

In this section, we state some of the definitions of information-
theoretic complexity measures [18,29-31]. These measures are
based on two major classifications, namely partition-based and
partition-independent measures. Some basic results on inequalities
on real numbers [22,32] are also presented at the end of the
section.

Let G=(V,E) be a graph on N vertices where
V={v,v2,...,vy} and ESV x V. Throughout this article, G
denotes a simple undirected graph. Let X be a collection of subsets
of G representing a graph object. Let I' be an equivalence relation
that partitions X into £ subsets X1,X2, ..., Xk, with cardinality | Xj|,
for 1 <i<k. Let {p1,p2,...,pr} denote the probability distribu-
tion on X w.r.t I, such that p;= % (1<i<k), is the value of
probability on each of the partition.

For graphs, the Shannon’s entropy measure [33] is also referred
to as the information content of graphs [13,27,34] and is defined as
follows:

Definition 1 The mean information content, Hr(G), of G with
respect to I' is given by.

k
Hr(G)=—_pilog, pi=
i=1

X0,
Z |X| g W

Note that while the above definition is based on partitioning a
graph object, another class of Shannon entropy has been defined
in [29] where the probability distribution is independent of
partitions. That is, probabilities were defined for every vertex of
the graph using the concept of information functionals.

Suppose f : V= R™ is an arbitrary information functional [29]
that maps a set of vertices to the non-negative real numbers and
let.

)
>0

velV

p(v)= (2)

p(v) is the probability value of ve V.
Definition 2 The graph entropy, Hy(G), representing the structural
information content of G [18,29] is then given by,

N
S i)

N
Hi(G)= = pr)log pr)=—>
i=1

:Z(V/

f( i)
Ta (3)

Zf )

As a follow-up to Shannon’s seminal work [31], many
generalizations of the entropy measure were proposed in the
literature [14,15,35]. These generalized entropies were recently
[16], extended to study graphs. In the following, we present one
such generalization from [16], namely the Rényi entropy for
graphs.

Definition 3 The Rényi entropy Hy, r(G), for 0 <oe< oo and o #1,

of a graph G [16] s given by,
(1
H,1(G)= 1 log, Z(p) 8 Z(|X|) - (4)
i=1

Here, I' is the equivalence relation on a graph object and p;
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(1<i<k) denotes the probabilities defined on the partition
induced by TI'.

It has been proved that Rényi entropy is a generalization of
Shannon entropy and in the limiting case when o— 1, the Rényi
entropy equals the Shannon entropy [35].

Similar to expression (3), the Rényi entropy can be immediately
extended [16] to partition-independent probability distributions
defined on G.

Definition 4 Let H, 1(G), for 0 <o < 00 and o 1, denote the Rényt
entropy [106] defined using an information functional f- Then.

H,y(G)=1—log, (Z (p(r))” )

o

1 N ;
= Talng Z Nf(v )
L)

j=1

Next we state some interesting inequalities from the literature
that are crucial to prove our main results. One of the well-known
result for real numbers is stated as follows [32].

Lemma 1 [32] Let x,y>0 and x #y be real numbers. Then.

=y <’ =) < x—y),

if r<0orr>1,

N (e —p) <X =y <y (e ),

7
ifo<r< 1. @)

A simplified form of Minkowski’s inequality has been expressed
in [32].
Lemma 2 [32] If r>0, then.

O (@bt -+ <> @N)*

+(Y_ "

where R=1,if0<r<1 and R= 1, ifr>1.

As an extension of discrete Jet{sen’s inequality, the following
inequality has been derived in [22].

Lemma 3 [22] Let x4€(0,00), for | <k <n, and p;. >0 such that

Zzzll’k: 1. Then.

+(Q B -

0< log, <2kak> — > pilogy x
=i =

PkDi 2
1 Z X (YI xk) .

kll
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Results and Discussion

In this section, we present our main results on implicit
information inequalities. To begin with, we establish the bounds
for Rényi entropy in terms of Shannon entropy.

Theorem 4 Let p(v1),p(v2), . ... p(Vn) be the probability values on
the vertices of a graph G. Then the Rényi entropy can be bounded by the
Shannon entropy as follows:

When O<a<1,

NN —D)(1—a)p* >

H/(6) < H,y(6) < Hi(G)+ —~—, = 1o
When o> 1,
(a—1N(N—1)
Hp(G)— © 2In2p*"2 <H.;(G)<H;(G), (1D

p(vi)

where p= max; x

pOK)
Proof: It is well known [35] that the Rényi entropy satisfies the
following relation with the Shannon entropy.

H,/(G)=H/(G),if 0<a<l, (12)

and

H,/(G)<H/(G),if a>1. (13)

To prove the bound for H,;(G), let p= mdx,k% Consider,

the inequality (9) from Lemma 3 with pr=p(vx) and

xi=p)* ' We get,

N N
log, (ZP(%)“) —(@—1)>_ p(vi)log, p(ve)
k=1 k=1

1 pp(n)
21n2lk L (PO

(14)
o) —=pr)* '

Now we prove the theorem by considering intervals for a.
Case 1: When O<a<]1.
Dividing by (1 —a) on either side of the expression (14), we get.

1
H,;(G)—Hy(G)< 2n2(l—2)
POp(vi)

— 1 =1 a—142
P e A AL

Applying inequality (6) from Lemma 1 to the term

POy —pr)* !

with 7 =0—1<0 in the above sum, we obtain.
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X (o) —pn) )
ki=1 (P(W)P(Wc))miz
(=17’ p()* > (p(v) — (i)’ (16)
klz—l !7(‘)k)0C 2 ’
i#k
N
< 3 [la— Do) —pe))p
ki=1
i%k (17)
. ) p( i)
(since p : = ,k p(v ))

N
< D (@1 Gsince pr)—pr) <. (18)
ki=1

i#k
=p* " 2(a—1>N(N=1). (19)
Now expression (15) becomes.

H,;(G)— Hy(G)< p*2(1—a)’ N(N—1)]

1
21n2(1—oc)[

(20)
p* 21 —a)N(N—1)
2In2 '
Thus,
| P21 )NV 1)
H,(G)<H/(G)+ 2 .

is the desired upper bound in (10).

Case 2: When o> 1.

In this case dividing by (1 —a) on either side of the expression
(15), we get,

1
H,;(G)—H(G) > T2l —a)

21
Pi)p(vi) @)

2 ptoy T O P00

When 1<a<2, we have a—1<1. Therefore by applying
inequality (7) to the term p(v;)* ' —p(w)* ! with r=o—1 in the

above sum we get,
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(o)~ —p)* ")
ki=1 (17("1')17("/%))9(72

(= 1p(v)" > (p(vi) — p(ri))* (22)
klz—l pOvi)*™ : '

i#k

N [e=Dpv) p(vkm

Z e (23)
l:
i#k
N 12
S D e —po0> —1,
ki=1 "
" (24)
1
(since 0 <p(v)<1),
1NN -1
- oY) @)

Note that when a>2, by applying inequality (6), as before, to
the term p(v;))* ' —p(v)* ' with r=a—1>1 and by simplifying
we get the same expression as above. When a=2, by direct
simplification we get a similar expression. Hence we conclude that
the expression (25) holds, in general for o> 1.

Therefore by substituting inequality (25) in (21), we get.

1 1—a)’N(N—1
H,;(G)—Hy(G)> a1 [( oc)p%(2 )]
(26)
_(1—o)N(N—1)
T 2In2p*2
Thus,
1- —1
H,/(G)> H/(G)+ %

s the desired lower bound in (11).
Corollary 5 In addition, suppose ¢ = max; (p(v;) —p(vi)), then.

n(n—1)(1—a)?p*~2
2In2 ’

Hi(G) <H,(G)< Hp(G)+ (27)

when 0<a<1 and
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(x—Dn(n—1)

(6= 2n2pr 2

Hyy(G)>  Hy(G)— (28)
when o> 1.

Remark 6 Observe that Theorem 4, in general, holds for any
arbitrary probability distribution with non-zero probability values.
The following theorem illustrates this fact with the help of a
probability distribution obtained by partitioning a graph object.

Theorem 7 Let py, . .. ,pi be the probabilities of the pariitions obtained
using an equivalence relation I as stated before. Then.

(k= (1 —a)p* 2

Hr(G)SHa,r(G)<Hr(G)+ 2In2 s (29)
When 0 <a <1, and
(a—Dk(k—1)
Hr(G) =H,r(G)> Hr(G) 21112',0“72 , (30)
when a>1. Here p= max&.
ij p]

Proof: By proceeding similarly to Theorem 4, we get the
desired result.

In the next theorem, we establish bounds between like-entropy
measures, by considering the two different probability distribu-
tions.

Theorem 8 Suppose | X;| <f(vi), for 1 <i<k, then.

S
H,r(G)<H, ,f(G)-i- log2 (|X|) (31)
if 0<a<l,
H,r(G) > H,/(G)— 1 (S) (32)
oI’ of 08, |X|

if «>1. Here S= Zl{vzlf(vi)-

Proof: Let S= va:l f(v;) and thus p(vi)z'@. Now, given
| Xi|<f(v), for 1 <i<k we have,

Xl _f0) _ Spo) 33)

X1 1X] | X]

By raising either side of the expression to the power o, we get.

IR R

Applying summation over 7 from 1 to £ on either side we get,

i <||)§||) < zk: (Sf;Ti)> . G33)
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S o k ;
=(m) > 000 (36)

Taking logarithms on either side,we obtain

k N\ % o k
0" (1) <tom(7) Soear. 1)
i=1

i=1

o k
~to(13;) + 10w Y- (w00 (38)

i=1

S o N
<togs(;) + tor 3000 (39)

i=1

Now we distinguish two cases, depending on o as follows:
Case 1: When 0<a <1, dividing by 1—oa on either side of
equation (39), we get.

o N
H,r(G)<H,s(G)+ -2 log, X (40)

Case 2: When a>1, dividing by 1—a on either side of
equation (39), we get.

o S

Expressions (40) and (41) are the desired inequalities.

Remark 9 A similar relation by considering Hr(G) and Hy(G)
has been derived in [25].

We focus our attention to the Rényi entropy measure defined
using information functionals (given by equation (5)) and present
various bounds when two different functionals and their proba-
bility distributions satisfy certain initial conditions. A similar study
has been performed in [17,23] by using Shannon’s entropy only.

Let fi and f; be two information functionals defined on
G=(V.,E). Let Si= 3N fi(v) and Sh= "N | o(v). Let py; (v)
and py,(v) denote the probabilities of f] and f3, respectively, on a
vertex veV. Let H, £ (G) and H,,(G) denote the Rényi entropy
based on the functionals f] and f; respectively.

Theorem 10 Suppose p;(v)<yrpp(v), YveV and y>0 a
constant, then.

o
Hyp(G) < Hup,(G)+ ITaIOgZ v, (42)

if 0<a<l,
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o
H.j, (G) = Hoc,fz(G)— ﬁl()gz v, (43)
ifa>1.
Proof: Given.
2 < Yrpp (). (44)
Then for «>0,
pr* < (prm) (45)

Applying summation over the vertices of G, we get.

S oo <> Wpp () (46)

velV velV

Taking logarithms on either side,we get

velV velV

logz<zp/1(V)‘”) < log, (Z(t//'pfz(v»“), (47)

=alog, Y+ log, (Z (P, (V))“> . (48)

velV

Case 1: When 0 <o < 1. Dividing either side of the equation by
(I —o) yields the desired expression (42).

Case 2: When o> 1. In this case, dividing either side of the
equation by (1 —o) yields the expression (43) as desired.

Corollary 11 Suppose f1(v) <f2(v), YVveV, then.

o S
H.;(G) < Ha,/z(G)+mlogZS—?, (49)
if 0<a<l,
H, (G) > Hop(G)— ——log, 22 (50)
oc,/l = o(,fz a—1 0g; S] 5

if o>1. S
Proof: By assumption, we have p;(v) < S—z 5 (v). Therefore,
1

S
the corollary follows by letting y = S—2 in the above theorem.
1

The next theorem can be used to study how a minor
perturbation in the probability distribution of the system can
affect the corresponding value of Rényi entropy measure. The
amount of deviation can then be estimated as follows.

Theorem 12 Suppose py (V) <ps(v)+¢, Yvel and ¢>0 a
constant, then.
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1 N-¢*
Hyp (G)—Hypy(G) < EWZB(V))W (51)
velV
if 0<a<l,
o N2
Hyp,(G)—Hyf(G) < 1 7 (92)
(G

ifo>1.
Proof: Suppose pr, (v) <pp,(v)+¢, Yvel. Then.

D <Y (pp0)+4) (53)

velV velV

Case 1: When O<a <.
By applying Lemma 2 with r=0o, R=1, a;=ps,(v) and b;=¢, in
expression (53) we get,

P AGED I AC) R (54)

veV velV

Taking logarithms on either side,we get

logz(Zpﬁ(v)“) < log2<2<pf2(v»f‘+zv-¢“>, (55)

velV velV

x N¢*
= log, I:VEZV (pfz(V)) (1 + W) :| , (56)

" N¢*
= log, <;l’fz(") > + log, (1 + W) - (57)

It is well known that log(1+x)<x, for x> —1. Using this
relation for the second term in the above expression, we get.

N N¢*
1 .
s (l > wz(v»“) ) (z (m(v»“) oY

Thus, (57) can be expressed asp.

() ou (Jpos) ( )
velV velV 2
veV
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Dividing by 1—o, yields the desired expression (51).

Case 2: When a>1.

By applying Lemma 2 with r=o, R= i, ai=ps(v) and b;=¢ to
expression (53) we get,

o

1/a
dopy < [(Z(P/;(V))“) +(N'¢“)l/x]- (60)

vel velV

Now,taking logarithms on either side,we get

log, <pr1 (V)“)

velV
e (61)
< alog, KZ %(v))“) +N%~¢} :
velV
3 1
= o IOgZ (Z (pfz(v))a> 1 + qul s (62)
veV Z (pfz(v))oc)
velV
1/,
= log, <Z (pfz(v))“> +oalog, | 1+ % . (63)
< (ZV(sz(V))“) -

Using the relation log(l14+x)<x (for x> —1), in the above
expression, we get.

log, (Z Py, (v)“) < log, (Z (pfz(v))“>

velV veV
NE (64)
. Lqﬁl
()

Dividing by 1 —u, yields the desired expression (52).
Theorem 13 Let f(v)=c1f1(v)+ c2f2(v), VveV. Then,

forO<a<l1,

o

Ha’f(G) < Ho‘:fl (G) =+ m 10g2 A1

R DA (63
1 _ocAolt Z (pfl (V))a ’

velV
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and for o> 1,

Hac,/"(G) > Hw‘] (G) 10%2 Al

—1

L zwv»“ & (66)
= ZV(’”I(V” |

1S S
Here, A\)= ———— and Ay= ————.
ae A ST+ 68, ne 42 caS1+eS,
Proof: Consider, f(v)=cifi(v)+c2fa(v), YvelV. Now let
St=2afM=ad . i+ad pLr)=aSi+as.

Next consider,

f(V) i) +efa(v)

D e (67)
= 9200+ 0, (68)
= A1y, (v)+ Aapy, (v). (69)

Then for a>0, we have.

D o) =" (Aipy, () + Aoy, (V) (70)

velV velV

Case 1: O0<a<1.
Applying Lemma 2 with r=0, R=1, ¢
bi=Aspy,(v) in expression (70), we get.

=A1p;(v) and

Do) (A O+ Y (Aapp ) (71)

velV velV velV
=AY ON 43D (0, ) (72)
velV veV

Taking logarithms on either side, we get.

velV velV velV

A3 3 (pr, ()
= log, (A’l‘ Z (pfl(v))“> 1+ AA? ‘g oo | (74)
velV = 1

log, Y pr(v* < log, (A%Z(pﬁ(v)) +45> (M) ) (73)
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A3 ZI:/(PJ'Z(V))“
A3 ZV(P/] ) (75)

= log, <A7 > (v))“> + log, (1 +

velV

Using the relation log(l+x)<x (for x> —1), in the above
expression, we get.

log, ZP/(V){X <olog, 41+ log, <Z (7, (V))x>

velV vel
A3 Z (pr, (7))
Aj E (P ()

Dividing by 1—o, yields the desired expression (65).

Case 2: a>1.

Applying Lemma 2 with r=0, R=1, q;
bi=Aspy,(v) in expression (70), yields.

(76)

=A1ps(v) and

o

i o
> opy< [(Z(Amfl(v»“) +(Z(Azpfz(v»") } . (1)

velV vel vel

o

1 1
= {m(Z(m(v))&) +A2<Z(pf2(v))“> } . (78)

velV velV

Taking logarithms on either side, we get.

log, > " pr(»*
velV
! (19
<alog, [Al <Z (s, (v))“) +4; (Z (pfz(v))“> } ,
velV velV
%
N (z <pf2(v»“)
=alog, <A1<Z (P, (V))“> ) I = ]|, (80)
v 4 (ZV v, (v))“)
1
=alog, (Al (Z (1 (V))“) )
velV
1
(81)
4 ( 5 (0 )
+olog, | 1+ —l
4 (ZV v, (v))“)
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Using the relation log(1+x)<x (for x> —1), in the above
expression, we get.

log, Zp/(v)“ <oalog, 4;
veV

1

) st Sopor)

vel

+ log, (Z (pr, () :

velV

RI—

4 (ZV v (v))“)

Dividing by 1—a, yields the desired expression (66).
Corollary 14 Let f(v)=c fi(v)+c2fa(v), VeV If 0<a<l,
then

Hof(G) < 3[Hyp (G)+ Hypy (G + 35108, (4142)
v v K

A§§V%()) ﬁg/@ﬁ()) | (83)
EPITATE

+ EH Z )

If a>1, then

Hzx,f(G) > % [Hot,fl (G)+ Hu,fz(G)} 2(0 0 10g2 (A1A2)
o 1/a N 1/o
. | v;/(%( ) 4 v;:/(pf ) (84)

T 2e-D|4; > [ n)* +@ Z (pfz(v))‘“
velV veV

S
and 4, = 222

Here, 41= G5 +orSy

Proof: The proof follows similarly to Theorem 13. In case of
0<a<1, the equation (73) can be expressed as follows:

151
Clsl +l’2S2

log, ¥ pr(v* < log, (A?Z(pﬁ(v)) +45 Z(p,z(v))) (85)

velV velV velV

= 10g2 (A, S @A) 43D () )

velV vel

(86)
10g2 (Aa‘ DGR +43) () >
velV velV
| A3 XI:/(sz(V))x
= =l i L I I I
5log, <A1 ;(p/l (v) > + T % 000
ve 87
1 , Ai(;/(pfl(v))oc ( )
o | (35 0507) 1+ ENTATY

Finally by proceeding as before and by simplifying each of the
terms in the above equation, we get the desired expression (83).

Similarly as in the case of a>1, the expression (79) can be
expressed by,
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log, pr(v)“

velV
1
o

! (89
<alog, A1<Z(pfl(v»“> +4; (Zwv»“) :

velV velV

. i
= —10g2 Al <Z (p]] (V)) ) +A2 (Z (sz(v))“>
velV vel
1

Jlog | 4, (Z (P, )" ) +4; (Z P

velV velV

o
= 5 log,

) (z (p,2<v>)
4, <Z (P/JV))“) 4 —r

= (z o (v))

velV
1

) Al(zwv»
+ 1o, Az<z<pfz<v») e LT

velV

4, (ZV (p;-2<v))“) '

Upon simplification of the above equation, we get the desired
expression (84).

Applications to chemical graphs

In this section, we consider various classes of chemical graphs
and illustrate the results from the previous section. To this
purpose, we consider a specific example of the equivalence relation
I on G and an information functional fp. In order to define
concrete graph entropies, we need to specify graph invariants and
information functionals to determine a probability distribution.

For the graph invariant we use the automorphism group of a
graph. We use this invariant due to their extensive investigations
available in the literature; for example see [27]. Note that there are
various other invariants such as distance, degrees and paths that
could be wused. Observe that each graph belongs to an
automorphism group, where an automorphism is a permutation
of the vertices such that the adjacency relation of the graph is
preserved. An automorphism group divides the vertex set into
orbits where a vertex orbit is a collection of topologically
equivalent vertices [27].

Definition 5 Let I' be an automorphism (equivalence relation) that
partitions the vertex set 'V of G into vertex orbits. Let Vi, ...,V be the k
orbits of V such that |V|=|V1|+ - +|Vkl.

As to the information functional, we reproduce the definitions of
two information functionals based on metrical properties of graphs
[18,29,30].

Let G=(V,E) be a simple, undirected graph on n vertices and
let d(u,v) denote the distance between two vertices « and v, and let
n(G)= max{d(u,v) : u,yeV}. Let S;(u; G) denote the j-sphere of a
vertex u defined as S;(u; G)={xeV : d(u,x)=j}.

Definition 6 Parameterized linear information_functional using j-spheres

[18,29):
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n(G)

Se) =" ¢lSi(vi; G, 1)
j=1

where ¢; >0 for 1 <k <n(G).
Definition 7 Paramelerized exponential information functional using j-
spheres [18,29):

1(G)
2 IS0l
frr)=p=! . (92)

where >0 and ¢, >0 for 1 <k <n(G).

Remark 15 The selting c1=---=cyg 15 trvial as
Hy,(G)=H;,(G) = log, (n). But anyway, for all combinations of ¢; the
resulting measures are well defined.

Note that the constants ¢; in the above expressions contribute to
the weight of the j-spheres, see [36]. If ¢c;=cy= - =¢y(g), see
Remark 15. When the ¢; are all distinct, the vertices belonging to
different j-spheres are weighted differently while the vertices
belonging to the same j-sphere are considered to have same
weight. Interestingly, the choice of constants
c1=1(G),c=n(G)—1,---,cyy=1 has been proven useful for
solving problems in chemical graph analysis [36]. By doing so, the
emphasis of a particular vertex is mainly given by its nearest
neighbors and that the contribution of vertices at farthest distance
is low. For more examples, we refer to [29,37].

For the rest of the article, we consider two graph classes namely
the stars and the path graphs to show the application of results
from previous section. In addition, we also present the behavior of
certain information functionals for any general connected graphs.
A similar analysis on the relation between Shannon entropy
measure (only) has been performed in [17,25].

Stars

A Star S, is a tree on n vertices where there is exactly one vertex
of degree n—1 and n— 1 vertices of degree 1, see [38]. The unique
vertex of degree n—1, denoted by u, is also referred to as central
vertex. Star graphs have been of considerable interest, since they
represent trees with smallest possible diameter among all trees on
vertices. Let I” be an automorphism defined on S, such that I"
partitions V'(S,) into two orbits, ¥} and V>, where V| ={u} and
Vo=V(S,)—{u}.

Theorem 16 If I is the automorphism, as defined above, on S,. Then.

for0<a<l1,
Hoz,l_(Sn)
o 93)
n—1 A—ayn—1y2
< logzn—Tlogz(n—l)+T,
and for o> 1,
Ho(S) > logan—""Llog,(n—1) i (94)
ARG 5] n 5] (n_1)1721n2'
1 V. -1
Proof: Let p1=@=— and p2=M=n . So,
p=max{—,—}=n—1. Now, we have.
P2 D1
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n—1
Hr(S,)=log,n— TIng (n—1). (95)

Observe that,

1 o
Hoc,Gamma(Sn) = m [IOgZ (1 + (}’l— 1) )_ o 10g2 n]~ (96)

Now by Theorem 7, we have.

2Q—-1)(1—a)p*?2

Hyr(Sy) < Hr(S»)+ 2 . (97)
for 0<a<1. Hence,
—1
H,r(S,) < logyn—"—log, (n—1)
(98)
L A==
In2 ’
Similarly, for «> 1, we have by Theorem 7,
2Q—1)(a—1)
H,r(Sn)>Hr(S,)— 22 (99)
That is,
n—1
H,r(S,) > logyn— Tlogz (n—1)
B (o—1) (100)
(n—1*"%1n2’

Hence, the theorem follows.

Theorem 17 Let T be an automorphism on V' (Sy,) and let f be any
information functional defined on V(S,) such that |Vy|<f(v;) and
[Vl <f(v)) for some i and j, 1 <i#j<n. Then, for 0 <o <1,

1 ,
Hyp(Sy)> ——log, (1+(n—1)— ——log, S, (101)
: 1—a 1—a
and for o> 1,
1
H,/(S) < mlogz(l—l—(n—l)“)—i-a%“llong (102)

Here S=)" ., f().
Proof: Follows by using equation (96) in Theorem 8.
Remark 18 Observe that since |V|=1 and |V3|=n—1, there
exists functionals satisfying the conditions of the theorem. For
instance, if f'=fp defined by equation (91) then.

Cl(n— 1)7
c1+c(n—2),

if v=u,the central vertex,
otherwise. '

= {
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When c¢1,c;>1, the conditions of the theorem are satisfied.
That is, 1=|Vi|<f(u) and n—1=|V>|<f(v), for some v#u.
Note we obtain a family of functionals (depending on ¢| and ¢3)
satisfying the conditions of the theorem. Also, we have
S=3 ens,)/ (N=Q2c1 +ca(n—=2))(n—1). By substituting the
value of § in expressions (101) and (102), we get the bounds for
H, fl,fp'(Sn)'

Remark 19 Another interesting graph class possessing the
same automorphism group as the stars is the class of wheel graphs.
A wheel W, is a graph obtained by joining a new vertex v to every
vertex of an (n—1)-cycle C,_;. That is, W, =C,_1+{v}. While
studying the inequalities for this class of graph, we derived similar
expressions as of theorems 16 and 17. Hence, we conclude that the
theorems 16 and 17 also holds for the wheel W,,.

Paths

A path graph, denoted by P,, are the only trees with maximum
diameter among all the trees on n vertices. This class of graph has
received considerable attention in chemistry when studying the
hydrogen-depleted hydrocarbon molecules. Let I" be an automor-

phism defined on P,, where I' partitions the vertices of P, into =

2

orbits of size 2 and

. . . n—
orbits (V) of size 2, when 7 is even, and

2

one orbit of size 1, when n is odd.
In the following theorem, we consider P,, when 7 is even.
Theorem 20 Let n be an even mtege; and f be any information
Sunctional such that f(v)>2 for at least 7 vertices of Py and let ' be as
defined above. Then.

H,r(P,)= log, 3, (103)
Hiy(Py)> 7—logyn— “alogZS—l,u'lf O<au<l, (104)
H, (P, <1 log2 n + log2 —Lufa>1, (105)

where S= Zvevf(v)

Proof: Since n is even, I' partitions V(Py,) into = 2
Vil

orbz'tx of size 2. That

is, for l<1< L, | Vil=2. Therefore, p;=

H,r(P,) is denved as_follows

2 n
= — <i<—.
v T P Isi=3

n/2
o F(Pn) = 1Og2 <Zpl > (106)
1 n/2 2\
=1 alogz(?i?(z) ), (107)
1 n /2\*%
"]ii&logz(ﬁ (;) ), (108)
@ PLoS ONE | www.plosone.org
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1 2 o—1
= l—aIng((E) ) (109)
oa—1 2
“1_a 08 (g)a (110)
=10g2§. (111)

Next, by using this value of H,r(P,) and X=V(P,) in
Theorem 8, we get the desired expression for H, ¢(P,).

When we consider P,, n being odd, evaluating Hy, r(P,) is not
immediate. Hence we invoke Theorem 7 and obtain the following
result.

Theorem 21 Let n be an odd integer and let I be defined as before.
Then.

—1
log, n— nT <H,r(Py)<log,n

112
o[- 1 e
& 225  n|’
when 0<a <1, and
n—1
log, n— e >H, r(P,)>logy,n
113
oG- )
In2-2#+1 n|’

when o> 1. Further if f is an information functional such that

1
f(v)>2 for at least n—;—

vertices of P, then

1

1 o n—
H, s(P, —1 ———log, S— ——, 114
A2y > tomne g s "L (14
if 0<a<l,
Ho(P) < ——logynt " logy,s—"=1 (115
o n o 82T o8 n’
if a>1. Here S= %", f(v). 1
Proof: Since 7 is odd, I" partitions V(P,) mto orbits of
1
size 2 and one orbit of size 1. Thatis, |V} =1, and for 2<i < %,
v 1
|Vi|=2. Therefore, p;= ||V1|‘ - and for 2<1<%,
il 2
PEWw T

June 2012 | Volume 7 | Issue 6 | 38159



First we compute the Shannon entropy Hr(P,) as follows.

n+1)/2
Hr(P)=— Y pilogpi, (116)
i=1
(n+1))2
1 1 2 2
=—~log,— — Zlog, = 11
n0g2 ; nOgZH’ ( 7)
1 n—1 2
=—log,n— ——log, (= 118
Slogyn—— ng(n>, (118)
= logyn— —— (119)
2i_ 2 and

By using this value of Hr(P,) along with p= max;;—
ke n+1 Pj

Next we evaluate the bounds for H, s(Py).
First let 0<a<1. Consider expression (31) from Theorem 8.
That is,

in Theorem 7, we get the desired bounds for Hy, r(Py).

xf(P)>Ho<F(Pn) (120)

1
08 7 x|

1 o

S
>10g2n—7— l_alogzz,(by(lu)), (121)

Upon simplification of the above expression, we get the desired
bound (114).

In the case of a>1, by proceeding similarly using expression
(32) from Theorem 8, we yield the other bound (115).

Remark 22 Observe that, the computation of the Rényi entropy even with
the classical partition-based distributions is not immediate for odd paths when
compared to even paths. Hence, getting a closed form expression for general
connected graphs s equally difficult.

Connected graphs

In this section, we consider any general connected graph G on n
vertices and the functionals fp and fp given by equations (91) and
(92) respectively. In the next two theorems, we present the explicit
bounds for the Rényi entropy H, ;(G), when we choose the two
information functionals in particular.

Theorem 23 Le f=fp gven by equation (91). Let
Cmax = max{¢; : 1 <i<n(G)} and cmin=min{¢; : 1 <i<n(G)}
where ¢; is defined in fp. Then the value of H, s, (G) lies within the
Jollowing bounds.

When 0<a<1, (122)
o Cma * Cme

1 % max <sz ) < 1 —1 max
ogyn 11— 0g, o .,fp( )< logyn+ —o 0g Conin

@ PLoS ONE | www.plosone.org
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and when o> 1,

cm' X
log,n— 7110g2 . d <H.,;,(G)
min (123)
o Cmax
< logyn+ ﬁlog2 -
min

Proof: Given f(v)=fp(v)= 31" ¢S,(v; G)| with ¢;>0 for
1<j<n(G). Let Cmax = max{cj 1<j<n(G)} and
cmin = min{¢; : 1 <j<n(G)}. We have,

n(G)

fO) =Y IS5 G <(n— Demas. (124)
j=1
Similarly,
f(V) = (n - 1)Cmin~ (125)

Therefore, combining the Equations (124) and (125) and by
adding over all the vertices of G, we get.

I’l(l’l - l)cmin < Zf(v) Sn(l’l - 1)Cmax~ (126)
velV
Hence,
Cmin Cmax
—< <—. 12
N Cmax _pf(V)_ 1 Cmin ( 7)
Then for a>0,
Cmi *
(ﬂ> <pr(*< ( max ) . (128)
' Cmax N Cmin

Applying summation over all the vertices of G, we obtain.

o
C
I’l( ‘min ) pr(v) <n ( max) .
" Cmax 7 " Cmin

(129)

Taking logarithms we get,
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2c1 +2¢c2+ 2¢3+ 2¢4 + 2¢5 + ¢

c1+2cp+3e3+ 2¢4+ 2¢5 + ¢

Figure 1. A Graph G along with the value of fp(v).
doi:10.1371/journal.pone.0038159.g001

Co
log, n+olog, —=
N Cmax

(130)

veV T Cmin

< log, (pr(V)“) < logyn+alog, - fmax_

Dividing the expression (130) by (1 —a), and simplifying we get
the desired expressions given by (122) and (123) depending on the
value of o.

Let us illustrate the above theorem by the following example.
Let G=(V,E) be the graph on 12 vertices as shown in Figure 1.
The corresponding value of the information functional
S =fp(v) is also depicted in Figure 1. Here, n(G)=6. Also,
> S () =26¢1+ 3662+ 4¢3+ 20c4 + 12¢5 + .

It is known that H,j,(G)=log,(12) (see Remark 15) if
¢l =cy= -+ =¢¢. Equivalently, by using Theorem 23, we arrive

=1 and that 10g2< mdx) =0.

. Cmax
at the same value, since

cmm cmm

Observe that, the upper and lower bounds of H, s, coincides with
this choice of constants.
Let us illustrate a nontrivial case by setting the constants for

fi=fp as follows [18,29]:

c1=n(G)=6,c,=n(G)—1=5, ey =1. (131)
Hence the Rényi entropy then becomes.
Hoy (6)= 11— log, (52"’5)5_; i(ﬁi;i(ﬁl_l) (132)
560 560 560
Finally, we obtain.
log, 12— —10g26<H1f1(G)< log, 12+ 10g26 (133)

if 0<a<1, and
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2¢1 + 2¢co + 2¢3 + 2¢4 + 2¢5 + ¢

c1+ 2co + 3¢z + 2¢4 + 205 + ¢

log, 12— —10g2 6<H,(G)< log, 12+ 10g2 6, (134)
if o>1.

Theorem 24 Lot f=fp gwen by equation (92). Let
Cmax = max{c¢; : 1 <i<n(G)} and cpin=min{c¢; : 1 <i<n(G)}
where ¢; is as defined in fp. Then the value of H, s, (G) can be bounded

as_follows.

If 0<a<1,
lOgZ n— a(n_ 1)X10g2 ﬁ SH@,/ (Pn)
I-o ! (135)
—HX
< log,n+ %log2 b,
and if a>1,
—1)X
togn— =D 100 8 <, (P
a1 ’ (136)
an—1)X
< logyn+ ﬁk’gz B,

where X = ¢max — Cmin-

Proof: Given f(v)=fp(v)= [32 with ¢;>0 for
1<j<n(G). Let Cmax = max{c; : 1<j<n(G)} and
emin = min{¢; : 1 <j<n(G)}. We have,

¢1S;(v;G)|

G s (o
f = ﬁZj:l ¢j1S; 0l Sﬁ(nfl)t’max. (137)

Similarly,
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fO) = e Dmin, (138)

Therefore, combining the Equations (137) and (138) and adding
over all the vertices of G, we get.

n.ﬂ(nfl)(’min < Zf(v) Sn.'[g(nfl)c'max. (139)
velV
Hence,
ﬁ(n* D(¢pin — ¢max) ﬁ(n* D(emax — ¢pin)
Lm0 gy <222

Let X = Cmax — Cmin. Now, by raising ps(v) to the power o and
adding over all the vertices of G, we have,

( 1 o ﬁ(nfl)X
w(—ar) = Spor < w(F——) . (a4
n'ﬂ( 1)X) ; n
Taking logarithms we get,
logy n—alog, ("~ ") <log, ZP/(V)“
velV
142
(n—1)X (142)
< log,n+ualog,
(1—a)logyn—a(n—1)X log, B < log, pr(v)oc
v (143)

<(l1—w)log, n+a(n—1)Xlog, .
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Conclusion and Summary

In this article, we have studied the problem of establishing
relations between graph entropy measures. Among various
entropy measures, we have considered the classical Shannon
entropy and the Rényi entropy. In fact, there is only very little
work when applying Rényi’s entropy to graphs [16,39]. While this
research is an extension of our earlier work [17], the results
obtained here are complementing the earlier ones and of
competing interest. In particular, the main contribution of this
paper was to establish implicit information inequalities involving
the Shannon entropy and the Rényi entropy measures when
applied to networks. Also, we have presented implicit inequalities
between Rényi entropy measures having two different types of
probability distributions with additional assumptions. Further we
have shown the application of the derived results by using various
graph classes.

As mentioned earlier, investigating relations (by means of
inequalities) is crucial as relations of the values of the measures
have not yet been investigated extensively. To demonstrate the
importance of such inequalities exemplarily, suppose H; and H>
are graph entropy measures and it holds, H; < H> for some graph
G=(V,E). If H; has non-polynomial complexity and Hj is
computable in polynomial time, then H; is an upper bound that
may be feasible in a general sense. In terms of measures such as
Kérner’s entropy, relations between graph entropies could be
crucial. But note that in view of the vast amount of existing
measures, this is a daunting problem. Also, the meaning of the
Rényi graph entropy is not yet fully understood. Hence, we believe
that such relations can be useful when designing and understand-
ing complex graph-based systems. This might be especially
applicable when applying the information-theoretic network
measures such as Shannon’s and Rényi’s entropy to large complex
networks.
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