
Transcriptional Profiling of Human Brain Endothelial
Cells Reveals Key Properties Crucial for Predictive In
Vitro Blood-Brain Barrier Models
Eduard Urich1, Stanley E. Lazic2, Juliette Molnos3, Isabelle Wells2, Per-Ola Freskgård1*
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Abstract

Brain microvascular endothelial cells (BEC) constitute the blood-brain barrier (BBB) which forms a dynamic interface
between the blood and the central nervous system (CNS). This highly specialized interface restricts paracellular diffusion of
fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the
transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We
identified transcriptional differences in immune response genes which are directly related to the immortalization procedure
of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs,
which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the
neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from
freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured
BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors
show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the
two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition,
the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface
receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed
at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of
their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be
highly regulated by the local surroundings of BEC within the neurovascular unit are presented and discussed.

Citation: Urich E, Lazic SE, Molnos J, Wells I, Freskgård P-O (2012) Transcriptional Profiling of Human Brain Endothelial Cells Reveals Key Properties Crucial for
Predictive In Vitro Blood-Brain Barrier Models. PLoS ONE 7(5): e38149. doi:10.1371/journal.pone.0038149

Editor: Ken Arai, Massachusetts General Hospital/Harvard Medical School, United States of America

Received February 2, 2012; Accepted April 30, 2012; Published May 31, 2012

Copyright: � 2012 Urich et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: All authors are under paid employment by the company F. Hoffmann-La Roche. This does not alter the authors’ adherence to all the PLoS
ONE policies on sharing data and materials.

* E-mail: per-ola.freskgard@roche.com

Introduction

The specific microenvironment of the central nervous system

(CNS) is vital for proper neuronal function. A key feature which

provides and maintains the extracellular medium compatible with

normal neuronal activity is the blood brain barrier (BBB).

Consequently, the failure of BBB structural integrity and function

plays a pivotal role in the pathogenesis of many diseases of the

CNS [1,2]. The anatomical constituents of the BBB are the

specialized brain endothelial cells (BECs) that together with

pericytes, astrocytes, neurons, and possibly other glial cells,

comprise the neurovascular unit (NVU) [3,4,5,6]. Although all

these cell types contribute to the functioning of the brain

microvasculature, only the BECs are thought to control perme-

ability directly or indirectly via stimuli from the other cells in the

NVU [7,8].

While the BBB performs an important function in keeping out

unwanted or harmful molecules from the brain, it poses a

challenge for delivering valuable therapeutics such as anticancer,

antibiotic, neuroprotective or antipsychotic drugs into the brain.

Consequently, finding beneficial molecules that also cross the BBB

is an increasing problem within the pharmaceutical industry,

especially if these molecules are large biotherapeutics such as

proteins and antibodies. There is a growing need for reliable

bench models that predict important in vivo properties. These

models would facilitate our understanding of key biological

functions of the BBB and allow study of specific transport systems

potentially suitable for delivering drugs to the brain. Pharmaceu-

tical research in particular is dependent on well characterized and

easy to handle in vitro models. Therefore, BEC culture models have

been developed for the study of the BBB with an attempt to mimic

important in vivo properties. Over the last few years, the isolation

and culture of BEC have advanced significantly, resulting in a

variety of BBB models.

Endothelial cells (ECs) from various brain regions and species

have been used. The cells have been isolated by different

techniques and variation in subsequent culturing procedure of

the BECs has also been evaluated [9,10]. One limitation of cell

cultures is their potential dedifferentiation behavior where the cells

lose properties they originally inherently possessed due to the lack

of the natural in vivo environment [11,12], such as gene expression

patterns and certain functionalities. Therefore, attempts have also
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been made to impose BBB properties on BECs by co-culturing

them with astrocytes or pericytes [13] or by using sheer stress [14].

This has in many cases improved some of the properties of the

BECs, such as increased restriction in paracellular leakiness and

elevated transendothelial electric resistance (TEER). Unfortunate-

ly only a limited number of proteins and a few properties have

been studied in cultured BECs, meaning that our basic under-

standing of what regulates BEC properties is very restricted.

Furthermore our knowledge about the global expression pattern in

cultured BECs is still very incomplete.

The aim of this study was to increase our understanding of gene

expression patterns which are required for a well-functioning in

vitro BBB model. This was performed by quantifying the global

gene expression profile in the hCMEC/D3 cell line and in primary

human BEC (hpBEC). The hCMEC/D3 has been used and

characterized extensively to study BBB properties in vitro, so this

cell line functioned as a good reference for a cellular BEC model

[15]. The hCMEC/D3 cell line was generated by immortalization

of primary human brain capillary endothelial cells via a lentiviral

vector system. The hpBEC was included as a model system for

primary brain endothelial cells that could potentially demonstrate

important differences compared to a stable cell line. The

hCMEC/D3 cell line has been shown to express typical

endothelial cell markers, such as CD31, VE-cadherin and von

Willebrand factor, to show a stable karyotype, to preserve contact

inhibition for monolayers in culture and to form capillary tubes in

matrix [15]. However, the cells show deficiency in typical and

important brain endothelial properties such as low TEER value

and relative high permeability towards small tracer molecules

indicating paracellular leakiness and suboptimal formation of tight

junctions (TJs). In our hands, similarly poor functional properties

were observed for the hpBEC regardless of their primary source

also indicating issues with appropriate TJ formation.

In order to understand these suboptimal functional properties a

global transciptome analysis was performed on these two BEC

lines. The transcription profile was compared with a recently

published analysis of freshly isolated mouse brain BECs [16]. A

recent cross-species analysis showed that gene expression is

significantly preserved between the two species [17], supporting

the comparisons of human and mouse transcriptome data. The

comparison clearly showed that critical genes reported to be

responsible for structural and functional properties of the TJ are

expressed at very low levels in both cell lines. Two key genes

specifically found in BECs, claudin-5 and occludin, are expressed

at very low levels, not only in comparison to the mouse data but

also in comparison to other TJ genes. We also found major

differences in the SLC and ABC transporter families. In particular,

family members that are known to be characteristic of BECs, such

as Glut1, Pgp, MRP4 and BCRP, are expressed at very low levels

based on a similar comparison. In addition, the analysis also

indicates major differences in the expression pattern of a collection

of important cell surface receptors, which also have direct

implications for the study of transport mechanisms. Genes altered

due to the immortalization procedure are also identified and are

linked to the immune and interferon pathways. This analysis

clarifies many of the atypical BBB properties of the BEC lines and

can be explained by this gene expression analysis which has

generated essential information to further improve in vitro BBB

models. One interesting observation is the specific down-regula-

tion of adhesion molecules on the BECs in the presence of

astrocytes. This might be linked to a novel function of astrocytes in

regulating cell adhesion and, indirectly, immune surveillance of

the CNS.

Taken together, our data strongly indicate that brain ECs lose

their unique protein expression pattern outside their native in vivo

environment resulting in a more generic EC phenotype. Our

findings indicate that specific transcription of genes in brain ECs

are at least in part dictated by other cells within the NVU.

Results

Different endothelial marker expression and growth
behavior of the hCMEC/D3 and hpBEC cells

Flow cytometry analysis (FACS) for CD31 (Figure 1a), CD34

(Figure 1a), CD105 (Figure 1b) and CD54 (Figure 1c) of

hpBECs and hCMEC/D3 cells confirmed their endothelial

identity [15,18] and purity, but also revealed some differences

between these BEC lines. The surface expression of CD31 on both

cell lines is similar, whereas the hpBECs are negative for CD34

(Figure 1a). In comparison to the hCMEC/D3, the hpBECs

express more CD105 (Figure 1b) but lower levels of CD54

(Figure 1c). This is in agreement with the transcriptional data

where the hCMEC/D3 cells had log2 values of 11.78 for CD31,

9.21 for CD34, 9.97 for CD105 and 8.13 for CD54. The hpBECs

cells on the other hand had log2 values of 10.11 for CD31, 6.42 for

CD34, 10.83 for CD105 and 8.87 for CD54 (Table S1). In

addition, phosphorylation of the endothelial cell-specific receptor

tyrosine kinase TIE2 [16,19] following stimulation with 1 mM

pervanadate was also confirmed positive on both cells (97.8% of

the hpBECs & 98.4% of the hCMEC/D3) (data not shown).

The dynamic monitoring of the hCMEC/D3 growth and

viability, using the xCelligence RT-CA system [20,21], revealed

some large differences compared to the hpBECs (Figure 1d). The

interaction of adherent mammalian cells with the microelectrodes

of the xCelligence RT-CA system leads to an impedance change

that is proportional to the cell number and morphology as well as

the quality of cell attachment [20,21]. Our data show that the

hpBECs are unable to form a stable confluent monolayer over an

extended period and show sensitivity to media components of the

Growth Medium (EGM-2 supplemented EBM-2 Medium, see

Material and Methods) (Figure 1d). After a log growth phase, the

hCMEC/D3 cells reach a plateau that persists for several days

without major fluctuations. The use of Resting Medium lacking

the endothelial growth factors gave a slightly higher cell index (CI)

for the hCMEC/D3 during their plateau phase which was not

advantageous for the hpBECs (Figure 1d). The morphological

and proliferative characteristics are confirmed by phase contrast

microscopy (Figure S1). In addition to the difference in cell size,

we observed that based on cell number calculations the hCMEC/

D3 are 5-fold significantly tighter packed then the hpBECs 3 days

post seeding(p,0.001) . Freshly plated hCMEC/D3 typically grew

to confluence within 2–3 days. Light microscopy of the monolayer

at 3 days post seeding revealed a characteristic elongated spindle

shaped morphology of the cells (Figure S1) typical for primary or

low passage microvascular endothelial cultures. However, we

observed that culturing the hCMEC/D3 cells for more than 7

days after confluence (or 10 days after cell seeding) resulted in cell

overgrowth on the transwell filters (data not shown).

Gene expression differences between immortalized and
primary BECs

We assessed the overall gene expression profile for the

immortalized hCMEC/D3 and primary hpBEC cell lines using

published standard growing conditions (see Material & Meth-
ods). A total of 21460 probe sets out of 38172 high quality probe

sets (56%) surveyed by microarray met the criteria to be

considered expressed (i.e. hybridization signal above cutoff $5

Key In Vitro Properties in In Vitro BBB Models
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Figure 1. Immortalization influences BEC phenotype, growth behavior and expression of cell division related genes. (A–C) Flow
cytometry analysis of confluent hCMEC/D3 (red population, red histograms) and hpBECs (blue population, blue histograms) seeded on collagen I
coated inserts. Staining was done with indicated antibodies or relevant isotype controls (grey population, tinted histograms). The average population
sizes and standard deviations of three similar experiments are shown in A, whereas one representative experiment of three is shown in B & C
(MFI = mean fluorescence intensity). (D) Real time monitoring of adherent BECs cultured in Resting (RM) or Growth Medium (GM) by the xCeLLIgence
System. The curves show the time-, attachment- and density-dependent cell growth and viability of the individual BEC lines respectively culturing
conditions. (E) Comparison of gene expression between hCMEC/D3 cells and hpBECs. The data is represented as a dot plot on a log2 scale, where
each point represents a probe set on the gene chip. Red and blue dots indicate probe sets, which have higher expression in hCMEC/D3 (red) or
higher expression in hpBECs (blue). The mean expression values are averaged expression values for both cell lines. (F) The enrichment map displays
the differently expressed gene sets between the two BEC lines. Red node color represents higher expression in hCMEC/D3 cells, whereas blue
represents higher expression in hpBECs. Node size is proportional to the number of genes in the gene set and edge thickness represents the degree
of overlap between two gene sets. Labels for the clusters of functionally related gene sets were manually assigned: 1) Mitosis, 2) DNA Repair, 3)
Anaphase Promoting Complex, 4) Immune and Virus Response, 5) RNA Processing, 6) Cell-Cell Adhesion, 7) Differentiation/Maturation/Development,
8) Metabolic Processes, 9) Miscellaneous.
doi:10.1371/journal.pone.0038149.g001
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for at least 2 of 16 samples (Table S1). The coefficient

determination (R2) for mRNA levels between the cell lines was

0.912 (p,1.68 ? 1026), meaning that 91% of the variance in gene

expression of one cell line is accounted for by levels of gene

expression in the other cell line. Pairwise comparison between the

immortalized hCMEC/D3 versus primary hpBECs revealed a

large proportion of probe sets that were significantly differently

expressed ($10-fold = 2% of all high quality probe sets). This limit

($10-fold) led to the identification of 148 and 272 genes as higher

or lower expressed, respectively, in the hCMEC/D3 cells (Table
S1). This is graphically represented by a dot plot where each dot

represents a probe set on the Affymetrix GeneChip and its position

relative to the log2 (Figure 1e). The axes represent expression

levels in the different cell types. Gene set enrichment analysis was

performed using gene ontology (GO) biological process gene sets.

Only gene sets passing conservative significance thresholds

(p#0.05) are displayed in the enrichment map (Figure 1f)
resulting in 154 GO categories which differed between the cell

types (Table S2). The enrichment map visualizes functionally

coherent gene sets [22], in which gene sets are organized into a

similarity network, where nodes represents gene sets and weighted

links between the nodes represent the overlap of member genes

[23]. Most of the higher-expressed genes in hCMEC/D3 were

involved in DNA repair, RNA processing, mitosis and immune/

virus response (Figure 1f, Table S1 & S2). This is not

completely unexpected since the hCMEC/D3 cells have been

immortalized by co-expression of human telomerase reverse

transcriptase (hTERT) and the Simian virus (SV40) large T

antigen (TAg) [15]. SV40 TAg is a powerful viral oncoprotein

capable of transforming a variety of cell types, leading to expanded

proliferation and survival potentials [24,25,26]. The majority of

the higher-expressed genes in the hpBECs can be related to

catabolic/metabolic processes, vesicle transport, endothelial cell

migration and differentiation/maturation (Figure 1f, Table S1
& S2).

Interferon related genes up regulated in hCMEC/D3 cells
By comparing the most differently expressed genes in the

hCMEC/D3 with those in the hpBECs we found that many of

them are linked to viral infection and can be assigned to the

interferon (IFN) signaling pathway, as defined by the Reactome

database [27] (Table S1). Among those 132 genes which are 10-

fold or more expressed in the hCMEC/D3 cells compared to the

hpBECs, 13% belong to the IFN signaling pathway. By comparing

the expression levels of the 64 INF signaling genes present on the

arrays between the cell types, we can see a significant increase of

expression (p,0.0001) in the hCMEC/D3 (Figure 2a & Table
S3). A comparable picture was seen for INFa/b and INFc
pathways (Figure 2a). While the transcription of the IFN-

stimulated genes (ISGs) is enhanced in the hCMEC/D3 cells, the

transcription of the IFNs, IFN-receptors and IFN associated

signaling molecules are comparably high in both cell types (Table
S3). Exposure of human cells to viral proteins induces the

production IFNs. Therefore the IFN system is the first line of viral

defense and a powerful antitumor response in vertebrates [28,29].

Recent evidence suggests that many of the ISGs are indeed

induced by SV40 TAg [30] and affect many aspects of cellular

physiology [31]. INFa/b exert their antiviral and antitumor effects

through mechanisms that include the induction of MHC class I

molecules (MHC I) expression on the cell surface of infected or

oncogenic transformed cells [32,33,34,35,36]. IFNc, on the other

hand, increases both MHC I expression and leads to a de novo

expression of MHC class II (MHC II) molecules [37]. In fact we

observed a significantly enhanced expression of all MHC I

(Figure 2b & Table S1) and certain MHC II haplotypes (HLAs)

(Table S1) in the hCMEC/D3 cells versus the hpBECs on

transcriptional level. This observation could be validated at

protein level by FACS staining of MHC I HLA-A,B,C

(Figure 2c & 2d) and MHC II HLA-DR,DP,DQ (Figure 2e)

between the cell types, in which the hCMEC/D3 cells showed a

10-fold higher basal surface expression of HLA-A,B,C (Figure 2c
& 2d) and a 4-fold higher basal surface expression of HLA-

DR,DP,DQ (Figure 2e). The HLA-A,B,C basal surface expres-

sion on HUVECs showed similar MFI (MFI = 11269) to the

pBECs. The effects of IFNa and IFNc stimulation upon BECs

surface expression of HLA-A,B,C and HLA-DR,DP,DQ were also

examined by FACS quantification (Figure 2d & 2e). As can be

seen in Figure 2d IFNa stimulation caused a 6-fold increase in

hpBECs and a doubling of HLA-A,B,C surface expression in

hCMEC/D3. Similarly, IFNc stimulation caused a 5-fold increase

in hpBECs and a non-significant doubling of HLA-DR,DP,DQ

surface expression in hCMEC/D3 cells (Figure 2e). The data

suggest that the hCMEC/D3 is already in a stimulated state with

high expression of MHC molecules on the cell surface which is

likely to be caused by the immortalization procedure using SV40

TAg.

Astrocytic co-culturing modulates the immune state of
the BECs

Contact co-culture with astrocytes has been reported to restore

some of the dedifferentiated BBB phenotype of isolated BECs

[38,39,40] by having a particular impact on the expression and

maintenance of the tight junction (TJ) proteins

[38,40,41,42,43,44,45]. To investigate if secreted astrocytic

components could influence the gene expression of the

hCMEC/D3 and hpBEC cells, the cells were co-cultured with

astrocytes and transcriptome data was collected. The phenotypic

status of the astrocytes was verified using FACS analysis (Figure
S2). Numerous genes were significantly affected, but the change in

expression levels was small indicating low responsiveness towards

astrocytic factors (Figure 3a & 3b). Only 8.5% (1830 genes) in

the hCMEC/D3 cells and 2.2% (482 genes) in the hpBECs of all

21460 expressed genes (i.e. mean hybridization signal above cutoff

$5) were differentially expressed (adjusted p-values,0.05) be-

tween the control and the co-culturing conditions (Figure 3a &
3b). Thus, the vast majority of gene expression was not altered in

an environment containing astrocytes (Figure 3a & 3b). Proteins

belonging to the TJ family were not affected by the presence of

astrocytes (Table S1 & S4). Since we chose non-contact co-

culture conditions in order to avoid contamination by astrocytic

mRNA, this set up might explain the small gene expression

changes and indicate the importance of cell-cell interaction

through the astrocyte end-feet structures for the TJ protein

expression. However, genes that were significantly decreased in

both BECs in the presence of astrocytes could be assigned to cell-

cell adhesion, cell extravasation, immune response, response to

other organisms and cell migration (Figure 3c & Table S4). In

particular, the two genes most reduced by astrocytic co-culturing

in both cells were E-selectin and VCAM-1 (Figure 3a & 3b).

These two cell adhesion molecules are involved in leukocyte

recruitment and migration across the BBB [46,47]. FACS staining

for ICAM-1 on hCMEC/D3 cells confirmed the astrocytic effect

on ECs adhesion molecule expression (Figure S3). As a potent

source of immunologically relevant cytokines and chemokines

[48,49] it is conceivable that astrocytes may modulate the

expression of adhesion molecules that play a key role in

maintaining the immunologically privileged status of the brain.

Genes that were specifically affected by astrocytic co-culturing in

Key In Vitro Properties in In Vitro BBB Models
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Figure 2. Induction of INF-stimulated genes in immortalized BECs. (A) Expression levels of total IFN, IFNa/b and IFNc signaling pathway
genes were determined by microarray analysis for the two BEC lines. Each circle represents one gene of the indicated reactome pathway and the
difference in expression between hCMEC/D3 and hpBEC cells. To compare IFN signaling reactomes between BEC lines, the values of the four
replicates were averaged, and the probe-set with the highest value was used to represent each gene. The distributions of the genes within each gene
set were compared with a one-sample t-test, to test whether the mean of the distributions were different from zero. (B) HLA class I, b2-microtublin
and b actin gene expression in resting hCMEC/D3 (red bars) and hpBECs (blue bars) determined by microarray analysis. All displayed HLA class I and
b2-microtublin genes were significantly (p,0.001) higher expressed in the hCMEC/D3 cells. (C–E) Flow cytometry analysis of surface expression of (C

Key In Vitro Properties in In Vitro BBB Models
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both BECs are summarized in Table S5 and gene sets which were

affected by astrocytic co-culturing only in one of the two cell lines

are displayed in Table S4. A gene set enrichment analysis for

hCMEC/D3 cells was performed. Only gene sets passing

conservative significance thresholds (p#0.05) are displayed in the

enrichment map (Figure 3d) resulting in 141 GO categories

which differed between controls and HA non-contact co-culturing

condition (Table S6). Almost all significant gene sets were lower

expressed in the HA co-culture condition and can be mostly

related to immune system regulation (Figure 3d & Table S6).

Expression of proteins important for tight junction
formation

One of the most distinct characteristics of BECs is the presence

of highly organized TJs. These TJs are responsible for the selective

permeability towards large and small molecules and the high

TEER value. Transmembrane proteins of TJ include occludin,

claudins and junctional adhesion molecules (JAM). These proteins

interact with cytosolic proteins such as occludens proteins (ZO)

which are associated with the actin network of the cell cytoskeleton

[50]. By specifically examining the expression of these proteins, it

could be shown that claudin-5, b-catenin and ZO-1 are present at

a certain level in the hCMEC/D3 cells and are expressed

& D) HLA class I and (E) II molecules on hCMEC/D3 cells (red histograms, red bars) and hpBECs (blue histograms, blue bars). (C) The HLA class I
expression levels and the mean fluorescence intensities (MFI) on both resting BEC lines, in one of four similar experiments, is presented. (D) The effect
of IFNa upon HLA class I surface expression and (E) the effect of IFNc upon HLA class II surface expression on the two BEC lines are displayed as
average MFIs of three similar experiments. *p,0.05, **p,0.01 and ***p,0.001 (Student’s t-test).
doi:10.1371/journal.pone.0038149.g002

Figure 3. Astrocytic co-culturing reduced the expression of adhesion molecules. The expression of genes in (A) hCMEC/D3 and (B) hpBECs
was compared in presence and absence of human astrocytes (HA). The data is represented as a dot plot on a log2 scale, where each point represents
a probe set on the gene chip. Red and blue dots indicate probe sets, which are differently expressed (adjusted p#0.05) between culturing conditions.
Blue dots represent lower and red dots higher expressed probes in the co-culturing conditions with HAs versus culturing the BECs alone. The mean
expression values are averaged expression values for both cell lines. (C) Overlapping genes identified between the two BECs in the co-culturing
conditions with HAs. The numbers of up-regulated (red numbers) or down-regulated (blue numbers) genes in the BECs with HA co-culture are
displayed. (D) The enrichment map displays the differently expressed gene sets for hCMEC/D3 cells between culturing conditions. Blue node color
represents lower expression in hCMEC/D3 + HA, whereas red represents higher expression in hCMEC/D3 control. Node size is proportional to the
number of genes in the gene set and edge thickness represents the degree of overlap between two gene sets. Labels for the clusters of functionally
related gene sets were manually assigned: 1) Regulation of Immune Cell Activation and Proliferation, 2) Regulation of Kinase Cascade, 3) Regulation
of Inflammatory and Defense Response, 4) Response to Pathogens, 5) Regulation of the Immune System, 6) Response to Cytokines, 7) Regulation of
Cell-Cell Adhesion, 8) Cell Migration, 9) Signal Transduction, 10) Antigen Processing and Presentation, 11) Miscellaneous.
doi:10.1371/journal.pone.0038149.g003
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predominantly at the junctions between cells [15]. However, a

completely different picture emerged when the transcriptional

profiles were analyzed and compared to the mouse data obtained

from freshly isolated BECs [16]. The data clearly show that three

TJ specific genes, claudin-5, occludin and JAM2, are drastically

reduced in expression level in both cell lines compared to the

mouse cells (Figure 4). Claudin-5 has been shown to play an

important role in preventing small (,800 D) but not large

molecules crossing the BBB [51]. Furthermore, it has been shown

that the ratio between claudin-5 and -12 seems to be important for

proper TJ formation. Claudin-5 was 751-fold more expressed

compared to claudin-12 in rats [52]. A similar ratio was also found

using primary mouse BECs, where the mRNA expression levels of

claudin-5 was 28-fold higher than claudin-12 [16]. Our analysis of

the human primary and the immortalized BECs shows a much

smaller difference between claudin-5 and claudin-12. In hCMEC/

D3 cells the expression levels for these two claudins were almost

equal (Figure 4). Other proteins which are also less expressed in

both cultured BEC lines compared to the freshly isolated mouse

BECs [16] are ZO-1, ZO-2, claudin-12, tricellulin, a- and b-

catenin (Figure 4). They have also been described to be

important for the BBB tightness [53]. Interestingly, claudin-3

and ZO-3 are expressed at low levels in both cultured cell lines as

well as in the fresh preparation of mouse BECs. This could point

to a less important role for these two proteins in maintaining the

BBB integrity. One of the proteins which is for example higher

expressed in the cultured cell lines compared to the fresh ex vivo

mouse BECs is CD31, which is not surprising since CD31 was the

selection marker used during the isolation, characterization and

immortalization process of the hCMEC/D3 cells [15].

The comparison between the human cell lines and the mouse

data was performed by normalizing the expression levels to the

described housekeeping gene ribosomal protein L4 (RPL4) which

has been shown to be one of the top internal control genes for

cross-species comparison [54]. The procedure was confirmed by

comparing the normalized expression values for two other known

housekeeping genes, actin and the ribosomal protein S13 showing

that these genes are expressed at very similar levels in the cultured

human BEC lines and the freshly prepared mouse BECs

(Figure 4). In addition, all proposed housekeeping genes were

also analyzed and show only minor variations between species

(Figure S4) demonstrating that any of the newly validated

housekeeping genes [54] could have been used for gene expression

normalization.

Brain endothelial cell surface receptors expression
Another class of proteins important for BBB function are the cell

surface receptors e.g the Low Density Lipoprotein (LDL) receptor

family. These receptors are able to bind and internalize a plethora

of ligands and therefore play an important role in diverse

physiological processes. Some of the members have been described

to play a unique role in the transcytosis of various ligands at the

BBB. The expression levels of the LDL receptor family members

are shown in Figure 5 together with two other key endocytic

receptors, transferrin receptor (TfR) and the insulin receptor (IR).

The expression profile for these receptors is significantly different

in the in vitro BEC systems compared to the expression levels of

freshly prepared BECs [16] (Figure 5). Four receptor genes that

are higher expressed in vivo are LRP8, IR, IGF1R and FcRn. One

receptor expressed at high levels in vivo as well as in the cultured

BECs is the TfR (Figure 5). This receptor has already been

shown to be expressed on the hCMEC/D3 cells by FACS [55].

LRP1 and RAGE have been described to be involved in amyloid-

b transport across the BBB [56]. LRP1 has also been described to

be a transporter for various proteins and peptides over the BBB

[57]. However, both receptors are expressed at low levels in both

the cultured human and the freshly prepared mouse BECs

(Figure 5).

Brain endothelial transporter expression
To further investigate the status of the both BEC lines we next

examined the expression profiles for the two important transport

families, the solute carrier (SLC) and the ATP-binding cassette

(ABC) transporters [58,59]. These two classes of BBB proteins are

responsible for the transfer or exclusion of nutrients and toxic

agents. Notably, the majority of the substrates for these

transporters are small molecules, including a variety of dipeptides.

An overview of the SLC family gene expression profile is displayed

in Figure 6 and again compared to the freshly prepared BECs

from mouse [16]. The data is displayed using the same

normalization procedure using the housekeeping gene RPL4.

The highly expressed transporters identified using the mouse

BECs such as Glut1 (slc2a1), MCT1 (slc16a1), MCT8 (slc16a2),

TauT (slc6a6), CAT1 (slc7a1) and LAT1 (slc7a5) are expressed at

very low levels in both cultured human BECs. This is consistent

with the previous data on the TJs and receptors where BBB

specific genes are significantly reduced in expression levels in the

cultured human BECs. Thus, SLC family members that are

known to be involved in vital functions at the BBB and are

expressed at high levels at the BBB, show a more average

expression level in the cultured human BECs. We performed the

same analysis for the ABC transport family and strikingly the genes

which are highly expressed in the mouse BECs were strongly

reduced in the both cultured human BECs (Figure 7). The typical

ABC transporters at the BBB, such as Pgp, (ABCB1), MRP4

(ABCC4) and BCRP (ABCG2), were almost reduced to undetect-

able levels (Figure 7). Importantly, the change in expression levels

within these two families of transporters are affected in both

directions (ratio plot in Figure 6 and 7), indicating an

asymmetric perturbation of the transcriptional regulation machin-

ery. Cultured cells fail to maintain high levels of key BBB

transporters. Taken together, it appears that the unique expression

pattern of these typical BBB transporter family members

disappears when BECs are isolated from their natural environ-

ment.

Discussion

In this study we present evidence that those genes in BECs that

are highly expressed and described to be important for ensuring

BBB-like properties are particularly affected by culturing the cells

in isolation. This is most likely due to the loss of their native

environment within the neurovascular unit (NVU).

The information was gathered by investigating how BECs

respond to culture conditions without their in vivo surrounding.

Astrocytes, pericytes and neurons normally interact directly or

indirectly with the endothelium within the intricate structure of the

NVU [3,4,5,6]. For instance, it has been recently shown that

pericytes can have a direct effect on endothelial cell properties in

vivo, where reduced expression of pericytes increased the

transcellular transport across the endothelial cells [60,61].

Astrocytes have previously been described to modulate BBB

permeability [38] and recently it has been shown that astrocytes

have a pivotal role in dynamic signaling within the NVU related to

regulation of cerebral blood flow [62]. In this study we used two

independently derived human BECs, one of primary source

(hpBECs) and the other an immortalized cell line (hCMEC/D3).

We show that these two BECs have a very similar global gene
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expression profile (R2 = 0.91, p,1.68 ? 1026). Importantly, both

cell types are pure endothelial cell populations based on the

presence of typical endothelial cell surface markers (Figure 1a–
1c).

Some of the major differences in gene expression can be

attributed to the immortalization procedure, where genes know to

be affected by SV40 large T antigen integration [30] have also

been altered in the hCMEC/D3 cell line. As a consequence of the

immortalization procedure genes belonging to RNA processing,

DNA repair, immune and virus response and mitosis are highly

and significantly up-regulated in the hCMEC/D3 cell line

(Figure 1f, Table S2 and S7). Genes that are expressed at

higher levels in the hpBEC based on the gene set enrichment

analysis belong to vesicle transport, endothelial migration and

catabolic/metabolic processes, possibly indicating a deficiency of

these properties in the hCMEC/D3 cell line. Genes related to the

IFN signaling pathway have higher expression levels in hCMEC/

D3 (Figure 2a). The expression of MHC class I and II genes are

significantly higher in the hCMEC/D3 cell line which is

confirmed by FACS analysis (Figure 2c–2e). The hpBECs are

more responsive towards IFN stimulation whereas the hCMEC/

D3 cells are already in an activated state (Figure 2d and 2e).

This indicates that immunological responses could be significantly

affected in the hCMEC/D3 cell line as a result of the

immortalization procedure. The hCMEC/D3 cells proliferate

faster (Figure 1d) and persist in a confluent state for a longer

period (Figure 1d). We speculate that the up regulated expression

of anaphase and mitosis related genes, identified by gene set

enrichment analysis (Figure 1f), alter the growth characteristics of

the hCMEC/D3 cells compared to the hpBECs. Thus, this

immortalized cell line should be used with caution, especially if

immunological processes are being investigated.

The coefficient determination (R2) with and without astrocyte

co-culturing was 0.998 (p,4.18 ? 1028) and 0.997 (p,5.88 ? 1028)

for the hpBECs and the hCMEC/D3 cell line, respectively.

Overall, this demonstrates that none of the BECs responded

strongly to astrocytic co-culturing at the gene expression level

(Figure 3a and 3b). The data in the figures illustrate the low

number of genes that were affected by the presence of astrocytes.

This is in agreement with the unaltered functional properties of

these BECs, such as TEER values and paracellular permeability in

co-culture with astrocytes. Our transcriptional analysis of the

BECs in presence of astrocytes was performed in a non-contact

arrangement to avoid any risk of contamination by astrocytic

Figure 4. Differences in expression levels of TJ protein between cultured BECs and freshly isolated BECs. The RPL4 normalized mouse
expression values (Mouse) are compared to the also RPL4 normalized expression values of hpBECs (Average P) and hCMEC/D3 (Average D3). The
lower graph shows the absolute expression levels for each cell type. The upper graph shows the ratio between RPL4 normalized mouse BECs and
hpBECs (Ratio M/P); the ratio between RPL4 normalized mouse BECs and hCMEC/D3 (Ratio M/D3) and the ratio between hpBECs and hCMEC/D3
(Ratio P/D3). Three genes that are expressed in much lower levels in both the hpBECs and the hCMEC/D3 cell line are claudin-5, occludin and JAM2.
Two genes that are expressed at higher levels in the human cell lines are JAM3 and CD31.
doi:10.1371/journal.pone.0038149.g004
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mRNA. This experimental set up lacking the direct contact with

the astrocytes might explain the low responsiveness of the BECs at

transcriptional level. However, when using a contact astrocyte co-

culturing set up, no significant change could be detected in either

TEER (BECs+HA = 10–30 V/cm2) or paracellular permeability

(Pe values: hCMEC/D3 = 3.560.2 ? 1025 cm/sec, hCMEC/D3

+ HA 3.360.3 ? 1025 cm/sec, hpBECs = 3.460.4 ? 1025 cm/sec,

hpBECs+HA = 3.760.4 ? 1025 cm/sec). There are reports

describing the effects of astrocytic co-culture in which the focus

of the study was on TJ properties. One recent study using an

immortalized mouse brain endothelial cell line in co-culture with

primary rat astrocytes showed a small but non-significant increase

in TEER but no changes in gene expression of various TJ proteins

[63]. Another recent investigation using primary porcine brain

endothelial cell showed that co-culturing with a mixture of

primary glial cell from rat could have a profound effect on the

endothelial cell properties, such as increased TEER values and

claudin-5 expression [42]. In addition, recently it was shown that

claudin-5 was significantly increased in three different in vitro BBB

models by the influence of astrocytes [64]. We were unable to

identify changes in gene expression related to TJs formation in

these two BECs using a non-contact astrocyte co-culturing set up.

However, we identify other genes that were significantly

influenced by the presence of astrocytes, and importantly some

of them were changed in both BECs (Figure 3c). Interestingly,

among these 140 genes that were significantly down-regulated in

both BECs in presence of astrocytes, many could be assigned to

genes involved in cell-cell adhesion, cellular extravasation and cell

migration GO categories. A closer statistical investigation of these

gene sets as whole indeed revealed a significant down-regulation of

their members in both BECs when co cultured with astrocytes. For

instance, E-selectin (SELE) together with vascular cell adhesion

molecule 1 (VCAM-1), intracellular cell adhesion molecule 1

(ICAM-1) and leucocyte surface antigen CD47 (MER6), all part of

the signaling platform for EC interaction with leukocytes [65], are

included in these common genes which were affected by astrocytic

co-culturing. Possibly, this could be related to the regulation of

leukocyte migration and extravasation into the CNS [65].

Leukocyte recruitment by ECs is regulated by the expression of

surface adhesion molecules, which are responsible for decelerating

and capturing circulating immune cells. The extent to which this

occurs is governed by the degree of expression and activity of these

surface adhesion molecules and the activation state of the

leukocytes. Based on these data we speculate that astrocytes might

Figure 5. Differences in expression levels of surface receptors between the cultured BECs and freshly isolated BECs. The RPL4
normalized mouse expression values (Mouse) (RPL4 normalized) are compared to the also RPL4 normalized expression values of hpBECs (Average P)
and hCMEC/D3 (Average D3). The lower graph shows the absolute expression levels for each cell type. The upper graph shows the ratio between
RPL4 normalized mouse BECs and hpBECs (Ratio M/P), the ratio between RPL4 normalized mouse BECs and hCMEC/D3 (Ratio M/D3) and the ratio
between hpBECs and hCMEC/D3 (Ratio P/D3). Four genes that are expressed in much lower levels in both the hpBECs and the hCMEC/D3 cell line are
Lrp8, IR, IGF1R and FcRn.
doi:10.1371/journal.pone.0038149.g005
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affect not only the BBB permeability but also the expression of

adhesion molecules, inducing a low expression and activation state

of adhesion molecules on BECs and thereby be directly involved in

the regulation of the immune surveillance status of the CNS. Thus,

astrocytes seem to have a specific function in cerebral vessels and

capillaries regulating extravasation of blood cells over the BBB,

this is not the case in the peripheral vasculature which lacks

astrocytic cells. These data are in agreement with a very recent

publication showing that sonic hedgehog which is produced by

astrocytes promotes immune quiescence of BBB ECs by decreas-

ing expression of proinflammatory mediators and the adhesion

and migration of leucocytes [66]

Certain key conclusions made in this paper are based on

comparison of the isolated human BECs transcriptome data with

the data generated using freshly purified BECs from mouse [16].

This is an important procedure since the mouse data can be

assumed to represent essential in vivo gene expression patterns

important for unique and distinctive BEC properties. We believe

this is a valid approach despite the species differences because the

established housekeeping gene RPL4 was used for normalization

of the probe signals [54]. In addition, by comparing the top 14

candidate housekeeping genes for human and mouse the average

ratio is 1.12 with a standard deviation of 0.518 (Figure S4). This

tight agreement between these housekeeping genes was obtained

even though these two data sets were obtained in two independent

studies. This is far below the expression differences we are using in

our discussions and conclusions regarding BBB specific genes.

Moreover, the human and mouse data comparison is also

consistent with an unbiased bidirectional change in expression

pattern within a family of genes with similar biological function,

such as for the SLC family depicted in Figure 8a. It is also

interesting to note that the correlation between the mouse and

human data is high, the coefficient of determination between

mouse and hpBECs and the hCMEC/D3 cell line is 0.482

(p,7.74 ? 1025) and 0.455 (p,2.50 ? 1029), respectively. This

means that about half of the variability in the human cells can be

explained by the variability in the mouse BECs. Potentially, the

half with global cross-species correlation could potentially repre-

sent transcripts which are not imposed by the natural in vivo

environment. While the other half of the gene set where no clear

correlation was obtained could belongs to transcripts that are

directly regulated within the NVU surroundings where most of

these genes belong to BBB specific transcripts discussed in this

paper. Recently, an extensive brain gene expression profiling

Figure 6. Differences in expression levels of SLC transporter between cultured BECs and freshly isolated BECs. The RPL4 normalized
mouse expression values (Mouse) are compared to the also RPL4 normalized expression values of hpBECs (Average P) and hCMEC/D3 (Average D3).
The lower graph shows the absolute expression levels for each cell type. The upper graph shows the ratio between RPL4 normalized mouse BECs and
hpBECs (Ratio M/P), the ratio between RPL4 normalized mouse BECs and hCMEC/D3 (Ratio M/D3) and the ratio between hpBECs and hCMEC/D3
(Ratio P/D3). For instance genes that are expressed in much lower levels in both hpBECs and the hCMEC/D3 cell line are GLUT1, MCT8 and OAT3.
doi:10.1371/journal.pone.0038149.g006
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between mouse and human was undertaken. This cross-species

analysis showed that gene expression is significantly preserved

between the two species (R = 0.60; p,102400) [17].

A particular focus of this study was the understanding of TJ

properties at transcriptional level in order to elucidate some of the

key genetic attributes necessary for proper BBB function. Our

transcriptome data on the hCMEC/D3 cell line and the hpBECs

are in agreement with relative high paracellular leakiness and low

TEER values. In our hands, the hCMEC/D3 cells have a TEER

value in the region of 15–30 V/cm2 which is in agreement with

published values [15] and is similar to values obtained in

peripheral capillaries. Similar low TEER values were also

obtained for the hpBECs. These numbers should be compared

to in vivo values where the resistance has been estimated to be

approximately 1500–8000 V/cm2 [67,68,69]. Certain members of

the claudin [52] family and occludins [70] have been described to

regulate the diffusion of certain ions between ECs. Claudin

expression within the TJs seems to determine the ion selectivity of

the paracellular diffusion [52], meaning that not only the existence

of certain TJ proteins are important but also their expression levels

in relation to other TJ proteins. Our data shows that occludin and

claudin-5 are expressed at very low levels in the cultured human

BECs. These interpretations are based on mRNA quantification

and not on directly measured protein levels which could be

misleading. However, a recent investigation on thousands of genes

in mammalian cells shows a good correlation (R2 = 0.41) between

mRNA and protein levels [71]. These two TJ proteins have been

described to play a pivotal role in maintaining low paracellular

permeability at the BBB [51,70,72,73]. Thus, the low expression of

claudin-5 and occludin are probably one of the reasons for the low

TEER values in these two cell lines. However, this might not be

corrected by a simple overexpression of only these two TJ proteins.

Correction of the levels of all TJ protein may be needed to

establish functionalities resembling in vivo properties. Our gene

expression analysis and the comparison with the mouse tran-

scriptome data indicate that the absolute levels and the relative

expression of some important TJ proteins in hCMEC/D3 cell line

and hpBECs are altered (Figure 4). The precise expression profile

of the TJ proteins in BECs is probably dictated by their

environment and this regulatory mechanism is altered when the

BECs are cultured in isolation. Recently, attempts have been

made to develop the properties of the hCMEC/D3 cell line by co-

culturing with astrocytes and pericytes [74] but so far the

improvement has been small. Thus this research area needs

additional attention to ensure further advancements.

Figure 7. Differences in expression levels of ABC transporter between cultured BECs and freshly isolated BECs. The RPL4 normalized
mouse expression values (Mouse) are compared to the also RPL4 normalized expression values of hpBECs (Average P) and hCMEC/D3 (Average D3).
The lower graph shows the absolute expression levels for each cell type. The upper graph shows the ratio between RPL4 normalized mouse BECs and
hpBECs (Ratio M/P), the ratio between RPL4 normalized mouse BECs and hCMEC/D3 (Ratio M/D3) and the ratio between hpBECs and hCMEC/D3
(Ratio P/D3). Three genes that are expressed in much lower levels in both the hpBECs and the hCMEC/D3 cell line are Pgp1, MRP4 and MDRA1.
doi:10.1371/journal.pone.0038149.g007
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One important transport mechanism for proteins across the

BBB is thought to be facilitated by receptor-mediated transport

(RMT) [75]. The transferrin and insulin receptors have been

shown to transport cargo across the BBB using a transcytosis

mechanism [76]. These two receptors are expressed in both the

hCMEC/D3 cell line and the hpBECs based on our gene

expression data (Figure 5) and is in agreement with published

data [55]. However, other described transporters such as LRP1

and RAGE are expressed at very low levels in both the two

cultured human cell lines as well as in the freshly prepared mouse

BECs. The ability of these two receptors to transport amyloid-b
over the BBB is currently under investigations [77,78]. Interest-

Figure 8. Key BBB genes are expressed at low levels in cultured human BECs. (A) All genes for mouse BECs versus hCMEC/D3 are displayed
as grey dots. Tight junction genes (red square), SLC members (blue dot), ABC members (yellow triangle) and the surface receptors (green diamond)
are highlighted. The x-axis shows the ratio between mouse and hCMEC/D3 and the y-axis shows the ratio between mouse BECs and hCMEC/D3
multiplied by the expression levels in mouse BECs. Genes in the upper right corner are therefore highly expressed in mouse BECs and much more in
comparison to the hCMEC/D3 cell line. The graph shows that all key BBB genes are expressed at lower levels in the human cell line hCMEC/D3
(enlarged symbols). A similar result was obtained when comparing the mouse expression data to the hpBECs. (B) A schematic representation of the
key genes identified in this study to have low level of expression in the hCMEC/D3 cells. The picture illustrates the spatial location of the BBB genes
on BECs and the fold reduction in expression compared to mouse BECs.
doi:10.1371/journal.pone.0038149.g008
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ingly, there are four additional receptors with high transcriptional

levels in BECs based on the mouse in vivo data (Lrp8, IR, IGF1R

and FcRn) which fail to be maintained at high levels in the two

cultured human cell lines (Figure 5). Possibly, as seen for the TJ

proteins, the transcription of these receptors is specifically

regulated by the neighboring cells within the NVU.

Cell surface transporters are the gatekeepers for all cells and

organelles, controlling uptake and efflux of crucial compounds

such as sugars, amino acids, nucleotides, inorganic ions and drugs.

These transporters are especially important for BBB function since

they regulate homeostasis inside the brain by selectively deter-

mining what should be permitted to enter or exit the brain. The

two most important transport families are the SLC and ABC

transporters [79]. Strikingly, typical BBB transporters that are

highly expressed in the freshly prepared mouse BECs are in

general expressed at low levels in the two human cell lines

(Figure 6 and 7) This is clearly seen within the SLC family where

there is low expression of Glut1 (SLC2A1), MCT1 (SLC16A1),

MCT8 (SLC6A2), TauT (SLC6A6), CAT1 (SLC7A1) and LAT1

(SLC7A5). In the ABC family, members like Pgp (ABCB1), MRP4

(ABCC4) and BRCP (ABCG2) are also affected in a similar

manner. Thus, our data strongly suggest that transporters that are

highly expressed in vivo fail to be preserved in ECs in vitro.

Some of the key findings in this paper are summarized in

Figure 8 where the expression levels of all genes are compared

between the purified mouse BECs with the human immortalized

cell line hCMEC/D3. The distribution of the ratio in expression

levels among genes between the two BECs is centered at one,

demonstrating that equal amounts of genes are either up or down

regulated in the hCMEC/D3 cell line compared to the mouse

BECs. This is also the case when analyzing expression levels of

particular families of genes, indicating that the changes identified

are not due to a systematic loss of expression of entire family of

genes. For instance the expression of the large SLC family is evenly

distributed amongst all genes, which is also the case for the claudin

family members (Figure 8). However, genes that have been

described to possess a unique BBB function are all expressed at

very low levels in the hCMEC/D3 cell line (genes indicated in
Figure 8). The low expression levels of these characteristic BBB

genes were also seen for the hpBEC, suggesting that this massive

reduction in expression of typical BBB genes could be a general

phenomenon when BECs are studied in isolated cultures. The

mere presence of a particular protein detected by immunocyto-

chemistry is no guarantee for correct cellular function. The

absolute level of expression is very likely to influence the cellular

phenotypic properties.

In general, the findings of our study illuminate the need for

improved in vitro BBB models. Especially when complex biological

mechanisms such as transcellular transport, intracellular sorting of

proteins and extravasation of cells are being investigated. Detailed

characterization is necessary for better understanding of the data

generated in the in vitro models and its relevance. Importantly,

BECs are heavily influenced by their native environment and this

has to been taken into account when designing the right conditions

for a predictive in vitro BBB model.

Materials and Methods

Cell lines and culture conditions
Immortalized human capillary endothelial cells (hCMEC/D3)

were obtained under license from INSREM France (Weksler BB,

et al. (2005) Blood-brain barrier-specific properties of a human

adult brain endothelial cell line. Faseb J 19: 1872–1874) and the

human primary cerebral microvascular endothelial cells (hpBECs)

were purchased from the Applied Cell Biology Research Institute

(Kirkland, WA). The human primary astrocytes (HAs) were

purchased from ScienCell Research Laboratories (San Diego,

CA). The hCMEC/D3 cells used for the experiments were

between passage (p) 27 and 32. The hpBECs (p2) and the HAs (p3)

were grown for maximal 2 additional passages. All culture ware

(BD Falcon) and transwell filters (Millipore) (pore size 0.4 mm, high

density pores) were coated with rat tail collagen type I solution (BD

Bioscience) at a concentration of 10 ug/cm2 for 1 hour at 37uC
according to the manufactures instructions. All endothelial cells

were grown in EBM-2 Medium (Lonza Bioscience) supplemented

with EGM-2 containing hFGF-B, VEGF, R3-IGF, ascorbic acid,

hEGF, hydrocortisone and heparin (Lonza Bioscience). For

functional assays the cells were grown in a growth factor depleted

EBM-2 medium containing 3% human serum (Blood Bank, Basel,

Switzerland) and 0.55 mM hydrocortisone (Sigma) in the following

referred as the resting medium. Cells were cultured in the

incubator at 37uC with 5% CO2, 95% fresh air and saturated

humidity. Cell culture medium was changed every 3 days.

Co-cultivation with human astrocytes
56104 HAs/cm2 were seeded in astrocytic medium (ScienCell

Research Laboratories), containing astrocytic growth supplements

(ScienCell Research Laboratories) onto poly-L-lysine (Sigma)

coated 12 well plates. 3 days after seeding, after the HAs were

confluent, freshly collagen coated transwell filters were transferred

to the 12 well plates and the culture medium was replaced by

resting medium. 56104 of either hCMEC/D3 or hpBECs were

subsequently seeded onto the transwell filters and co-cultured for 3

days.

Interferon stimulation
Confluent hpBECs and hCMEC/D3 were treated with either

human recombinant IFNc (R&D Systems) or human recombinant

IFNa (Roferon-A, Roche, Switzerland) (100 U/ml each) for

16 hours at 37uC before they were Flow Cytometry analysed.

Real time impedance measurement
Cell growth behavior was continuously monitored every

15 minutes for 7 days using a Real Time Cell Analyzer

(xCeLLigence, Roche). For time-dependent cell response profiling,

100 ml of cell culture medium was added to the collagen I coated

96 well E-plates to obtain background reading followed by the

addition of 100 ul of cell suspension. The E-plates containing the

cells were allowed to incubate at RT for 15 minutes and placed on

the reader in the incubator for continuous recording of impedance

as reflected by cell index (CI). The CI curves are displayed as the

average of 4 replicates +/2 standard deviation. All the data was

normalized to the first impedance background measurement.

RNA extractions
For microarray analyses endothelial RNA was isolated from

four individual transwell filters per experimental setting: hCMEC/

D3, hCMEC/D3 + HA, hpBECs and hpBECs + HA. RNA

extractions were performed using RNeasy Mini Kit (Qiagen)

according to the manufacturer’s instructions. Quality and quantity

of all isolated RNAs were determined with a NanoDrop ND 1000

(NanoDrop Technologies) and a Bioanalyzer 2100 (Agilent). The

RNA integrity numbers in all cases were from 8.3 to 10 indicating

minimal RNA degradation.
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Microarray procedures and data processing
Whole genome expression profiles were generated for all

samples plus two control universal human reference RNA

(Stratagene) samples. Four Affymetrix chips were used for

microarray hybridization of each condition (i.e., cell-type, co

culturing). 100 ng of total RNA from each sample were used to

generate biotinylated aRNA, using the Affymetrix GeneChip 39

IVT Express kit according to manufacturer’s instructions (Affyme-

trix Inc, CA, USA). 16 hours incubation was used for the in vitro

transcription reaction. The cRNA samples were hybridized

overnight to Affymetrix U133 Plus 2.0 full genome oligonucleotide

arrays and then stained with Streptavidin-Phycoerythrin according

to the manufacturer’s instructions (Affymetrix). Arrays were

scanned using a GeneChip Scanner 3000 (Affymetrix) and signal

intensities were calculated automatically by Affymetrix GeneChip

Command Console. Microarray data were analyzed with R

(Version 2.11.1) using the affy, affyPLM, genefilter, and limma

Bioconductor packages. All arrays passed a QC inspection and

showed similar background values and distributions of signal

intensities. Preprocessing (probe summarization, background

correction and quantile normalization) was done with the RMA

algorithm. Before examining differential expression, spike-in probe

sets were removed, along with poor quality probe sets. These were

defined as probe sets with three or more probes that were poor

(e.g. the probe sequence was not unique, based on more recent

public annotations as well as internal annotations). Finally, probe

sets with low expression (14 or more samples with log2 expression

,5) across samples were removed [80] [81], leaving 21460 probe

sets in the final analysis. Differential expression was assessed using

the limma package, and multiple testing was taken into account by

using the false discovery rate (FDR) rather than unadjusted p-

values. Gene set enrichment analysis (GSEA; [82]) was used to

look for enrichment of differentially expressed genes between the

two cell types, based on Gene Ontology (GO) biological process

terms. Gene sets smaller than 10 or greater than 400 were not

included. If a gene had multiple probe sets targeting it, the probe

set with the highest mean expression (across all samples) was used.

For the human (in vitro) versus mouse (in vivo) comparison, log2

expression values were normalized to RPL4, a ribosomal protein

that has been shown to have relatively stable expression across

species [54]. The difference between the mouse and human values

were used as input for the GSEA algorithm from the Broad

Institute [81].

Flow Cytometry Analysis
Confluent resting Brain Endothelial Cells (BECs) or HAs

monolayers were detached from the transwell filters with

Trypsin-EDTA (Gibco). Single cell suspension was subsequently

incubated in resting medium at 37uC for 1 hour prior to the

staining. All antibodies were directly labeled and purchased from

BD Pharmingen. After the staining the cells were washed twice

with stain buffer (BD Pharmingen) and analyzed using a Guava

easyCyte flow cytometer (Millipore). For surface staining, 16106

cells were pelleted and incubated for 45 minutes at 4uC with the

following antibodies: anti-CD31-PE (WM59), anti-CD34-APC

(581/CD34), anti-CD105-Alexa647 (266), anti-CD54-PE (HA58),

anti-HLA-ABC-FITC (G46-2.6), anti-HLA-DR,DP,DQ-FITC

(Tu39), IgG1-PE (MOPC-21), IgG1-FITC (MOPC-21), IgG1-

APC (MOPC-21), IgG1-Alexa647 (MOPC-21) and IgG2a-FITC

(G155-178). For intracellelular staining 16106 pelleted HAs were

fixed (BD Cytofix) for at 37uC for 10 minutes, permeabilized (BD

Phosflow Perm III) on ice for 30 minutes and incubated with the

following: anti-GFAP-Alexa647 (1B4) and IgG2b-Alexa647 (27–35).

Supporting Information

Figure S1 Phase contrast microscopic imaging on
hpBECs and hCMEC/D3 cells. Phase contrast microscopy

of confluent hpBECs and hCMEC/D3 cells, at 3 days post seeding

on collagen coated plastic dish (bar = 50 mm). The pictures

illustrate the typical phenotype of an endothelial cell monolayer

in which the cells partially aligned their grow position to each

other.

(TIF)

Figure S2 Human astrocytes analysis with FACS using
GFAP expression as a marker. Flow cytometry analysis of

confluent human Astrocytes (HAs) 3 days post seeding, seeded on

poly-L-lysine coated plastic dish. The intracellular staining was

done with the indicated antibody (green histogram) or a relevant

isotype control (tinted histogram). GFAP expression level in one of

three similar experiments is presented. A minor fraction of the cells

showed a high expression level of the GFAP whereas the vast

majority of HAs express GFAP at intermediate levels.

(TIF)

Figure S3 Brain endothelial cells in astrocyte co-cultur-
ing alter ICAM-1 expression levels. Flow cytometry analysis

of confluent hCMEC/D3 cells co-cultured with human Astrocytes

for 3 days. The mean fluorescence intensity (MFI) of ICAM-1

surface expression with (green histogram) and without (black

histogram) astrocytic co-culturing are shown. The grey histogram

shows the background binding of the relevant isotype control

antibody on hCMEC/D3 cells without co-culturing. One of three

similar experiments is displayed.

(TIF)

Figure S4 Gene expression analysis of housekeeping
genes from human and mouse brain endothelial cells.
(A) The variation of proposed housekeeping genes between

human and mouse probe sets after normalization using the Rpl4

gene showing low deviation from a ratio of one. The average ratio

for all 14 housekeeping genes are 1.12 with a standard deviation of

0.518. (B) Comparison of gene expression between hCMEC/D3

cells and mouse pBECs. The data is represented as a dot plot on a

log2 scale, where each point represents a probe set on the gene

chip. Red and blue dots indicate probe sets, which have higher

expression in hCMEC/D3 (red) or higher expression in mouse

pBECs (blue). Grey dots show the expression respectively

difference of expression of all 14 housekeeping genes between

the species.

(TIF)

Table S1 All average expression data.
(XLS)

Table S2 hCMEC D3 vs. hpBECs gene sets.
(XLS)

Table S3 IFN signaling reactomes hCMEC D3 vs.
hpBECs.
(XLS)

Table S4 BECs + HA, gene sets.
(XLS)

Table S5 BECs + HA, genes in hCMEC D3 and hpBECs.
(XLS)

Table S6 hCMEC D3 + HA, gene sets.
(XLS)

Table S7 Mouse pBECs vs. hCMEC/D3, gene sets.
(XLS)
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