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Abstract

The opportunistic pathogen Pseudomonas aeruginosa responds to zinc, cadmium and cobalt by way of the CzcRS two-
component system. In presence of these metals the regulatory protein CzcR induces the expression of the CzcCBA efflux
pump, expelling and thereby inducing resistance to Zn, Cd and Co. Importantly, CzcR co-regulates carbapenem antibiotic
resistance by repressing the expression of the OprD porin, the route of entry for these antibiotics. This unexpected co-
regulation led us to address the role of CzcR in other cellular processes unrelated to the metal response. We found that CzcR
affected the expression of numerous genes directly involved in the virulence of P. aeruginosa even in the absence of the
inducible metals. Notably the full expression of quorum sensing 3-oxo-C12-HSL and C4-HSL autoinducer molecules is
impaired in the absence of CzcR. In agreement with this, the virulence of the czcRS deletion mutant is affected in a C. elegans
animal killing assay. Additionally, chromosome immunoprecipitation experiments allowed us to localize CzcR on the
promoter of several regulated genes, suggesting a direct control of target genes such as oprD, phzA1 and lasI. All together
our data identify CzcR as a novel regulator involved in the control of several key genes for P. aeruginosa virulence processes.
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Introduction

Two-component signal transduction systems (TCS) are the most

important mechanisms used by bacteria to detect and respond to

changing environmental conditions and stresses. Upon sensing

external or internal stimuli, the TCS phosphorylation cascade

enables the bacterial cells to modulate gene expression and to

adapt their physiology in a specific and rapid manner [1]. The two

partners of a classical TCS are the sensor histidine kinase (HK)

and the response regulator (RR). The HK sensor is usually a

membrane-spanning protein which upon signal recognition,

dimerizes and autophosphorylates on a conserved histidine residue

using ATP. The phosphoryl group is then transferred to an

aspartate residue on the cognate receiver domain of the RR

protein. Following phosphorylation, the output domain becomes

active to mediate the adapted response. The majority of RR

proteins possess an output domain containing DNA-binding

activities, allowing them to directly modulate gene transcription

[2]. In the past few years, the emerging picture of cross-talk

activity and coordination between different TCS raised on the

horizon a more complex view of two-component signal transduc-

tion [3,4,5].

Approximately 130 genes encoding for TCS modules have been

identified in the genome of P. aeruginosa [6,7]. This huge number

indicates that P. aeruginosa possesses complex regulatory strategies

to face environmental challenge and could explain the ubiquity of

this organism. Indeed, P. aeruginosa is one of the most versatile

bacteria, capable of living in many diverse environments [8,9]. By

virtue of its vast adaptability, this Gram-negative bacterium is also

a major opportunistic pathogen, causing serious nosocomial

infections, severe problems in cystic fibrosis and immunocompo-

mised patients as well as in burn victims [10]. Furthermore, P.

aeruginosa is intrinsically resistant to multiple classes of antimicro-

bial compounds. This is a major cause of therapeutic failure in the

treatment of infections [11].

We previously characterized the metal-inducible TCS CzcRS in

this bacterium [12,13]. In the presence of Zn, Cd, Co, or indirectly

in the presence of Cu, the metal-inducible TCS CzcRS is

activated. CzcR then promotes the expression of the metal efflux

pump CzcCBA. Additionally, CzcR down-regulates the expression

of the OprD porin, the route of entry of carbapenem antibiotics

[14,15]. As the result of this co-regulation, the presence of Zn, Cd,

Co, or Cu in the environment render P. aeruginosa resistant to both

trace metals and carbapenems [12,13]. Carbapenem represents an

important class of antibiotics active against both Gram-negative

and Gram-positive bacteria. They are often used as the last choice

of treatment against P. aeruginosa and resistance to these antibiotics

is a major worldwide problem [16]. In P. aeruginosa, the main and

most frequent mechanism of carbapenem resistance is a decrease

in OprD expression, occurring at the transcriptional or post-

transcriptional level [17,18]. This unusual co-regulation mecha-
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nism between metal and carbapenem resistance is of particular

concern since clinical strains of P. aeruginosa are not genetically

different from their environmental counterparts [19,20]. Environ-

mental metal pollutants might therefore have a direct effect on the

physiology of this pathogen.

In addition to its strong ability to resist many different

antimicrobial compounds, P. aeruginosa possesses intricate regula-

tory quorum sensing systems (QS) that control, in a cell density-

dependent manner, the expression of more than a hundred genes,

including those required for virulence factor expression and

biofilm formation, [21,22]. The two major QS are the intercon-

nected las and the rhl systems, the las system controlling the

expression of the rhl system (reviewed in [23]). A third cell-to-cell

signaling pathway has been characterized in P. aeruginosa [24]. It

involves quinolone molecules (Pseudomonas Quinolone Signal,

also called PQS) and could account for an additional level of

control of virulence factor expression [25,26].

Furthermore The QS circuit is strongly integrated within other

cellular processes and environmental or internal stimuli are

required for full expression of target genes [27]. For instance,

several factors are known to positively and negatively modulate

QS under different conditions [23,28]. In the present paper, we

found that CzcR, the regulatory protein for the CzcRS TCS, is

required for full expression of QS-regulated genes. Moreover the

results showed that CzcR is able to bind directly to several

promoters linking metal stress, antibiotic resistance and quorum

sensing in P. aeruginosa.

Results

CzcR negatively regulates pyocyanin biosynthesis
In our previous work, we constructed a P. aeruginosa PAO1 strain

deleted for the metal-inducible two-component system czcRS [12].

Unexpectedly, while both strains displayed a similar growth rate

(data not shown), the DczcRS double knockout mutant exhibited a

pronounced blue-green pigmentation, diffusing into LB or King A

agar plate medium, compared to the wild type strain (Fig. 1A).

This color is a characteristic of the phenazine-derived pigment

pyocyanin. Assay of this pigment confirmed that pyocyanin levels

were more than twofold higher in DczcRS mutant than in the wild

type (Fig. 1B). Moreover, in the presence of zinc, a condition

where the CzcRS system is activated and strongly expressed [13],

pyocyanin production was significantly decreased in wild type

cells. Altogether these observations suggest that the CzcRS system

may play a role in down-regulating pyocyanin biosynthesis. To

verify this hypothesis and define which component between the

sensor and the regulator is involved in this regulation, we

reintroduced into the DczcRS strain either the czcS (pSWT) or

the czcR (pRWT) gene cloned under the control of the IPTG-

inducible tac promoter in plasmid pMMB66EH (see materials and

methods). Like DczcRS, DczcRS-pSWT exhibited a marked blue-

green coloration on plates and increased levels of pyocyanin

compared to wild type (Fig. 1A and B). Interestingly, the

expression of CzcR in DczcRS-pRWT drastically decreased

pyocyanin levels and completely rescued the wild type yellow

coloration (Fig. 1A and B), suggesting that CzcR is a negative

regulator of pyocyanin synthesis.

In P. aeruginosa, pyocyanin biosynthesis involves two homologous

core operons, phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2,

in phenazine-1-carboxylic acid (PCA) [29]. PCA is then processed

into pyocyanin by the products of two additional genes, phzM and

phzS (Fig. 1C). Since CzcR negatively regulates pyocyanin

synthesis, we wondered whether it affects the transcription of

these biosynthetic genes. RT-PCR experiments were therefore

performed to monitor the amount of phzA1, phzA2, phzM and phzS

mRNAs (Fig. 1D). In agreement with the previously observed

phenotype (Fig. 1A), the DczcRS mutant (DczcRS-pMMB66EH)

strongly overexpresssed the phzA1 operon compared to the wt

strain (Fig. 1D). These phenotypes were complemented by the czcR

gene added in trans on a plasmid (pRWT) but not by the czcS gene

(pSWT). The second pyocyanin operon phzA2, as well as the phzS

and the phzM genes are also slightly regulated since the

overexpression of CzcR (DczcRS-pRWT) decreased the amount

of mRNA level below the wt (Fig. 1D). As expected, addition of Zn

to the medium repressed the expression of both the phzA1 and

phzA2 operons and the phzS gene. In this case however, we

observed a weaker repression compared to the effect mediated by

the CzcR protein overexpressed using IPTG. This suggested a

more complex regulatory process occurring in the presence of Zn.

As a control, we analyzed in parallel czcR, czcS and the porin

gene oprD, a known target repressed by CzcR [12,13]. As

expected, in the wt strain, czcR and czcS mRNA levels increased

in the presence of zinc. Furthermore, consistent with our previous

works [12,13], oprD mRNA levels were drastically affected by zinc

as well as by CzcR expression. Altogether these results suggest that

CzcR is a transcriptional repressor of phzA1, phzA2 operons and

phzS involved in the pyocyanin biosynthesis and oprD involved in

the import of basic amino acids and carbapenem antibiotics

(Fig. 1D and [13]).

Deletion of CzcR affects QS-regulated phenotypes
Since pyocyanin synthesis is under quorum sensing (QS) control

[30], we investigated whether CzcR influences the production of

elastase and rhamnolipids, two other QS-controlled virulence

factors. In agreement with a role of CzcR as a positive regulator of

QS, rhamnolipid production was dramatically impaired in the

DczcRS mutant compared to a wild type strain, as determined by

SW blue plate assay [31] (Fig. 2A). Using the elastin-Congo red

(ECR) assay [32] we also found that the LasB elastase activity in

supernatants of the DczcRS mutant was more than 10-fold less than

that found in wild-type supernatants (Fig. 2B). Another important

QS-dependent phenotype related to P.aeruginosa pathogenesis,

persistence and colonization is its ability to form biofilm. Similar to

the previous observed phenotypes, biofilm formation in polypro-

pylene tubes was strongly impaired in the DczcRS mutant relative

to wild type (Fig. 2C).

The production of rhamnolipids, elastase and biofilm formation

could be partially but significantly restored in the DczcRS mutant

by complementation with the czcR gene on a plasmid (pRWT) but

not by the czcS gene. This result confirms the requirement of CzcR

protein for the full induction of these QS-regulated phenotypes

(Fig. 2A and 2B). Collectively these data indicate that CzcR plays

an important role in the control of virulence and biofilm formation

of P. aeruginosa. However, despite the observation of a slight

repeatable increase, the production of rhamnolipids, elastase and

biofilm formation did not appear to be significantly affected by the

presence of Zn in the medium. These data suggest that a basal

level of CzcR, in the absence of Zn, is sufficient for full expression

of these phenotypes.

CzcR stimulates the expression of QS signaling pathways
The fact that the deletion of CzcR affects the expression of

several QS-controlled genes suggested that it could act at the stage

of QS regulators or autoinducer expression. We first monitored

levels of the two major signal molecules, N-3-oxo-dodecanoyl-L-

homoserine lactone 3-oxo-C12-HSL (3-oxo-C12-HSL) and N-

butanoyl-L-homoserine lactone (C4-HSL) autoinducers, in the

filtered supernatant of early stationary phase culture [33,34]
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(Fig. 3A). Our results showed a drastic decrease in the amount of

both autoinducers in the DczcRS mutant compared to the wild

type. No significant changes in 3-oxo-C12-HSL and C4-HSL

autoinducer accumulation, however, were observed in a wild type

strain grown in the presence or absence of zinc. Wild type

autoinducer levels were partially restored in DczcRS complemented

in trans by pRWT, whereas they were not rescued by pSWT

(Fig. 3A), showing that both 3-oxo-C12-HSL and C4-HSL

production are impaired in the absence of CzcR.

Since autoinducer synthases and regulators are themselves

controlled by QS, we monitored by RT-PCR the expression of the

las and rhl QS systems (lasI, lasR and rhlI, rhlR genes), along with

the genes lasB (encoding elastase) and rhlA (encoding a rhamno-

lipid biosynthesis enzyme) directly regulated by these systems

(Fig. 3B). We observed a significant down-regulation in the

expression of rhlA, rhlI, rhlR as well as lasB and lasI in the DczcRS

mutant compared to the wild type. In coherence with the

phenotypes shown in figure 2, the decrease in mRNA levels was

partially rescued by overexpression of czcR in trans but not by the

complementation with czcS. Surprisingly, lasR mRNA levels were

not affected in the DczcRS mutant. In agreement with the absence

of effect on autoinducer levels (Fig. 3A), addition of zinc to a wild

type strain did not noticeably modulate the transcription levels of

the observed genes.

Since the Las and the Rhl quorum sensing systems are

interconnected with the PQS system, we also investigated the

amount of pqsH mRNA. PqsH is the enzyme involved in the last

step of PQS synthesis. Consistent with the positive control of pqsH

by LasR [35], we observed a strong decrease in pqsH transcription

in the DczcRS mutant, a deficiency that could be complemented

with czcR but not by czcS (data not shown).

In the absence of external stimuli, low basal levels of functional

regulator proteins have already been observed for several TCS

systems [36,37,38,39]. Our results suggest that a low level of the

CzcR protein might trigger important cellular responses in the

absence of its inducible metal by permitting the proper transcrip-

tion of the lasI, rhlI and rhlR quorum sensing regulatory genes.

CzcR is required for full virulence in Caenorhabditis
elegans

Since CzcR is involved in the expression of QS-regulated

virulence factors, we wondered whether this regulator is important

for the pathogenicity of P. aeruginosa. To this aim, we used the

nematode Caenorhabditis elegans as a model of infection [40]. P.

aeruginosa killing of the worm C. elegans is a multifactorial process

involving both toxin-mediated mechanisms and a slower infectious

process requiring bacterial proliferation within the gut [41]. The P.

aeruginosa PAO1 strain used in this study is not cytotoxic and only

slow killing was detected. In our assay, an infection with the wild

type strain killed 50% of the population within circa 3 days of

contact with bacteria and all worms were dead after 4 days (Fig. 4).

In contrast, the virulence of the DczcRS mutant was significantly

reduced since 50% of the worms were still alive after 5 days of

contact. The virulence of the DczcRS mutant strain complemented

with czcR on the pRWT plasmid was partially restored since 50%

of the worms were dead after 4 days and less than 20% of the

worm population was alive after 5 days, while no complementa-

tion was observed with the czcS gene (Fig. 4). The effect is

statistically relevant as determined using the Log-rank and Gehan-

Breslow-Wilcoxon tests (P value,0.0001). Deletion of this TCS

did not completely abolish virulence. The delay we observed might

suggest that the DczcR only partially affects the global virulence of

P. aeruginosa. The observed result cannot account for a decrease of

the bacterial number since no growth defect in plate and in liquid

medium was observed in the DczcRS complemented strains (data

not shown). A control with the non-virulent reference strain E. coli

OP50 (non-pathogenic for C. elegans), showed that worm viability

was stable after 5 days of contact with these bacteria (Fig. 4).

Altogether these results strongly suggest that CzcR, by acting

positively on quorum sensing gene expression, plays an important

role in the pathogenicity of P. aeruginosa.

CzcR is associated with oprD and phzA1 promoters
We showed that CzcR plays a negative role in the transcrip-

tional regulation of the oprD gene coding for the porin involved in

the entry of basic amino acids and of carbapenem antibiotics ([13]

and Fig. 1D) and genes involved in pyocyanin synthesis (Fig. 1D).

Moreover, CzcR is also required for the positive transcriptional

regulation of at least lasI, rhlI and rhlR quorum sensing regulator

genes (Fig. 3B) and for its own czcRS operon and the czcCBA metal

efflux pump operon. In order to investigate whether CzcR directly

regulates the transcription of these genes, we decided to examine

the recruitment of CzcR on the promoter of these targets using

chromosome immunoprecipitation experiments (ChIP). For this

purpose, we constructed a strain carrying an N-terminal

hemagglutin-tagged (HA) version of CzcR at the czcR genomic

locus. Western Blot analysis of this CzcR-HA tagged strain and a

wild type strain confirmed that this modified version of CzcR is

well-expressed in the presence of zinc and that, like in a wild type

strain, OprD expression levels are repressed when CzcR-HA is

induced by zinc (Fig. 5A).

As expected, ChIP experiments revealed that CzcR was able to

be associated to its own promoter in the presence of zinc, the

inducing metal, indicating a direct positive transcriptional czcRS

self-regulation (Fig. 5B). Additionally, this experiment showed that

CzcR was highly recruited to the oprD and phzA1 promoters when

the CzcR-HA strain was grown in the presence of zinc (Fig. 5B).

Importantly, under these conditions, we also observed the

localization of CzcR on the lasI promoter demonstrating a direct

control of the Las system by this response regulator (Fig. 5B).

CzcR was not detected on the other QS promoters, rhlI, rhlR and

lasR. This suggested that the requirement of CzcR for QS might

involve the regulation of lasI.

CzcR was however not detected on the promoter of phzS

(Fig. 5B), phzA2 and phzM (data not shown) suggesting that this

regulator also indirectly controls the expression of other genes.

Altogether, these data demonstrated that in addition to its role in

up-regulating its own expression and that of the CzcCBA metal

efflux pump, CzcR is clearly a direct transcriptional repressor of

oprD and phzA1 genes. Additionally, CzcR directly positively

modulates the lasI autoinducer synthase gene by interacting with

its promoter. CzcR is therefore an important regulator controlling

metal resistance, carbapenem antibiotic resistance and the Las

quorum sensing system in P. aeruginosa.

Figure 1. CzcR represses pyocyanin biosynthesis. A) Pyocyanin production on KingA agar plate in the wt and the DczcRS complemented
strains. pMMB66EH: empty vector; pSWT: czcS gene; pRWT: czcR gene. B) Quantification of pyocyanin produced in KingA medium by the wt and the
DczcRS complemented strains. The experiment was performed three times and standard deviations (errors bars) are indicated. C) Schematic
representation for the synthesis of pyocyanin, according to [29]. Genes involved in the different steps are boxed. D) Transcription of the wt and the
DczcRS complemented strains analyzed by semi-quantitative RT-PCR. Negative controls lacked reverse transcriptase (RT-).
doi:10.1371/journal.pone.0038148.g001
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Discussion

P. aeruginosa possesses 64 sensor kinases and 72 response

regulators enabling it to adapt to various and changing environ-

ments [42]. A variety of these TCS have already appeared

instrumental in the regulation of both virulence processes and

resistance to antimicrobial compounds [43,44]. In a previous

study, we demonstrated that the metal-inducible CzcRS TCS,

involved in resistance to Zn, Cd and Co in P. aeruginosa, was also

involved in carbapenem antibiotic resistance by repressing the

OprD porin [13]. In the present work, we showed that CzcR

modulates the expression of the important virulence factors

pyocyanin, LasB elastase, rhamnolipids and biofilm formation.

We demonstrated that, in the absence of the CzcR protein, the

transcription of the two acyl-homoserine lactone synthase genes,

lasI and rhlI, dropped drastically (Fig. 3B). Moreover, the positive

regulatory effect of CzcR on QS is essential for the entire

pathogenicity of P. aeruginosa in the C. elegans animal model (Fig. 4).

Other examples of TCS required for bacterial pathogenicity by

modulating QS have been described in the literature. The most

extensively studied example is the PhoQ/PhoP TCS that senses

magnesium concentration. This TCS is required for the virulence

of many Gram-negative bacteria such as Shigella, Pseudomonas, E.

Figure 2. CzcR is required for virulence factor production and biofilm formation. Rhamnolipids, elastase production and biofilm formation
in the wt and the DczcRS complemented strains. pMMB66EH: empty vector; pSWT: czcS gene; pRWT: czcR gene A) Rhamnolipid production on SW
blue plate assay. The blue halo is due to the presence of rhamnolipids produced by the colony. Diameters of these halos are indicated below the
figure. B) Elastase production determined by the Elastine-Congo Red assay. The determination was performed three times independently and
standard deviations (errors bars) are indicated. C) Biofilm formation in M9 minimal medium on polypropylene tubes after 8 h of static growth.
Biofilms were stained with cristal violet and quantified at OD590 after solubilization in acetic acid. Quantification was performed in three independent
experiments and standard deviations (errors bars) are indicated.
doi:10.1371/journal.pone.0038148.g002

Figure 3. CzcR stimulates the expression of QS genes. Autoinducer production and expression of QS genes in the wt and the DczcRS
complemented strains. pMMB66EH: empty vector; pSWT: czcS gene; pRWT: czcR gene. A) Quantification of AHL in the supernatant of LB culture using
the beta-galactosidase reporter assay. Error bars represent the standard deviations of three independent quantifications. B) Semi-quantitative RT-PCR
analysis of the las and rhl QS transcripts for the wt and the DczcRS complemented strains. Negative controls lacked reverse transcriptase (RT-).
doi:10.1371/journal.pone.0038148.g003
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coli, Salmonella [3,43,45,46,47]. In P. aeruginosa the GacA/GacS

TCS activates the transcription of two small RNAs RsmZ and

RsmY that inactivates the repressor protein RsmA, thus allowing

the synthesis of acyl-homoserine lactone molecules [48].

How does CzcR modulate quorum sensing? Since the LasR/3-

oxo-C12-HSL complex is at the top of the QS regulatory circuit

(reviewed in [27]), it seems possible that the effect on virulence factor

production and the decrease of the Rhl and Las QS systems might

be due to the lack of 3-oxo-C12-HSL autoinducer. In agreement

with this, control by CzcR of the lasI autoinducer synthase genes

seems to occur, since this regulator is clearly associated with this

promoter in presence of Zn (Fig. 5B). However, the RT-PCR

experiment showed that the addition of Zn does not appear to

significantly enhance activation of the expression of these genes

(Fig. 3). It is conceivable that the increase is below the limit of

detection of our semi-quantitative RT-PCR assay. This view is

consistent with the production of elastase, rhamnolipids and auto-

inducers that repeatedly display a small increase in the presence of

Zn (Fig. 2 and 3).

Alternatively CzcR could antagonize the effect of the numerous

negative regulators such as MvaT, RpoN, RsmA or RsaL that

control the expression of lasI [23,28]. RsaL is a small 11 kDa

protein, which binds to the lasI promoter and represses its

expression [49,50]. Since the rsaL promoter is located in the

vicinity of the lasI promoter, a possible explanation for the control

of CzcR over quorum sensing might involve RsaL. Expression of

rsaL, however, was affected neither by Zn treatment nor by the

deletion of czcR (data not shown), suggesting that CzcR control

might involve another mechanism. The direct control of QS

expression and the identification of a putative DNA binding

consensus sequence will be the subject of further investigations.

The effect of CzcR presented here shows that this protein could be

considered as a new QS regulator involved in virulence factor

expression in addition to metallic stress response and carbapenem

antibiotic resistance [13].

Intriguingly CzcR regulates the expression of several genes in

opposite ways: the full production of some virulence factors as well

as its own expression requires CzcR, while pyocyanin production

and oprD are repressed by CzcR (Fig. 1, 2, 3). Hence we propose

that CzcR has a dual function and can act as both a repressor and

an activator has it have already been observed for other response

regulator [51]. CzcR is able to activate the expression of its own

and of the efflux pump CzcCBA in presence of the metal signal,

indicating that its activator activity on these genes might require its

phosphorylation by CzcS. Unexpectedly, CzcR was able to repress

the transcription of phzA1 and to induce the transcription of

several QS genes when present in low amounts in cells, in the

absence of induction by heavy metals. It is thus conceivable that

CzcR basal activity does not require activation of CzcR by

phosphorylation. One cannot exclude the phosphorylation of

CzcR in vivo by phosphor-donors such as acetyl phosphate as it has

been observed for some response regulators [52]. However recent

data suggest that even in the absence of phosphorylation, some

RR might be active. In Salmonella, CgsD functions in its

unphosphorylated form for biofilm formation, while phosphory-

lation of the aspartate residue reduces its activity, making it less

stable in vivo [47]. The response regulator MtrA in Corynebacterium

glutamicum was able to bind DNA, though the protein was

presumably unphosphorylated [51].

Nevertheless we observed that expression of a wild type czcR

allele alone in the czcRS deletion mutant only moderately restored

the repression of the transcription levels observed in presence of

zinc, where CzcR can be phosphorylated by CzcS. One reason

why the mutant is unable to be fully complemented by czcR alone

would be that CzcR needs to be phopsphorylated to be a fully

active. This activity is similar to the phosphorylated MtrA protein

that displays much higher DNA-binding affinity than the unpho-

sphorylated form [51]. Furthermore, data from OmpR-type

response regulators and MtrA studies indicate that phosphoryla-

tion of the conserved aspartate residue leads to dimerization in

tandem which would give a more compatible structure with their

binding to direct repeat DNA motifs [51,53]. Mutation of the

phosphorylated aspartate residue of the CzcR protein is under way

to define the role of CzcR phosphorylation in transcriptional

regulation. Altogether these data suggest that a correct balance

between CzcR protein amount and CzcS ability to phosphorylate

is critical for optimum CzcR activity.

Figure 4. CzcR is required for the full virulence of P. aeruginosa. Killing of C. elegans fed with wild-type P. aeruginosa or with the DczcRS
complemented strains (pMMB66EH: empty vector; pSWT: czcS gene; pRWT: czcR gene). E. coli OP50 was used as the non-pathogenic strain. The
percentage of living worms, scored up to 6 days at 24 h-intervals, was plotted using GraphPad Prism 5 software. Data represent the average of three
independent experiments. The comparison between the survival curves of WT pMMB66EH and DczcRS pMBB66EH, DczcRS pMMB66EH and DczcRS
pRWT was performed by means of two different tests: the Log-rank (Mantel-Cox) test and the Gehan-Breslow-Wilcoxon test. Both tests showed that
the curves were significantly different with a P value below 0.0001. The DczcRS pMMB66EH and DczcRS pSWT survival curves were also compared.
This comparison gave a P value of 0.07 with the Log-rank (Mantel-Cox) test and 0.03 with the Gehan-Breslow-Wilcoxon test, indicating that these two
curves are not significantly different.
doi:10.1371/journal.pone.0038148.g004
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With this study, we reported that a TCS regulator, CzcR,

directly contributes to controlling the transcription activity of

several genes even in the absence of cognate signal. This highlights

a new function of TCS regulators acting as independent

transcription factors. Additionally, the results presented here

demonstrate that the CzcRS TCS links environmental pollutants

as metals to antibiotic resistance and pathogenicity of P. aeruginosa.

These results are of primary importance since trace metals are not

only present in the environment, but also within the body and are

included in the composition of numerous medical treatments. It

was previously observed that zinc released from urinary catheters

decreases OprD porin expression, causing carbapenem resistance

[54,55]. We have reported that the zinc released by certain

catheters reaches a concentration of approximately 1 mM in

urine. This amount is sufficient to induce imipenem resistance in

P. aeruginosa [13]. Moreover, a recent study reported that bronchial

secretions from patients with cystic fibrosis, who are highly

susceptible to P. aeruginosa infections, contain higher zinc concen-

trations relative to the ones found in healthy individuals [56].

Deciphering the pathways by which trace metals can impact

antibiotic resistance and exacerbate virulence is therefore of prime

interest.

Figure 5. CzcR is associated to the oprD, phzA1 and czcR promoters. A) Western blot analysis of the wild-type and the CzcR-HA strain carrying
the HA-tagged version integrated into the chromosome. Total proteins from the wild-type or the CzcR-HA strain grown in the presence or absence of
0.5 mM ZnCl2 in LB medium were analyzed by western blot. Antibodies used for the analysis are indicated in the left of the panel. B) Chromosome
immunoprecipitation performed on the CzcR-HA strain using anti-HA antibody. Experiment was performed on culture grown in the absence or in the
presence of 0.5 mM ZnCl2, as indicated. Results represent the average of 3 independent experiments and standard deviations are indicated.
doi:10.1371/journal.pone.0038148.g005
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Materials and Methods

Bacterial Strains, plasmids and Growth Conditions
The bacterial strains and plasmids used in this study are listed in

Table 1. P. aeruginosa strains were grown at 37uC in Luria-Bertani

(LB) (US biological) [57] medium; 200 mg mL21 carbenicillin was

added to maintain plasmid selection as appropriate. Liquid

cultures containing zinc were grown in LB medium supplemented

with 0,5 mM of zinc. Liquid cultures were grown on a rotary

shaker in 200-ml Erlenmeyer flasks containing 25 ml of LB

medium. To enhance pyocyanin production on solid plates,

Pseudomonas Agar King A medium (Biolife) was used. The

complementation of the DczcRS strain was performed using the

pSWT or pRWT [13] containing czcS and czcR gene cloned under

the control of the IPTG-inducible tac promoter in plasmid

pMMB66EH [58]. This leaky promoter allowed, without adding

IPTG, a weak expression similar to the wild type in the absence of

the inducing metal (data not shown) and, using IPTG, a level

similar to that observed in the wild type under zinc induced

condition, excluding a dosage effect (Fig. 1D).

Construction of a CzcR-HA tagged strain
CzcR was tagged with a triple hemagglutinin tag (HA) on its N-

terminus part. To create this construct, the triple HA epitope was

first isolated from the pHA1 plasmid by digestion with SmaI and

NruI restriction enzymes [59]. A 600 bp fragment containing the

czcR promoter and the beginning of czcR coding region was

generated by PCR using proczcC-F primer (59-ccaggcagagtcccat-

cagtagc) and primer #127 which contains a NruI (underlined)

restriction site (59-ttcgataataaggatgcgtcgcgacatgttcgcccctatata).

Another 900 bp fragment, corresponding to the beginning of czcR

and czcS genes was generated using primer #126, which includes a

NruI restriction site (59-tatataggggcgaacatgtcgcgacgcatccttattatc-

gaa) and primer #124, which has a BamHI restriction site inside

(59-cgggatcctgcagggcatgcgcc). A second round of PCR was

performed using proczcC-F and #124 as primers and the two

overlapping previously generated fragments as template. The

1500 bp product containing a NruI site just after the first

methionine and a BamHI site at the 39-end was then digested

with BamHI and cloned into pKS-Bluescript digested by ScaI/

BamHI. The triple HA epitope was inserted within the NruI site.

After a test PCR to verify correct tag orientation, a 1620 bp

fragment containing the whole construct was isolated using SmaI/

BamHI restriction enzymes. This fragment was then cloned into

pEX18Ap and transformed by electroporation in a PAO1 wild

type strain [60]. Integration of the generated czcR-HA cassette into

the chromosome was performed by selection on 200 mg mL21

carbenicillin. Clones were restreaked onto LB containing 5%

sucrose to select for double recombination events [61]. Finally,

correct integration was verified by PCR.

Pyocyanin quantitation assay
Pyocyanin quantification was performed using the assay based

on absorbance at 520 nm in an acidic solution [62]. Briefly, 5 ml

supernatant from a stationary phase culture, in King A medium to

maximize pyocyanin production, was mixed with 3 ml of

chloroform. Pyocyanin from the organic phase was then extracted

with 1 ml of 0.2 N HCl, giving it a pink to deep red color due to

pyocyanin. Absorbance was measured at 520 nm. Concentrations,

expressed as micrograms of pyocyanin produced per milliliter of

culture supernatant, were determined by multiplying the optical

density at 520 nm (OD520) by 17.072 [62]. The experiment was

conducted three times in three independent experiments.

Determination of autoinducer concentrations.
Filtered culture supernatants in early stationary phase (OD600 of

1) were extracted with ethyl acetate. Autoinducer (AI) concentra-

tions were determined in bioassays as previously described, by

using P. aeruginosa PAO-JP2(pECP61.5) for C4-HSL [63] and E.

coli MG4lI14(pPCS1) for 3-oxo-C12-HSL [33] with the following

changes. E. coli cultures harboring lacZ fusion plasmids were grown

overnight at 37uC with vigorous shaking in LB medium containing

100 mg ml21 ampicillin, then inoculated into LB medium with

ampicillin to a starting optical density at 600 nm (OD600) of 0.08.

Table 1. Bacterial strains and plasmids used in this study.

Strain or plasmid Relevant characteristic(s) Reference or source

P.aeruginosa

Wild type PAO1 wild type wt, laboratory collection

DczcRS PAO1 DczcRS [12]

CzcR-HA PAO1 czcR gene fused with 3HA on N-terminus This study

PAO-JP2(pECP61.5) DlasI::Tn501/DrhlI mutant PAO-JP2 carrying plasmid
pECP61.5 [63] which contains an rhlA – lacZ fusion
together with the rhlR gene expressed from the
strong tac promoter (Ptac).

[63]

E.coli

MG4ll14 (pPCS1) MG4 strain:D(argF-lac)U169 zah-735::Tn10 recA56
srl::Tn10, containing the bacteriophage lI14:
lasI-lacZ and the pPCS1 plasmid: Ampr, lasR

[33]

Plasmids

pMMB66EH broad host range expressing vector, Cbr [58]

pEX18Ap gene replacement vector, Ampr [61]

pRWT czcR gene on pMMB66EH, Cbr [13]

pSWT czcS gene on pMMB66EH, Cbr [13]

pHA1 triple HA epitope on pKS, Ampr [59]

doi:10.1371/journal.pone.0038148.t001
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1 ml of the culture was distributed to each AI-containing tube and

incubated with shaking to an OD600 of 0.7. b-galactosidase activity

was then determined as previously described [64]. P. aeruginosa

cultures were grown overnight in liquid PTSB medium with

200 mg ml21 carbenicillin and diluted into PTSB without

antibiotics to an OD600 of 0.3 before addition of 1 ml of this

culture to the AI-containing tubes. b-galactosidase activity was

then analyzed when the culture reached an OD600 of approxi-

mately 0.9. Each assay was performed three times in three

independent experiments.

Elastase and rhamnolipid production assays
The LasB elastase activity of bacterial suspensions was

determined with the Elastin-Congo red (ECR; Sigma, St. Louis,

MO) assay [32,65] with minor modifications. Briefly, 50 ml

aliquots of filtered bacterial supernatant of a 21 h culture were

added to 900 ml of ECR buffer (100 mM Tris, 1 mM CaCl2,

pH 7.5) containing 20 mg of ECR and then incubated with

shaking at 37uC for 18 h. Insoluble ECR was removed by

centrifugation and the absorption of the supernatant was

measured at 495 nm and normalized according to cell density

(OD600). LB medium was used as a negative control. Elastase

activity was assayed three times in three independent experiments.

Rhamnolipid production was measured on plates by inoculating

strains in M9-based [57] agar plates supplemented with 0.2%

glycerol (vol/vol), 2 mM MgSO4, trace elements, 5 mM KNO3

instead of NH4Cl as nitrogen source, 0.0005% (vol/vol) methylene

blue, and 0.02% (vol/vol) cetyltrimethylammonium bromide [31].

Plates were incubated at 37uC until a blue halo appeared around

the colony.

Biofilm formation assay
A static biofilm assay with 15 ml polypropylene tubes was used,

as previously described [66]. Overnight precultures in LB medium

were diluted to an OD600 of 0.05 in 3 ml of M9 minimal medium

containing 0.04% glucose as carbon source [57] into polypropyl-

ene tubes. Tubes were incubated for 8 h at 37uC without shaking.

The culture, containing planktonic cells, was removed. P. aeruginosa

cells adherent to the tube were considered as a biofilm. Tubes were

washed once with distilled water and biofilms were stained with

crystal violet (CV, 1% in water) for 30 minutes. CV was discarded

and tubes were rinsed once with water to remove excess of dye.

The stained biofilms were resuspended in 33% acetic acid and

their density was evaluated by measuring the OD590 of the

suspensions normalized for bacterial density (OD600). The

measurement was performed three times in three independent

experiments.

C. elegans killing assay
The C. elegans killing assay was performed according to [40]

using the C. elegans wild-type strain N2 Bristol [67]. Briefly, C.

elegans were maintained at 20uC under standard conditions [67]. P.

aeruginosa strains to be tested were cultured overnight and spread

on PGS plates (1% bacto-peptone, 1% Nacl, 1% glucose,

0.15 mM sorbitol, 1.7% Bacto agar) complemented with 75 mM

5-fluoro-29-deoxy-uridine (FUdR) to prevent eggs from hatching.

The plates were incubated 24 hours at 37uC. 50 worms were then

transferred to the lawn of the bacterial strain, incubated at 25uC
and examined under a microscope at 24 h intervals for viability.

Worms that did not move when touched with sterile inoculators

were considered as dead. The E. coli OP 50 was used for control as

a non-pathogenic strain. The percentage of living worms, scored

in three independent experiments, was plotted using GraphPad

Prism 5 software. The statistical relevance of the results was

Table 2. Primers used for qRT-PCR.

AmpliconPrimer Sequence (59to 39) Position length

Coding
region:

oprD oprD1 ATCTACCGCACAAACGATGAAGG 772 156

oprD2 GCCGAAGCCGATATAATCAAACG 927

czcR czcR1 GTCATCACCCGGACGCAGATCAT 502 153

czcR2 GTAGCCGACGCCGCGAATGGTAT 654

czcS czcS1 TACGCCAGCTCTCGCAGTTCTCC 740 201

czcS2 TGTCCACCTGCACCAGGAACAGC 940

oprF oprF1 GGTTACTTCCTGACCGACGA 172 664

oprF2 TCGGTGTTGATGTTGGTGAT 836

phzA1 249 AACCACTTCTGGGTCGAGTG 283 202

250 GTGGGAATACCGTCACGTTT 485

phzA2 343 CGAGAGTACCAACGGTTGAA 4 481

250 GTGGGAATACCGTCACGTTT 485

phzM 259 CAAGTTGTTACCGGGGAATG 40 172

260 AGATCTCGAAGGCCACCAG 211

phzS 269 GGAAAGCAGCAGCGAGATAC 102 206

270 AGTACTGCGGATAGGCGTTG 307

lasI 311 CTACAGCCTGCAGAACGACA 390 168

312 ATCTGGGTCTTGGCATTGAG 557

lasR 334 ACGCTCAAGTGGAAAATTGG 33 247

335 GTAGATGGACGGTTCCCAGA 279

lasB 301 AAGCCATCACCGAAGTCAAG 260 230

302 GTAGACCAGTTGGGCGATGT 489

rhlI 309 CTCTCTGAATCGCTGGAAGG 13 240

310 GACGTCCTTGAGCAGGTAGG 252

rhlR 307 AGGAATGACGGAGGCTTTTT 4 231

308 CCCGTAGTTCTGCATCTGGT 234

rhlA 299 CGAGGTCAATCACCTGGTCT 279 230

300 GACGGTCTCGTTGAGCAGA 489

Promoter:

pczcR 348 GCAACCTTCGAAGAGACTGG 2295 236

349 AAGTTACATTTCGGGCGTTG 260

poprD poprD R CGCAGATGCGACATGCGTCA 2178 101

poprD L GGCGCTCCACTTCATCACTT 277

pphzA1 257 TACCCTGTCTGGCACCTACC 2402 185

258 ACCTGTCGGTAATGGATTCG 2218

pphzS 338 GTTCGAACTGTGCCTGGAGT 2354 250

339 GTCATTCGCCCTACGAACC 2105

poprF poprF R TTGCGAACGCTGTCGGTGAA 131 215

poprF L GCGGGAAGTTCTGATAAACT 284

plasI 322 ATAGGGAAGGGCAGGTTCTC 2291 169

323 TCAGAGCAATGGCTTCACAC 2123

prhlI 320 TTCCACCACAAGAACATCCA 2266 174

321 CACACATGAGGGGGAAGACT 293

plasR lasR P1 ACTAGGTGCATCAAACGC 2232 200

lasR P2 GCCAAATATGGATTCGGC 233

prhlR 316 GAATTGTCACAACCGCACAG 2225 203

317 ATGCATCACAGCAGAATTGG 223

doi:10.1371/journal.pone.0038148.t002
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determined using the Log-rank (Mantel-Cox) and Gehan-Breslow-

Wilcoxon tests.

Western Blot Analysis
Overnight precultures of a wild type P. aeruginosa PAO1 and

CzcR-HA strain grown in LB were diluted to an OD600 of 0.05 in

LB medium with or without 0.5 mM ZnCl2. Cultures were grown

at 37uC on a rotary shaker to an OD600 of 2.5. 1 mL of culture

was spun down in a microfuge and total proteins were solubilized

to a concentration of 2 mg mL21 by sonication in the appropriate

volume of 16b-mercaptoethanol gel-loading buffer (an OD600 of

1 gives 0.175 mg/ml of protein). Samples were boiled for 5 min,

then centrifuged for 10 min in a microcentrifuge to remove

bacterial debris before loading. 15 ml (30 mg) of total protein were

separated on a 12% SDS-acrylamide gel and transferred to

nitrocellulose membrane. Blots were incubated with anti-OprD,

anti-HA and anti-Hsp70 antibodies and revealed by chemilumi-

nescence. All antibody incubations and washes were performed in

TBS-T (20 mM Tris, 137 mM NaCl, 0.1% Tween 20, pH 7.6)

supplemented with 5% powdered milk.

Chromosome immunoprecipitations (ChIP)
ChIP experiments were performed as previously described [68].

Immunoprecipitated DNA was quantified by real-time PCR using

a Sybr Green mix (IQ TMSYBR Green Supermix Bio-Rad)

according to the supplier’s specifications. The DNA samples were

diluted 10-fold, and 5 ml of this dilution served as the template in

the PCRs that were performed in duplicate for each gene and

sample. The primers used are listed in Table 2. Each amplification

was normalized by the oprF value of the corresponding immuno-

precipitation. The results, expressed as fold increase compared to

oprF, represented the average of three independent experiments

and the standard deviations are indicated.

Semi quantitative RT-PCR analysis
For RNA isolation, strains were cultured in King A medium for

the experiments of Fig. 1D or LB media for the experiments of

Fig. 2D. Overnight precultures were diluted to an OD600 of 0.05

and grown for 6 hours at 37uC (OD600 of 2.5). 0.5 ml of this

culture, was added to 1 ml of RNA Protect bacteria solution

(Qiagen, Hildesheim, Germany), and total RNA was isolated with

RNeasy columns (Qiagen, Hildesheim, Germany) according to the

supplier’s instructions. Residual DNA was eliminated by DNase

treatment using 20 units of RQ1 RNase-free DNase (Promega).

After removal of DNase by phenol/chloroform extraction, RNA

was precipitated, and the pellet resuspended in 30 ml of RNase-

free H2O. For cDNA synthesis, 500 ng of RNA was reverse-

transcribed using random hexamer primers (Promega) and

Improm-II reverse transcriptase (Promega) according to the

supplier’s instructions. PCR amplifications were performed using

standard procedures with 30 cycles, except for czcS and phzA2 for

which the amplification was carried out with 27 cycles and oprD,

oprF, czcR, phzA1, phzS, for which the amplification was carried out

with 26 cycles to avoid over-amplification. The primers used for

PCR amplification are listed in Table 2. Each analysis was

performed at least three times from three independent cultures. A

representative analysis is presented.
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