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Abstract

Uncontrolled systemic activation of the immune system is an early initiating event that leads to development of acute
fulminant liver failure (FLF) in mice after treatment with agonistic Fas mAb. In this study, we demonstrate that treatment of
mice with N-acetylcysteine (NAC), an ROS scavenger and glutathione (GSH) precursor, almost completely abolished Fas
mAb-induced FLF through suppression of Va14iNKT cell activation, IFN-c signaling, apoptosis and nitrotyrosine formation in
liver. In addition, enrichment of the liver with GSH due to Va14iNKT cells deficiency, induced an anti-inflammatory response
in the liver of Ja182/2 mice that inhibited apoptosis, nitrotyrosine formation, IFN-c signaling and effector functions. In
summary, we propose a novel and previously unrecognized pro-inflammatory and pro-apoptotic role for endogenous ROS
in stimulating Th1 signaling in Va14iNKT cells to promote the development of FLF. Therefore, our study provides critical
new insights into how NAC, a ROS scavenger, regulates Th1 signaling in intrahepatic Va14iNKT cells to impact inflammatory
and pathological responses.
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Introduction

Fas (CD95), a 45-kDa type I membrane protein, is expressed on

numerous cell types including lymphoid cells (NK cells, T cells,

Va14iNKT cells) [1,2,3,4,5] and non-lymphoid cells such as

hepatocytes [1,2,3]. Fas, a member of the TNF receptor

superfamily, plays a vital role in regulating apoptosis in many

cell types and is typically stimulated by FasL or agonistic Fas mAb

[1,2]. Upon ligand binding, Fas-associated protein with death

domain and procaspase 8 are recruited to initiate caspase 8

proteolytic autocleavage, leading to activation of the effector

caspase, caspase 3, and ultimately cell death [1,2]. Fas activation is

often observed in diseases affecting many organ systems including

heart, lung and kidney. Of significant relevance, Fas activation is

a primary trigger for apoptotic death of hepatocytes [1,2]. The

fundamental concept that the liver is highly sensitive to Fas-

mediated apoptosis was first demonstrated in 1993 by Ogasawara

and colleagues [1] where systemic administration of agonistic Fas

mAb (Jo2) caused acute FLF, and ultimately mice mortality within

a few hours due to diffuse hemorrhage and massive apoptosis of

hepatocytes [1]. Although Fas activation is widely associated with

caspase-mediated cell death, growing evidence have increasingly

highlighted an important pro-inflammatory role for Fas in

promoting NF-kB/AP-1 activation [6,7,8], chemokine/cytokine

production [6,7,9] and leukocyte infiltration [6,7,9] in tissue sites.

Va14iNKT cells are thymic-derived innate T lymphocytes that

express a highly restricted TCR characterized by a Va14-Ja18

rearrangement [10]. Distinct from conventional T cells,

Va14iNKT cells respond to glycolipid antigens presented by

CD1d bearing antigen presenting cells [11]. Since the identity of

the endogenous glycolipid ligand that is responsible for

Va14iNKT cell selection and development in the thymus remains

elusive [12,13,14], characterization of several exogenous glycoli-

pids that Va14iNKT cells respond to, a-galactosylceramide

(GalCer) and its derivatives, has greatly facilitated the research

into the functional role of Va14iNKT cells in health and diseases

[13,14]. Notably, CD1d tetramers loaded with the prototypical

synthetic glycolipid antigen, a-GalCer, has been used to reveal

that murine liver has the highest frequency of resident Va14iNKT

cells [15,16]. Va14iNKT cells are activated in a TCR-dependent

manner by lipids presented by CD1d [17] or by TCR independent

mechanisms involving toll like receptors [17,18,19,20]. Following

activation, Va14iNKT cells may display cytotoxicity via Fas-FasL

and TRAIL-dependent death pathways [17], much like NK cells

[21]. However, their major function is thought to be rapid release

of copious amounts of immunopolarizing cytokines (including

IFN-c, IL-4 and TNF-a) and chemokines leading to stimulation or

suppression of immune responses [17]. Through these mediators,

activated Va14iNKT cells can ‘‘bridge’’ the innate and adaptive

immune systems by interacting with and transactivating immune

cells [22,23,24]. This ability to respond rapidly at the onset of the

immune response underscores the role of Va14iNKT cells in

immune response regulation. Consequently, Va14iNKT cells have

been demonstrated to play a critical role in several immune
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processes, from prevention of inflammation and autoimmunity to

protection against various pathogens, including bacteria and

viruses [25,26].

We recently demonstrated that Ja182/2 mice, which are

specifically deficient in Va14iNKT cells, are highly resistant to

agonistic Fas mAb-induced acute FLF [5]. But the endogenous

mechanism(s) regulating the pathophysiological activities of

hepatic Va14iNKT cells are not known. In the present study,

we hypothesized that activation of the Fas receptor on liver

parenchymal cells, hepatocytes, by agonistic Fas mAb, initiates an

inflammatory response that induces an endogenous mediator,

possibly ROS, to regulate the pathophysiological effects of

intrahepatic Va14iNKT cell signaling during acute FLF.

Materials and Methods

Mice
Male C57BL/6 mice and IFN-c2/2 mice (on C57BL/6

background) were purchased from the Jackson Laboratory (Bar

Harbor, ME). Breeding pairs of Ja182/2 mice (on C57BL/6

background) were kindly provided by Dr. M. Taniguchi (RIKEN

Research Center for Allergy & Immunology, Yokohoma, Japan)

[27] and bred in a pathogen-free breeding facility at LSUHSC-

Shreveport [5,20]. All mice were fed a standard chow pellet diet,

had free access to water and were maintained on a 12 h light/dark

cycle in a pathogen-free facility. All experiments were conducted

in accordance with National Institutes of Health and LSUHSC-

Shreveport guidelines for animal care. All experiments were

approved by LSUHSC-Shreveport Animal Care and User

Committee (Proposal #: P11-043).

Agonistic Fas (CD95) mAb-mediated FLF
Agonistic Fas mAb (clone Jo2; 0.5 mg/g of body weight; BD

Pharmingen; San Diego, CA) was administered intraperitoneally

to mice for 4.5 h to induce liver injury as we recently described

[5]. This dose of Fas mAb does not cause mice mortality. Control

mice received an equivalent volume of sterile PBS [28,29,30]. At

indicated time-point, mice were anesthetized with a mixture of

xylazine and ketamine hydrochloride and blood serum collected.

All livers were then perfused with ice-cold sterile PBS (to remove

blood elements) and harvested for experimental assays described

below. In some experiments, mice were treated with a single dose

of freshly prepared ROS scavenger, N-acetylcysteine (NAC;

300 mg/kg, i.p.; Sigma) [20,31] immediately after Fas mAb

treatment.

Glutathione (GSH) Measurement
Perfused livers were snap-frozen in liquid nitrogen immediately

after excision from mice. Total GSH in liver was determined in

trichloroacetic acid supernatants by high-performance liquid

chromatography (HPLC) using a modified protocol of Reed et al.

[32] as we previously described [33,34]. Briefly, experimental

samples were derivatized with 6 mM iodoacetic acid and 1%

2,4-dinitrofluorobenzene to yield the S-carboxymethyl and 2,4-

dinitrophenyl derivatives, respectively. Separation of GSH de-

rivative was performed on a 25064.6-mm Alltech Lichrosorb

NH2 10-mm column using a Shimadzu HPLC system. Proteins in

the acid pellet were solubilized in 0.1 M NaOH, and protein was

determined using the Bio-Rad Protein Assay kit (Bio-Rad,

Hercules, CA). GSH concentration was determined by compar-

ison with purified GSH standards derivatized in the same

manner.

Western Blot Analysis
Perfused mice livers were homogenized in RIPA buffer (50 mM

Tris-HCl pH 7.4, 1% Nonidet-P40, 0.25% Sodium deoxycholate,

150 mM NaCl, 1 mM EDTA, 1 mM Dithiothreitol and protease

inhibitors). Equal volumes of 2x sample buffer were added to liver

protein extract. Next, liver protein samples (50 mg/lane) were

fractionated by SDS-PAGE and then transfered onto PVDF

membrane (Thermo Scientific; Rockford, IL). After which,

membranes were blocked with 5% fat-free milk for 1 h at room

temperature followed by overnight incubation with the following

primary antibodies at depicted dilutions/concentrations: active

caspase 3 (1:1000); pSTAT-1 (1:500); T-bet (1:1000), GAPDH

(1:1000) and Nitrotyrosine (1:1000). Membranes were then

counterstained with corresponding horseradish peroxidase-conju-

gated secondary antibodies for visualization by Pierce ECL

western blotting reagent (Thermo Scientific). Each membrane

was stripped in buffer (0.5 mM Tris-HCl pH 6.8, 10% SDS,

0.08% Mercaptoethanol) and probed for GAPDH to verify equal

protein loading in samples. Active caspase 3 Ab (clone 269518)

was obtained from R & D systems (Minneapolis, MN) whereas

pSTAT-1 (Tyr701) Ab was supplied by BD Pharmingen.

Antibodies for T-bet (4B10) and GAPDH were all purchased

from Santa-Cruz Biotech (Santa-Cruz, CA) and Nitrotyrosine

mAb (clone HM11) was supplied by Invitrogen (Camarillo, CA).

Biochemical and Histological Liver Injury
Acute liver injury was evaluated by biochemical and histological

means. Biochemical assessment of liver damage was determined

by serum levels of the liver enzyme, alanine aminotransferase

(ALT) using a commercial kit (Thermo Electron, Waltham) [5,35].

For histological evaluation, paraffin embedded liver sections (5 mm
thick) were deparaffinized, stained with H & E according to

standard protocols and then analyzed by light microscopy in

a blinded fashion by a pathologist (PAA). The degree of

inflammation in the liver and hepatocyte damage was graded as

none (0), mild (,25%), moderate (25%–50%) and severe (.50%)

using a combination of indices: severity of the inflammation and

degree of hepatocyte degenerative changes including hepatocyte

necrosis, hemorrhage and frequency of acidophilic bodies [5,35].

In Situ Analysis of Liver Apoptosis Using TUNEL
Paraffin-embedded liver sections were dewaxed in xylene and

rehydrated by passage through a graded series of ethanol solutions,

and then PBS. Sections were permeabilized with proteinase K

(20 mg/ml in 10 mM Tris-HCl, pH 7.4–8.0) at 37uC for 15 min,

washed and then stained with fluorescein nucleotide mixture with

terminal deoxynucleotidyl transferase (TdT) from In Situ Cell

Death Detection kit (Roche Applied Science; Indianapolis, IN).

Sections were viewed and photographed using standard fluores-

cent microscopic techniques.

Hepatic Lymphocytes Isolation and Flow Cytometry
Hepatic lymphocytes were isolated using our published proto-

cols [16,20,35]. To specifically identify Va14iNKT cells by flow

cytometry, isolated hepatic lymphocytes were preincubated with

anti-mouse CD16/32 mAb (clone 2.4G2; BD Pharmingen) to

block FccRs and then incubated simultaneously with fluoro-

chrome-labeled TCRb mAb (clone H57-597; eBiosciences, San

Diego, CA) and fluorochrome-labeled Va14iNKT cell tetramer

(CD1d-PBS57; NIH Tetramer Core Facility, Atlanta) [5,20,35].

CD25 expression on the surface of tetramer positive hepatic

Va14iNKT cells was determined by FACS after staining with

fluorochrome-labeled murine CD25 mAb (clone PC61.5; eBios-
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ciences). For measurement of intracellular IFN-c, TNF-a and

active caspase 3, tetramer positive Va14iNKT cells were first

permeabilized using the Cytoperm/fix kit (BD Pharmingen) and

then stained with either fluorochrome-labeled murine IFN-c mAb

(clone XMG1.2; BD Pharmingen) [5,35], fluorochrome-labeled

murine TNF-a mAb (clone MP6-XT22; eBioscience) [20] or

fluorochrome-labeled active caspase 3 mAb (clone C92-605; BD

Pharmingen) [5,16,20]. In all experiments, cells were analyzed

directly ex vivo without cell culture treatment with brefeldin A or

monensin. Corresponding isotype antibody/tetramer was used to

set analysis gates. In addition, viable lymphocyte populations were

gated using forward and side scatter characteristics and data

analyzed using the FACS Calibur and FACS Scan Diva software

(BD Pharmingen).

Statistical Analysis
All data are shown as mean 6 SEM. For comparisons of means

between 2 experimental groups, a Student unpaired t test was

used. Comparison among three or more experimental groups was

performed using a one-way ANOVA, followed by Newman-Kuels

post hoc test. A value of p,0.05 was considered significant.

Results

Resistance of Va14iNKT Cells Deficient Mice to FLF is
Associated with Decreased Th1 Differentiating Signaling
in Liver
We first confirmed our recent observation [5] that the presence

of hepatic Va14iNKT cells promote acute FLF in response to

agonistic Fas mAb treatment. Specifically, we found that Fas mAb

administration into WT mice caused a significant increase in

serum ALT level whereas Ja182/2 mice were highly resistant to

acute FLF as reflected by almost complete suppression (.90%

reduction) of serum ALT (Figure 1A). In parallel, liver sections

from WT mice exhibited extensive hepatocyte apoptosis and

necrotic damage following Fas mAb treatment relative to livers

from Ja182/2 mice which displayed mild hepatocyte damage

(Figure 1C and D). Specifically, the degree of hepatic inflamma-

tion and hepatocyte damage in WT mice after Fas mAb treatment

was graded as severe (.50%) relative to mild (,25%) in Ja182/2

mice. As expected, normal serum ALT levels was observed in both

naive WT and J Ja182/2 mice (Figure 1A). In the present study,

we provide new data demonstrating that resistance of Ja182/2

mice to FLF was associated with a dramatic decrease in hepatic

apoptosis as revealed by reduced expression of active caspase 3

and TUNEL staining in the liver (Figure 1E and 1F). The finding

that active caspase 3 expression was not completely suppressed in

Ja182/2 mice after Fas mAb treatment suggests that other hepatic

cells apart from intrahepatic Va14iNKT cells may also contribute

to apoptosis. It is notable that reduced susceptibility of Ja182/2

mice to FLF was also accompanied by striking reductions in

hepatic expression of Th1 differentiating signaling molecules,

pSTAT-1 and T-bet (Figure 1E). To determine whether oxidative

and nitrosative stress may also contribute to the development of

FLF, we measured nitrotyrosine formation (a product of

nitrosative stress) and the ROS scavenger, GSH. We observed

a striking increase in nitrotyrosine formation in the liver of WT

mice but not Ja182/2 mice after Fas mAb administration

(Figure 1E). Remarkably, we also found that Fas mAb-mediated

FLF in WT mice caused a significant decrease in hepatic GSH

(relative to PBS-treated WT mice), but GSH levels were restored

in the absence of Va14iNKT cells (i.e. in Ja182/2 mice) during

mild FLF to levels seen in PBS-treated WT mice (Figure 1G).

Agonistic Fas mAb Promotes Intrahepatic Va14iNKT Cell
Activation
We next verified by flow cytometry that hepatic Va14iNKT

cells were activated following agonistic Fas mAb administration in

WT mice as denoted by upregulation of the activation marker,

CD25, on cell surface (Figure 2A and B) and by increased

intracellular IFN-c expression by hepatic Va14iNKT cells

(Figure 2C and D). In addition, we established that the ROS

scavenger, NAC, effectively suppressed hepatic Va14iNKT cells

CD25 and IFN-c expression in WT mice during Fas mAb-

mediated FLF (Figure 2A, B, C, D). Although CD25 expression by

hepatic Va14iNKT cells in NAC-treated WT mice during Fas

mAb-mediated FLF was 2-fold higher than PBS control, it was not

significant (Figure 2B). In contrast, hepatic Va14iNKT cells IFN-c
expression in NAC-treated WT mice during Fas mAb-mediated

FLF was significantly higher (i.e. 3-fold) than PBS control

(Figure 2C). Moreover, the number of CD25-positive cells but

not IFN-c positive cells in the liver of WT mice after NAC/Fas

mAb treatment was significantly higher than PBS control (Figure

S1). It is noteworthy that Va14iNKT cells from the liver of Fas

mAb-treated WT mice lack intracellular TNF-a (Figure 2E) and

active caspase 3 (Figure 2F).

Pathophysiological Role of IFN-c During Fas mAb-
dependent FLF
In view of our preceding findings, we next treated WT and

IFN-c2/2 mice with agonistic Fas mAb to evaluate whether

IFN-c is an essential and direct participant in FLF. As shown in

Figure 3A, both WT and IFN-c2/2 mice were similarly

susceptible to acute FLF since serum ALT levels in both mice

strains were comparable. In correlation, histological evaluation of

liver sections showed that the degree of hepatic inflammation

and hepatocyte damage in both strains of mice was severe

(.50%; Figure 3B, top panels). Histological scoring criteria was

based on the severity/magnitude of inflammation, and the

degree of hepatocyte degenerative changes including hepatocyte

necrosis, hemorrhage and frequency of acidophilic bodies [5,35].

Likewise, active caspase 3 expression and tunnel staining in the

liver during IFN-c deficiency was comparable to levels in WT

mice during Fas mAb-mediated acute FLF (Figure 3C and D). It

Figure 1. Th1 differentiating signaling in the liver is dysregulated by Va14iNKT cells deficiency during Fas mAb-induced FLF. (a)
Serum ALT levels of naı̈ve WT mice, Fas mAb-treated WT and Ja182/2 mice at 4.5 h. (b–d) H & E staining of liver sections from naı̈ve WT mice, Fas
mAb-treated WT and Ja182/2 mice at 4.5 h. Livers from Fas mAb-treated WT mice (c) showed extensive damage with destruction of hepatocytes and
distortion of normal liver architecture. The hepatocytes show hemorrhagic necrosis (white arrows) and characteristic signs of apoptosis (black arrows)
including chromatin condensation and cellular shrinkage. In comparison, livers from Fas mAb-treated Ja182/2 mice showed only minimal damage
and retained the normal architecture (d). Liver from a naı̈ve WT mouse is illustrated in (b) for comparison. (e) Western blot analysis of active caspase
3, T-bet, pSTAT-1, nitrotyrosine and GAPDH expression in the liver of PBS-treated WT mice and agonistic Fas mAb-treated WT and Ja182/2 mice at
4.5 h. (f) TUNEL staining of liver sections from WT and Ja182/2 mice at 4.5 h after Fas mAb injection in which WT mice showed intense TUNEL
staining characteristic of apoptosis whereas Ja182/2 mice showed less/reduced TUNEL staining. (g) HPLC measurement of hepatic GSH levels in PBS-
treated WT mice and Fas mAb-treated WT and Ja182/2 mice at 4.5 h. Figure S1 in a and g are presented as mean 6 s.e.m with n=5 mice/group;
*P,0.05 by one-way analysis of variance followed by Newman-Kuels post hoc test. All experiments were conducted twice.
doi:10.1371/journal.pone.0038051.g001
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Figure 2. Effect of NAC treatment on intrahepatic Va14iNKT cell activation during agonistic Fas mAb-induced FLF. Representative
FACS histograms of extracellular CD25 (a), intracellular IFN-c (d), intracellular TNF-a (e; aGalcer used as a positive control) and intracellular active
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is also notable that the strong expression levels of pSTAT-1 and

T-bet in the liver of WT mice during FLF was not suppressed by

IFN-c deficiency (Figure 3C). Likewise, nitrotyrosine formation

in the liver of WT mice was comparable to IFN-c2/2 mice

during Fas mAb-mediated acute FLF (Figure 3E). These data

strongly suggests that IFN-c may not be a key and/or direct

mediator of FLF in response to agonistic Fas mAb treatment.

NAC Therapy Alleviates Fas mAb-dependent FLF During
IFN-c Deficiency
We demonstrated in Figure 1G that resistance of Ja182/2 mice

to hepatic failure may be associated with elevated GSH levels.

GSH has been reported to ameliorate Fas mAb-dependent FLF

[30,36]. For this reason, we evaluated the effects of NAC, a GSH

precursor and ROS scavenger, on the development of FLF in WT

and IFN-c2/2 mice in response to agonistic Fas mAb. Impor-

tantly, we observed that WT mice were strikingly resistant to Fas

mAb-dependent FLF following NAC treatment as denoted by

considerably lower ALT levels relative to Fas mAb-treated WT

mice given PBS (Figure 3A). Equally significant, FLF in IFN-c2/2

mice was almost completely resolved by NAC therapy relative to

Fas mAb-treated IFN-c2/2 mice administered PBS (Figure 3A).

In parallel, histological injury in both strains of mice was found to

be minimal (Figure 3B) after NAC therapy since the scale of

hepatic inflammation and hepatocyte damage in both strains of

mice were graded as very mild to none. Notably, NAC therapy in

WT and IFN-c2/2 mice also markedly suppressed hepatic

apoptosis as revealed by active caspase 3 (Figure 3C) and TUNEL

staining (Figure 3D). Additionally, pSTAT-1 (Figure 3C), T-bet

(Figure 3C) expression and nitrotyrosine formation (Figure 3E) in

the liver of WT and IFN-c2/2 mice were all suppressed by NAC

therapy. These findings suggest a fundamental role for endogenous

ROS in regulating Th1 differentiating signaling and nitrosative

stress in the liver during Fas mAb-dependent FLF.

NAC Therapy Prevents Hepatic Va14iNKT Cell
Accumulation During FLF
Given the anti-inflammatory effects of NAC therapy on Fas

mAb-dependent FLF and Th1 differentiating signaling, we next

determined whether NAC may also inhibit intrahepatic

Va14iNKT cell accumulation. Indeed, we found that NAC

therapy effectively diminished the frequency of Va14iNKT cells in

the liver of WT mice undergoing acute FLF (Figure 4A and B). It

is also notable that the frequency of Va14iNKT cells in the liver of

WT mice treated only with NAC (i.e. in the absence of agonistic

Fas mAb) did not significantly differ from WT mice given only

PBS (Figure 4C), suggesting that endogenous ROS produced in

inflamed liver during agonistic Fas mAb-mediated FLF may be

driving the effects seen on intrahepatic Va14iNKT cell accumu-

lation.

Effects of NAC Therapy on Va14iNKT TCR
Downregulation
These experiments were designed to determine whether the

suppressive effects of NAC therapy on Va14iNKT cells accumu-

lation in the liver during agonistic Fas mAb-mediated FLF could

be due to down-modulation of surface TCR. Our results showed

that surface TCRb on Va14iNKT cells was not downregulated by

NAC therapy during Fas mAb-induced FLF since the geometric

mean fluorescence intensity (MFI) of surface TCRb after NAC

treatment was comparable to WT mice administered PBS (MFI:

15486354 in WT/NAC/Fas mAb relative to 15396343 in WT/

PBS/Fas mAb; n=6 mice/group).

Discussion

Engagement of the Fas receptor typically leads to apoptosis

[1,2,3]. The importance of the Fas/FasL system in hepatic

apoptosis has been convincingly demonstrated in both experi-

mental and clinical liver injury models including viral and

autoimmune hepatitis, alcoholic liver disease and acute liver

failure [1,2,3,5,37,38]. Therefore, strategies for downregulating

the Fas/FasL system might have therapeutic value in the

treatment of these human diseases. In addition to its role in

caspase-mediated cell death, emerging studies have increasingly

proposed an inflammatory role for agonistic Fas mAb in

stimulating intracellular signaling pathways in target cells, such

as hepatocytes, astrocytes and epithelial cells, leading to NF-kB
and/or AP-1 activation [6,7,8], chemokine/cytokine production

[6,7] and leukocyte infiltration [6,7,9] in tissue sites. Va14iNKT

cells represent a critical link between the innate and adaptive

immune systems and play an important immunoregulatory role in

hepatic, cardiovascular, infectious and autoimmune diseases as

well as in tumor immunity. We recently demonstrated that mice

deficient in Va14iNKT cells (i.e. Ja182/2 mice) are highly

resistant to acute FLF in response to Fas mAb treatment [5]. But,

there are notable deficiencies in our knowledge regarding whether;

(i) agonistic Fas mAb directly stimulates intrahepatic Va14iNKT

cells to induce effector functions or (ii) inflammatory mediator(s)

are produced in the liver in response to agonistic Fas mAb

treatment to alter/regulate the biological/functional effects of

intrahepatic Va14iNKT cells. The current study highlights a novel

dual pro-inflammatory and pro-apoptotic role for endogenous

ROS in mediating agonistic Fas mAb-dependent acute FLF by

promoting intrahepatic Va14iNKT cell activation and effector

functions.

During inflammatory responses, Va14iNKT cells are rapidly

activated by TCR-dependent and independent mechanisms

[17,18,19,20] to produce significant amounts of immunopolariz-

ing cytokines including the Th1 cytokine, IFN-c [16] and TNF-

a [20]. For this reason, we initially ascertained the activation

status of intrahepatic Va14iNKT cells in response to agonistic

Fas mAb treatment. We observed by FACS analysis that hepatic

Va14iNKT cells are activated to upregulate extracellular CD25

and intracellular IFN-c expression but not TNF-a. Our

approach of using intracellular IFN-c production and/or

extracellular CD25 expression to denote Va14iNKT cell

activation is widely supported by multiple studies from our

laboratory [5,20] and others [22,39,40,41,42,43,44,45]. Since

many of the effects of IFN-c are STAT-1 and T-bet dependent

[46,47,48], we also determined by western blotting if these Th1

differentiating signaling molecules are differentially regulated in

the presence and absence of Va14iNKT cells following Fas mAb

administration. Consistent with this notion, we found that

pSTAT-1 and T-bet levels in the liver were markedly diminished

in the absence of Va14iNKT cells. Additionally, markers of

apoptosis (i.e. active caspase 3 and TUNEL staining) and

caspase 3 (f; Adenovirus used as a positive control) expression levels by intrahepatic Va14iNKT cells at 4.5 h after PBS or agonistic Fas mAb treatment.
All experiments were performed twice. Figure S1 in b and c are presented as mean 6 s.e.m with n= 4 mice/group; *P,0.05 by one-way analysis of
variance followed by Newman-Kuels post hoc test.
doi:10.1371/journal.pone.0038051.g002
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Figure 3. NAC therapy ameliorates agonistic Fas mAb-induced FLF during IFN-c deficiency. (a) Serum ALT levels in WT and IFN-c2/2 mice
after PBS or NAC treatment during agonistic Fas mAb-induced FLF. (b) H & E staining of liver sections of WT and IFN-c2/2 mice after PBS or NAC
treatment during agonistic Fas mAb-induced FLF. As shown in top panel, livers from Fas mAb-treated WT and IFN-c2/2 mice displayed widespread
hepatocyte damage including hemorrhagic necrosis (white arrows) and apoptosis (black arrows) that distorted normal liver architecture. In contrast,
liver sections of WT and IFN-c2/2 mice treated with NAC during Fas mAb-induced FLF (bottom panel) showed reduced hepatocyte damage and

NAC Inhibits Va14iNKT Cell Activation
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nitrosative stress (i.e. nitrotyrosine formation) were suppressed by

the deficiency in Va14iNKT cells during Fas mAb-dependent

FLF. Therefore, we propose that Va14iNKT cells positively

regulates the expression of Th1 differentiating signaling media-

tors, IFN-c, STAT-1 and T-bet, in the liver as well as liver

apoptosis and nitrosative stress during Fas mAb-dependent FLF.

To provide proof-of-principle that the pro-inflammatory/

pathological effects of intrahepatic Va14iNKT cells could be

directly mediated by IFN-c, we examined the effects of IFN-c
deficiency on the development of Fas mAb-dependent FLF.

Astonishingly, IFN-c mutant mice were similarly susceptible to Fas

mAb-induced FLF as WT mice. In correlation, a previous study

demonstrates that IFN-c can exert liver inflammation/injury

independent of Fas [49]. Furthermore, hepatic apoptosis was not

alleviated by IFN-c deficiency since expression of active caspase 3

and TUNEL positive cells in the liver of IFN-c mutant mice was

comparable to WT mice. Although STAT-1 and T-bet are usually

critical to IFN-c signaling, we found that IFN-c is dispensable for

hepatic induction of pSTAT-1 and T-bet following Fas mAb

treatment since their expression was not inhibited by IFN-c
deficiency. In view of the fact that pSTAT-1 is an upstream

transcription factor known to induce caspase 3-dependent

apoptosis [46,47] and T-bet activation [46,48], we speculated

that endogenous factor(s) upstream of IFN-c may be early

activator(s) of STAT-1 and T-bet. With this in mind, our

subsequent experiments were designed to establish if treating

mice with NAC to block ROS, an endogenous mediator produced

in the liver (i.e. hepatocytes) during Fas mAb-induced FLF

[50,51,52], may suppress IFN-c signaling. Alternatively, NAC

may directly inhibit pSTAT-1 and T-bet activation independent of

IFN-c.

retained near normal architecture. (c & e) Western blot analysis of hepatic active caspase 3, T-bet, pSTAT-1 expression levels and nitrotyrosine
formation in WT and IFN-c2/2 mice after PBS or NAC treatment during Fas mAb-induced FLF. (d) TUNEL staining of liver sections from WT and IFN-
c2/2 mice treated with PBS during Fas mAb-induced FLF showed intense TUNEL staining characteristic of apoptosis whereas WT and IFN-c2/2 mice
treated with NAC mice showed minimal TUNEL staining. Figure S1 in a are presented as mean6 s.e.m with n= 3–6 mice/group. *P,0.05, ?P,0.05 by
one-way analysis of variance followed by Newman-Kuels post hoc test. All experiments were performed twice.
doi:10.1371/journal.pone.0038051.g003

Figure 4. Effect of NAC treatment on intrahepatic Va14iNKT cell accumulation during Fas mAb-induced FLF. (a) Representative FACS
dot plot of Va14iNKT cells levels in the liver after PBS or NAC treatment during Fas mAb-induced FLF. (b) FACS analysis of Va14iNKT cells level in the
liver after PBS or NAC treatment in response to Fas mAb-induced FLF. (c) FACS analysis of Va14iNKT cells level in the liver after PBS or NAC treatment
only (i.e. in the absence of agonistic Fas mAb). Results in b and c are shown as mean 6 s.e.m with n= 4–6 mice/group with *P,0.05 by Student’s
unpaired t test. All experiments were conducted twice. Broken lines denote levels in untreated mice.
doi:10.1371/journal.pone.0038051.g004
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There is growing evidence that Fas mAb-induced acute FLF is

a result of complex pathophysiological events involving injurious

factors such as ROS. For example, studies highlighting the

deleterious consequences of GSH depletion in Fas mAb-mediated

FLF underscore the importance of this anti-oxidant [30,36].

Likewise, administration of MnTBAP (a nonpeptidyl mimic of

superoxide dismutase) [51] prevents Fas mAb-induced FLF.

Further, GSH enrichment alleviates Fas mAb-induced acute

FLF [30]. For this reason, we next determined the effect of NAC

treatment on IFN-c signaling during Fas mAb-induced FLF by

treating IFN-c2/2 mice with NAC. We demonstrate for the first

time that NAC therapy diminished hepatic injury in IFN-c2/2

mice during Fas mAb-dependent FLF probably via suppression of

hepatic Th1 signaling molecules (i.e. pSTAT-1 and T-bet),

apoptosis and nitrotyrosine formation. However, our observation

that pSTAT-1 and T-bet expression in both vehicle and NAC

treatment groups in IFN-c2/2 mice was higher than in WT mice

suggests a possible inhibitory role of IFN-c2 that may not involve

caspase 3. This observation warrants further investigation. Taken

together, these studies provide important evidence that NAC

therapy regulates IFN-c signaling and effector functions during

Fas mAb-induced FLF. An important question our study also

addressed is why Ja182/2 mice are resistant to development of

FLF and hepatic apoptosis following Fas mAb administration. It is

notable that Fas stimulation induces hepatic GSH depletion by

triggering a cellular efflux of reduced GSH [53,54]. Conversely,

preventing Fas induced GSH depletion attenuates apoptosis [30].

In agreement, we observed that GSH levels in the liver of WT

mice was significantly depleted in response to agonistic Fas mAb

treatment, but completely restored by V Va14iNKT cell de-

ficiency to levels seen in PBS-treated WT mice. As mentioned

previously, hepatic apoptosis (as denoted by active caspase 3 and

TUNEL staining), pSTAT-1 and T-bet levels in the liver were

markedly diminished by Va14iNKT cell deficiency during Fas

mAb-induced FLF. On the basis of these findings, we surmised

that fortification of hepatic GSH due to absence of Va14iNKT

cells generates anti-inflammatory responses that suppresses IFN-c
signaling and effector functions in the liver to prevent/limit the

development of FLF and hepatic apoptosis in Ja182/2 mice.

We previously discussed that intrahepatic Va14iNKT cells are

activated during agonistic Fas mAb-induced FLF to express

extracellular CD25 and intracellular IFN-c. However, it is not

Figure 5. A proposed model depicting the sequential molecular and cellular events of NAC therapy regulation of Va14iNKT cells
signaling in the liver during Fas mAb-induced FLF. An endogenous mediator inhibited by NAC (possibly ROS) mediates Fas mAb-dependent
FLF by promoting intrahepatic Va14iNKT cells signaling, upregulation of pSTAT-1 and pSTAT-1-regulated genes, caspase 3 and T-bet, induction of
hepatocyte damage and fatal/lethal immunopathological events in the liver that ultimately leads to FLF.
doi:10.1371/journal.pone.0038051.g005
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known whether agonistic Fas mAb is capable of directly

stimulating intrahepatic Va14iNKT cells. Work by us [5,16]

and others [4,40,55] in several animal models have previously

demonstrated that intrahepatic Va14iNKT cell activation during

inflammatory responses is associated with a significant decline in

the frequency of hepatic Va14iNKT cells due to death by

apoptosis, a process known as activation-induced cell death

(AICD). In the present study, we provide evidence supporting

the notion that agonistic Fas mAb is unlikely to directly stimulate

intrahepatic Va14iNKT cells to undergo AICD. Specifically, Fas

mAb treatment in WT mice did not cause a decline in intrahepatic

Va14iNKT cells since the frequency of intrahepatic Va14iNKT

cells in Fas mAb-treated WT mice was comparable to PBS-treated

WT mice. Furthermore, intrahepatic Va14iNKT cells lack

intracellular active caspase 3 upon Fas mAb treatment. Hence,

we next assessed the effect of NAC therapy on intrahepatic

Va14iNKT cell activation during Fas mAb-induced FLF.

Recently, we showed that NAC therapy inhibits intrahepatic

Va14iNKT cell activation during poly I:C-induced liver in-

flammation [20]. To further explore the effect of NAC therapy on

intrahepatic Va14iNKT cell activation in this study, Va14iNKT

cells extracellular CD25 and intracellular IFN-c expression were

determined. Significantly, we found that NAC therapy effectively

curbed intrahepatic Va14iNKT cell activation (i.e. extracellular

CD25 and intracellular IFN-c expression) in WT mice during Fas

mAb-induced FLF. Equally important, liver pathology, hepatic

apoptosis and IFN-c signaling in WT mice were all diminished by

NAC treatment during FLF. It is also notable that the frequency of

Va14iNKT cells in the liver of WT mice undergoing Fas mAb-

induced FLF was also significantly decreased by NAC therapy. In

contrast, NAC only treatment of WT mice (i.e. in the absence of

agonistic Fas mAb) did not alter the frequency of Va14iNKT cells

in the liver relative to WT mice treated only with vehicle (i.e. in the

absence of agonistic Fas mAb). These results indicate that NAC

effectively suppresses the endogenous mediator produced by

inflamed liver to drive the effects seen in intrahepatic Va14iNKT

cells during agonistic Fas mAb-mediated FLF. It is generally

accepted that the decline/disappearance of Va14iNKT cells

during inflammatory responses may result from TCR down-

regulation and/or apoptosis [4,5,16,39,55,56,57]. In the current

study, we observed that surface TCR on Va14iNKT cells was not

down-regulated by NAC therapy during Fas mAb-induced FLF.

Furthermore, NAC therapy did not promote apoptosis of

intrahepatic Va14iNKT cells following agonistic Fas mAb

administration. Although beyond the scope of the current study,

it is conceivable that NAC therapy may suppress the production of

chemoattractant(s) critical to Va14iNKT cells accumulation in the

liver during FLF. This is an area that warrants further in-

vestigation.

In summary, the current study reveals new insights into how

NAC therapy regulates IFN-c signaling in Va14iNKT cells to

impact inflammatory and pathological responses in the liver

(Figure 5) and possibly other tissue sites (such as heart, lung and

kidney) where Fas activation is often observed.

Supporting Information

Figure S1 Effect of NAC treatment on intrahepatic
Va14iNKT cell CD25 expression during agonistic Fas
mAb-induced FLF. The number of CD25-expressing

Va14iNKT cells in the liver after PBS or NAC treatment during

Fas mAb-induced FLF at 4.5 h. All experiments were performed

twice. Data is presented as mean 6 s.e.m with n= 4 mice/group

(Figure S1); *P,0.05 vs. PBS group (no Fas mAb treatment);

*P,0.05 vs. NAC/Fas mAb-treated group. #P,0.05 vs PBS

group (no Fas mAb treatment); #P,0.05 vs. PBS/Fas mAb-

treated group. Analysis performed by one-way analysis of variance

followed by Newman-Kuels post hoc test.

(TIF)

Author Contributions

Conceived and designed the experiments: MNA ID TA. Performed the

experiments: MNA ID JL PAA. Analyzed the data: MNA ID JL PAA TA.

Contributed reagents/materials/analysis tools: MNA ID JL PAA TA.

Wrote the paper: MNA ID JL PAA TA.

References

1. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, et
al. (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809.

2. Song E, Lee SK, Wang J, Ince N, Ouyang N, et al. (2003) RNA interference
targeting Fas protects mice from fulminant hepatitis. Nat Med 9: 347–351.

3. Ryo K, Kamogawa Y, Ikeda I, Yamauchi K, Yonehara S, et al. (2000)

Significance of Fas antigen-mediated apoptosis in human fulminant hepatic
failure. Am J Gastroenterol 95: 2047–2055.

4. Chiba A, Dascher CC, Besra GS, Brenner MB (2008) Rapid NKT cell responses
are self-terminating during the course of microbial infection. J Immunol 181:

2292–2302.

5. Ajuebor MN, Chen Q, Strieter RM, Adegboyega PA, Aw TY (2010)
V(alpha)14iNKT cells promote liver pathology during adenovirus infection by

inducing CCL5 production: implications for gene therapy. J Virol 84:

8520–8529.

6. Faouzi S, Burckhardt BE, Hanson JC, Campe CB, Schrum LW, et al. (2001)
Anti-Fas induces hepatic chemokines and promotes inflammation by an NF-

kappa B-independent, caspase-3-dependent pathway. J Biol Chem 276:
49077–49082.

7. Matute-Bello G, Winn RK, Jonas M, Chi EY, Martin TR, et al. (2001) Fas

(CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute

pulmonary inflammation. Am J Pathol 158: 153–161.

8. Rensing-Ehl A, Hess S, Ziegler-Heitbrock HW, Riethmuller G, Engelmann H
(1995) Fas/Apo-1 activates nuclear factor kappa B and induces interleukin-6

production. J Inflamm 45: 161–174.

9. Saas P, Boucraut J, Quiquerez AL, Schnuriger V, Perrin G, et al. (1999) CD95

(Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory
responses: a key role in brain inflammation? J Immunol 162: 2326–2333.

10. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004)

NKT cells: what’s in a name? Nat Rev Immunol 4: 231–237.

11. Gumperz JE, Roy C, Makowska A, Lum D, Sugita M, et al. (2000) Murine

CD1d-restricted T cell recognition of cellular lipids. Immunity 12: 211–221.

12. Brutkiewicz RR (2006) CD1d ligands: the good, the bad, and the ugly.

J Immunol 177: 769–775.

13. Porubsky S, Speak AO, Luckow B, Cerundolo V, Platt FM, et al. (2007) From

the Cover: Normal development and function of invariant natural killer T cells
in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad

Sci U S A 104: 5977–5982.

14. Speak AO, Salio M, Neville DC, Fontaine J, Priestman DA, et al. (2007)

Implications for invariant natural killer T cell ligands due to the restricted
presence of isoglobotrihexosylceramide in mammals. Proc Natl Acad Sci U S A

104: 5971–5976.

15. Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, et al. (2000)

Tracking the response of natural killer T cells to a glycolipid antigen using CD1d
tetramers. J Exp Med 192: 741–754.

16. Ajuebor MN, Aspinall AI, Zhou F, Le T, Yang Y, et al. (2005) Lack of
Chemokine Receptor CCR5 Promotes Murine Fulminant Liver Failure by

Preventing the Apoptosis of Activated CD1d-Restricted NKT Cells. J Immunol
174: 8027–8037.

17. Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L (2008) CD1d-restricted
iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr Opin Immunol

20: 358–368.

18. Tyznik AJ, Tupin E, Nagarajan NA, Her MJ, Benedict CA, et al. (2008) Cutting

edge: the mechanism of invariant NKT cell responses to viral danger signals.

J Immunol 181: 4452–4456.

19. Nagarajan NA, Kronenberg M (2007) Invariant NKT cells amplify the innate
immune response to lipopolysaccharide. J Immunol 178: 2706–2713.

20. Gardner TR, Chen Q, Jin Y, Ajuebor MN (2010) Toll-Like Receptor 3 Ligand
Dampens Liver Inflammation by Stimulating V{alpha}14 Invariant Natural

Killer T Cells to Negatively Regulate {gamma}{delta}T Cells. Am J Pathol 176:

1779–1789.

21. Johansson S, Berg L, Hall H, Hoglund P (2005) NK cells: elusive players in

autoimmunity. Trends Immunol 26: 613–618.

NAC Inhibits Va14iNKT Cell Activation

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e38051



22. Carnaud C, Lee D, Donnars O, Park SH, Beavis A, et al. (1999) Cutting edge:

Cross-talk between cells of the innate immune system: NKT cells rapidly activate

NK cells. J Immunol 163: 4647–4650.

23. Ajuebor MN, Wondimu Z, Hogaboam CM, Le T, Proudfoot AE, et al. (2007)

CCR5 deficiency drives enhanced natural killer cell trafficking to and activation

within the liver in murine T cell-mediated hepatitis. Am J Pathol 170:

1975–1988.

24. Taniguchi M, Seino K, Nakayama T (2003) The NKT cell system: bridging

innate and acquired immunity. Nat Immunol 4: 1164–1165.

25. Van Kaer L (2005) alpha-Galactosylceramide therapy for autoimmune diseases:

prospects and obstacles. Nat Rev Immunol 5: 31–42.

26. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of

CD1d-restricted natural killer T cell activation during microbial infection. Nat

Immunol 4: 1230–1237.

27. Cui J, Shin T, Kawano T, Sato H, Kondo E, et al. (1997) Requirement for

Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278:

1623–1626.

28. Wang X, Lu Y, Cederbaum AI (2005) Induction of cytochrome P450 2E1

increases hepatotoxicity caused by Fas agonistic Jo2 antibody in mice.

Hepatology 42: 400–410.

29. Cazanave S, Vadrot N, Tinel M, Berson A, Letteron P, et al. (2008) Ibuprofen

administration attenuates serum TNF-alpha levels, hepatic glutathione de-

pletion, hepatic apoptosis and mouse mortality after Fas stimulation. Toxicol

Appl Pharmacol 231: 336–343.

30. Cazanave S, Berson A, Haouzi D, Vadrot N, Fau D, et al. (2007) High hepatic

glutathione stores alleviate Fas-induced apoptosis in mice. J Hepatol 46:

858–868.

31. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-

Acetylcysteine–a safe antidote for cysteine/glutathione deficiency. Curr Opin

Pharmacol 7: 355–359.

32. Reed DJ, Babson JR, Beatty PW, Brodie AE, Ellis WW, et al. (1980) High-

performance liquid chromatography analysis of nanomole levels of glutathione,

glutathione disulfide, and related thiols and disulfides. Anal Biochem 106:

55–62.

33. Okouchi M, Okayama N, Aw TY (2005) Hyperglycemia potentiates carbonyl

stress-induced apoptosis in naive PC-12 cells: relationship to cellular redox and

activator protease factor-1 expression. Curr Neurovasc Res 2: 375–386.

34. Okouchi M, Okayama N, Aw TY (2005) Differential susceptibility of naive and

differentiated PC-12 cells to methylglyoxal-induced apoptosis: influence of

cellular redox. Curr Neurovasc Res 2: 13–22.

35. Ajuebor MN, Jin Y, Gremillion GL, Strieter RM, Chen Q, et al. (2008)

GammadeltaT cells initiate acute inflammation and injury in adenovirus-

infected liver via cytokine-chemokine cross talk. J Virol 82: 9564–9576.

36. Haouzi D, Lekehal M, Tinel M, Vadrot N, Caussanel L, et al. (2001) Prolonged,

but not acute, glutathione depletion promotes Fas-mediated mitochondrial

permeability transition and apoptosis in mice. Hepatology 33: 1181–1188.

37. Minagawa M, Deng Q, Liu ZX, Tsukamoto H, Dennert G (2004) Activated

natural killer T cells induce liver injury by Fas and tumor necrosis factor-alpha

during alcohol consumption. Gastroenterology 126: 1387–1399.

38. Taieb J, Mathurin P, Poynard T, Gougerot-Pocidalo MA, Chollet-Martin S

(1998) Raised plasma soluble Fas and Fas-ligand in alcoholic liver disease.

Lancet 351: 1930–1931.

39. Crowe NY, Uldrich AP, Kyparissoudis K, Hammond KJ, Hayakawa Y, et al.

(2003) Glycolipid antigen drives rapid expansion and sustained cytokine
production by NK T cells. J Immunol 171: 4020–4027.

40. Wesley JD, Tessmer MS, Chaukos D, Brossay L (2008) NK cell-like behavior of

Valpha14i NK T cells during MCMV infection. PLoS Pathog 4: e1000106.
41. Seino K, Taniguchi M (2004) Functional roles of NKT cell in the immune

system. Front Biosci 9: 2577–2587.
42. Matsuda JL, Gapin L, Baron JL, Sidobre S, Stetson DB, et al. (2003) Mouse V

alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc

Natl Acad Sci U S A 100: 8395–8400.
43. Matsuda JL, Gapin L, Fazilleau N, Warren K, Naidenko OV, et al. (2001)

Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell
receptor beta repertoire and small clone size. Proc Natl Acad Sci U S A 98:

12636–12641.
44. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, et al. (2005) Recognition of

bacterial glycosphingolipids by natural killer T cells. Nature 434: 520–525.

45. Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, et al. (2006) Natural
killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat

Immunol 7: 978–986.
46. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an

overview of signals, mechanisms and functions. J Leukoc Biol 75: 163–189.

47. Sironi JJ, Ouchi T (2004) STAT1-induced apoptosis is mediated by caspases 2,
3, and 7. J Biol Chem 279: 4066–4074.

48. Cobb D, Hambright D, Smeltz RB T-bet-independent effects of IL-12 family
cytokines on regulation of Th17 responses to experimental T. cruzi infection.

J Leukoc Biol 88: 965–971.
49. Robinson RT, Wang J, Cripps JG, Milks MW, English KA, et al. (2009) End-

organ damage in a mouse model of fulminant liver inflammation requires CD4+
T cell production of IFN-c but independent of Fas. J Immunol 182: 3278–3284.

50. Ding WX, Ni HM, DiFrancesca D, Stolz DB, Yin XM (2004) Bid-dependent

generation of oxygen radicals promotes death receptor activation-induced
apoptosis in murine hepatocytes. Hepatology 40: 403–413.

51. Malassagne B, Ferret PJ, Hammoud R, Tulliez M, Bedda S, et al. (2001) The

superoxide dismutase mimetic MnTBAP prevents Fas-induced acute liver failure
in the mouse. Gastroenterology 121: 1451–1459.

52. Hatano E, Bradham CA, Stark A, Iimuro Y, Lemasters JJ, et al. (2000) The
mitochondrial permeability transition augments Fas-induced apoptosis in mouse

hepatocytes. J Biol Chem 275: 11814–11823.
53. Musallam L, Ethier C, Haddad PS, Denizeau F, Bilodeau M (2002) Resistance

to Fas-induced apoptosis in hepatocytes: role of GSH depletion by cell isolation

and culture. Am J Physiol Gastrointest Liver Physiol 283: G709–718.
54. van den Dobbelsteen DJ, Nobel CS, Schlegel J, Cotgreave IA, Orrenius S, et al.

(1996) Rapid and specific efflux of reduced glutathione during apoptosis induced
by anti-Fas/APO-1 antibody. J Biol Chem 271: 15420–15427.

55. Hobbs JA, Cho S, Roberts TJ, Sriram V, Zhang J, et al. (2001) Selective loss of

natural killer T cells by apoptosis following infection with lymphocytic
choriomeningitis virus. J Virol 75: 10746–10754.

56. Wilson MT, Johansson C, Olivares-Villagomez D, Singh AK, Stanic AK, et al.
(2003) The response of natural killer T cells to glycolipid antigens is

characterized by surface receptor down-modulation and expansion. Proc Natl
Acad Sci U S A 100: 10913–10918.

57. Harada M, Seino K, Wakao H, Sakata S, Ishizuka Y, et al. (2004) Down-

regulation of the invariant Valpha14 antigen receptor in NKT cells upon
activation. Int Immunol 16: 241–247.

NAC Inhibits Va14iNKT Cell Activation

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e38051


