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Abstract

Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer’s disease and has been implicated in the risk for
other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with
ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer’s disease (AD). Both the isoform and amount of ApoE in the
brain modulate AD pathology by altering the extent of amyloid beta (Ab) peptide deposition. Therefore, quantifying ApoE
isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To
measure the kinetics of ApoE in the central nervous system (CNS), we applied in vivo stable isotope labeling to quantify the
fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement
mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF
or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with
previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the
periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically
important in AD pathogenesis.
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Introduction

Apolipoprotein E (ApoE) is a 34 kDa protein which is highly

expressed in the liver and the brain [1]. ApoE is a key regulator of

lipid and cholesterol metabolism and transport. Humans have

three different APOE alleles which result in isoforms of the ApoE

protein differing by one or two amino acids: ApoE2 (cys112,

cys158), ApoE3 (cys112, arg158), and ApoE4 (arg112, arg158).

The prevalence of e2, e3, and e4 alleles in European Americans is

7%, 78%, and 15%, respectively [2]. The amino acid substitutions

affect the total charge and structure of ApoE [2], thereby affecting

its binding to lipoprotein receptors and potentially the lipoprotein

particle stability. ApoE found in the periphery and the central

nervous system (CNS) are independent of each other and

produced from different sources [3]. In the periphery, ApoE is

produced predominantly by the liver and is preferentially found in

VLDL [4]. In the CNS, ApoE is produced by astrocytes and

microglia and is found in HDL-like particles. APOE e4 is currently

the strongest genetic risk factor for developing Alzheimer’s disease

(AD) [5]. Population studies have demonstrated that the e4 allele

increases the risk of developing AD by either 3-fold (1 allele) or 12-

fold (2 alleles) [6], resulting in an earlier age of onset of AD [7,8].
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Conversely, the e2 allele decreases the risk for developing AD [9].

In addition to AD, ApoE4 has been associated with increased risk

for other neurological disorders including cerebral amyloid

angiopathy, poor outcome after traumatic brain injury, and

HIV-dementia [10–12]. The mechanism underlying the associa-

tion between ApoE and AD may be related to differential effects of

the ApoE isoforms on Ab fibrillogenesis and clearance [5].

However, the mechanisms underlying the effect of ApoE4 on

other neurological disorders, if they exist, are not known.

Peripheral blood ApoE metabolism is partially understood [13–

17], where ApoE4 is catabolized twice as fast as ApoE3 [15].

However, little is currently known about ApoE turnover kinetics in

the CNS. Due to a lack of in vivo studies, it is unclear whether a

similar isoform-specific effect on ApoE turnover exists in the

human CNS [18–21]. Furthermore, targeted replacement (TR)

mice that possess the human ApoE isoforms substituted into the

mouse gene locus have become popular tools for studying the

effect of ApoE on the pathogenesis of neurologic diseases [5].

These mice express ApoE via the endogenous promoter, and as a

result, the turnover of ApoE should reflect the natural synthesis

and clearance rates of the protein [22]. In particular to AD, the

ApoE TR mice have proven to be useful tools for studying the

effect of the ApoE isoforms on both amyloid b (Ab) deposition and

clearance from the brain [23–26]. Despite considerable attention

given to quantifying brain tissue and cerebrospinal fluid (CSF)

ApoE concentrations [24,27,28], the kinetics of ApoE turnover in

these mice have not been evaluated.

In this study, we quantified the in vivo kinetics of ApoE3 and

ApoE4 in humans and human ApoE TR mice using stable isotope

amino acid labeling coupled with mass spectrometry. For the

human studies, peripheral venous blood and CSF were sampled

during and after in vivo stable isotope labeling with 13C6-leucine

(13C6-leu). The rate of appearance and disappearance of labeled

ApoE isoforms in each compartment reflects their respective

production and clearance rates. Utilizing an ApoE isoform-specific

liquid chromatography/mass spectrometry (LC/MS) method [29],

we compared ApoE isoform kinetics in both homozygous and

heterozygous subjects in the periphery and CNS. For the mouse

Figure 1. Plasma ApoE Isoforms have different turnover kinetics(ApoE4.ApoE3.ApoE2). 13C6-leu incorporation into plasma ApoE
isoforms was analyzed from a representative individual for each genotype. The 13C6-leu incorporation peaked at 10 h with ApoE4’s maximum
reaching 19.2%, ApoE3 9.9% and ApoE2 4.4%. The different isoforms have different clearance rates as indicated by the slope of the Ln plots (A–D
insets). A–D: A, E3/3; B, E4/4; C, E3/4; D, E2/4 (Blue: E3/E4 LAVYQAGAR, black: E3/E2 LGADMEDVcGR, red: E4 LGADMEDVR, green: E2 cLAVYQAGAR).
doi:10.1371/journal.pone.0038013.g001

In Vivo Human ApoE Isoform Turnover Rates
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studies, we pulse-labeled several cohorts of mice with 13C6-leu and

analyzed the in vivo kinetics of ApoE3 and ApoE4 by performing

LC/MS analysis on brain homogenates.

Results

ApoE Isoforms in the Periphery have Different Turnover
Rates

Studies have shown that ApoE isoforms have different kinetic

properties in peripheral plasma [13–15]. In order to confirm that

our ApoE isoform-specific LC/MS method yielded similar

findings [29], plasma ApoE samples were analyzed from

individuals labeled with 13C6-leu. CSF and blood were collected

for 48 hours [30,31]. ApoE labeling patterns obtained from an

individual with each ApoE genotype are shown in Figure 1. The

plasma ApoE TTR (tracer to tracee ratio) time course was

characterized by a rapid rise during tracer infusion over 9 hours,

followed by clearance of labeled ApoE. The TTR maximum at

10 h was 20% for ApoE4, 10% for ApoE3 and 4.5% for ApoE2

(Fig. 1) demonstrating that the isoforms have different turnover

rates. The peripheral ApoE compartmental model (Fig. 2A)

provided a strong fit to all sets of ApoE data (Fig. 2B–D). Kinetic

parameters [fractional synthesis rate (FSR), monoexponential

slope fractional clearance rate (FCR), and compartmental model

fractional turnover rate (FTR)] of plasma ApoE are summarized in

Table 1. Differences in ApoE isoform kinetics were found when

each individual isoform was analyzed both between homozygous

subjects and within heterozygous subjects. For example, ApoE4

protein turnover rates in homozygous subjects were approximately

twice as fast the ApoE3 turnover rates in homozygous subjects

(Fig. 1A–B, Table 1). Gregg et al. also observed in homozygotes

that ApoE4 was catabolized 2-fold faster than ApoE3 [15]. Within

the same subject, ApoE4 kinetic rates were double that of ApoE3

kinetic rates (Fig. 1C, Table 1). Furthermore, the LAVYQAGAR

peptide, common to ApoE3 and ApoE4 proteins, exhibited

kinetics that were intermediate between the plasma ApoE3 and

ApoE4 peptides within ApoE3/4 heterozygotes (Table 1). ApoE2

had the slowest turnover rate. The plasma ApoE4 turnover rate

was approximately 4-fold faster than plasma ApoE2 within

ApoE2/4 heterozygotes (Table 1), which is similar to the 3-fold

difference previously reported by Ikewaki et al. [13]. Therefore,

consistent with previously reports [13–15], the plasma ApoE

isoforms have different turnover rates, confirmed here using our

isoform-specific LC/MS technique. ApoE protein levels in plasma

also trended towards being lower in ApoE4 carriers (Table S1).

ApoE Isoforms Display Similar Kinetics in the CNS
To investigate whether a similar trend exists in the CNS,

ApoE2, ApoE3, and ApoE4 kinetics were quantified in CSF using

nanoLC/MS/MS and by monitoring isoform-specific 13C6-

labeled and unlabeled tryptic peptides (E3/2: LGAD-

MEDVc112GR, E4:LGADMEDVR112, E3/4: LAVYQAGAR,

and E2: c158LAVYQAGAR, L indicates site of 13C6 labeling,

variable residues are denoted by subscript, and lower case ‘c’

indicates alkylated) [29]. The CNS ApoE TTR time course was

characterized by a slow sigmoidal rise to a peak at ,25 h (Fig. 3).

The FSR and monoexponential slope FCR were calculated from

the rising and falling portions of the TTR time course,

respectively, for each CNS ApoE isoform-specific peptide (Fig. 3)

and summarized in Table 2. With the exception of the E2/4

Figure 2. Representative compartmental model analyses of
plasma ApoE. A. Peripheral ApoE compartmental model has 4
adjustable parameters: the plasma ApoE FTR, the rate constants for bi-
directional exchange with the non-plasma space, and a scaling factor to
account for isotopic dilution. B. ApoE4 peptide LAVYQAGAR from an
ApoE2/4 subject. C. ApoE3 peptide LGADMEDVcGR from an ApoE3/3

subject. D, ApoE2 peptide cLAVYQAGAR from the same ApoE2/4
subject as in B. Solid line represents model fit to the data.
doi:10.1371/journal.pone.0038013.g002

In Vivo Human ApoE Isoform Turnover Rates
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genotype (n = 2, FSR and monoexponential slope FCR ApoE2 vs.

ApoE4 p,0.05, Table S2), there were no significant differences

observed in 13C6-leu ApoE isoform peptide labeling, FSR, or FCR

between genotypes. Consistent with this data, we also measured

ApoE levels in the CSF and observed no statistical differences

between genotypes (Table S1). The FSR and monoexponential

slope FCR for the common peptide LAVYQAGAR were

compared across genotypes (Fig. 3E). The average FSR for

CNS-ApoE was 1.5360.31%/h (n = 18, LAVYQAGAR) in this

young, cognitively-normal cohort, and the monoexponential slope

FCR was 2.060.42%/h (n = 18, LAVYQAGAR).

The whole-system CNS-ApoE FTR was determined by fitting

the full ApoE TTR time course to a compartmental model

(Fig. 4A). Representative modeling curves are depicted in Fig. 4B–

D and average kinetic rates for each genotype, grouped by peptide,

are described in Table 2. The model provided a solid fit to the full

ApoE TTR time course for all data sets (Fig. 4). No significant

differences in kinetic parameters were observed between geno-

types. In particular, there was no significant difference between

ApoE isoform kinetics within either ApoE3/4 or ApoE2/4

heterozygotes. The whole-system FTR was 2.560.4%/h (n = 18,

LAVYQAGAR). The monoexponential slope FCR was highly

correlated (R2 = 0.71), and the FSR was less well correlated

(R2 = 0.31), with the whole-system FTR.

Human ApoE Kinetics in the Mouse Brain
Mice that have been genetically modified to express the human

ApoE isoforms via the endogenous mouse ApoE promoter have

become useful tools for studying the effect of human ApoE

isoforms on various neurological conditions [5]. Several studies

have analyzed ApoE levels in the brains of these mice, but the

results have not been consistent [23,24,27,28,32]. In the current

study, the brain kinetics of ApoE3 and ApoE4 were evaluated by

pulse 13C6-leu labeling mice that were homozygous for either

ApoE3 or ApoE4. The appearance of labeled ApoE in the mouse

brain cortex was then quantified using LC/MS/MS. By plotting

the ratio of labeled ApoE to unlabeled ApoE from the brains of

different mice at various time points following the 13C6-leu pulse

injection, a kinetic time course for ApoE3 and ApoE4 was

obtained (Fig. 5A). ApoE turnover was characterized by a rapid

rise in 13C6-leu labeling for the first hour following tracer injection,

followed by a steady decrease in 13C6-leu labeling for the next

12 hrs. Similar to the analysis of the human data, the mono-

exponential slope FCR was calculated from the decreasing regions

of the TTR time course for each ApoE isoform (Fig. 5B) (ApoE3

6.1960.48%/h, ApoE4 4.8061.12%/h, p = 0.2817). No statisti-

cally significant differences were observed between the FCR of

ApoE3 and ApoE4. FSR values were not calculated because there

were not a sufficient number of data points to accurately measure

a linear front-end slope. We also measured brain ApoE levels in

these mice by ELISA, and observed that ApoE4 mice had 12%

less ApoE than ApoE3 mice (Table S1). Since the FCR values

were not different between genotype, the small difference in

protein levels is more likely due to changes in ApoE production.

Therefore, we measured brain ApoE mRNA levels in the mice and

found that ApoE4 mice have 20% lower mRNA levels than

ApoE3 mice (Fig. S1).

ApoE Turnover is Slower than Amyloid Beta Peptide
Turnover in the CNS

It has been proposed that ApoE influences AD pathogenesis

through regulating the clearance of Ab in the brain, potentially

through a direct interaction between Ab and ApoE [5]. We were

therefore interested in comparing the kinetics of ApoE and Ab in

the human brain. CSF TTR time courses for ApoE and Ab were

sequentially obtained from the same samples and compared

during the human experiments (n = 4) (Fig. 6A). The Ab kinetics

for these 4 individuals were consistent with previous results

observed in this population [31]. The maximal TTR for Ab was

twice maximal TTR for ApoE with Ab reaching its maximum

enrichment ,8 hours prior to ApoE. The average monoexpo-

nential slope FCR for Ab was 4.5 times greater than for ApoE

(9%/h vs. 2%/h) (Fig. 6).

Discussion

Using in vivo stable isotope labeling we report ApoE isoform

kinetics in the CNS and peripheral circulation from young,

Table 1. Peripheral Plasma ApoE Kinetic Parameters.

Genotype N LGADMEDVcGR (E3/E2) LAVYQAGAR (E3/E4) LGADMEDVR (E4) cLAVYQAGAR (E2)

FSR (h0–4) (%/h)

ApoE 3/3 1 6.9 8.3

ApoE 3/4 1 8.2 8.2 9.0

ApoE 4/4 1 12.3 12.7

ApoE 2/4 1 2.7 14.3 14.6 2.7

Monoexponential slope FCR (h10–19) (%/h)

ApoE 3/3 1 10.5 11.4

ApoE 3/4 1 12.9 18.2 22.9

ApoE 4/4 1 15.2 15.7

ApoE 2/4 1 7.4 19.6 20.6 7.2

Compartmental model FTR (%/h)

ApoE 3/3 1 11.4 14.0

ApoE 3/4 1 15.1 18.2 35.2

ApoE 4/4 1 16.4 16.2

ApoE 2/4 1 5.7 23.1 20.2 4.5

doi:10.1371/journal.pone.0038013.t001

In Vivo Human ApoE Isoform Turnover Rates
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cognitively-normal participants with different ApoE genotypes. In

contrast to peripheral ApoE isoform kinetics, we found no

significant differences in the CNS turnover rates for ApoE3 and

ApoE4 in ApoE3/E4 heterozygotes (Fig. 3). We also observed no

differences between ApoE3 and ApoE4 clearance rates in human

ApoE TR mice (Fig. 5). We did find differences in CNS ApoE2

and ApoE4 FSR and monoexponential FCR (p,0.05, n = 2,

Table S2) in ApoE2/E4 individuals; however, this trend was not

reproduced in the FTR (compartmental modeling).

In humans, multiple studies have analyzed the effect of ApoE

isoform status on ApoE protein levels in the CSF [19,23,33–35]

and brain [20,36–38]. However, results from these studies have

not demonstrated any clear trend in ApoE levels, possibly due to

issues with sample stability following collection, antibodies used for

analysis, and heterogeneity in the subject population. Attention

has also been devoted to measuring the ApoE levels in human

ApoE TR mice. Since ApoE is expressed in these mice under the

control of the endogenous mouse APOE gene promoter and

Figure 3. 13C6-leucine labeling in CNS-ApoE isoforms in cognitively-normal young individuals. 13C6-leu incorporation into ApoE isoform-
specific peptides was quantified by nanoLC/MS/MS. The ratios of the labeled to unlabeled ApoE were normalized to the plasma 13C6-leu precursor
levels during the production phase (h0–22) to reduce inter-subject variability due to differential TTR of plasma leucine precursor. Individuals were
grouped by genotype and their averages are shown in A–D: A, E3/3 (n = 8); B, E4/4 (n = 2); C, E3/4 (n = 6); D, E2/4 (n = 2) (blue square: LAVYQAGAR,
black circle: LGADMEDVcGR, red triangle: LGADMEDVR, green diamond: cLAVYQAGAR.). The linear regression of the means for h4–16 and h28–44 is
shown for LAVYQAGAR to demonstrate the time points used for each individual’s FSR and monoexponential slope FCR calculations. E. The averages
of the common peptide (LAVYQAGAR) for all four genotypes (n = 18) were compared (green circle: E3/3; red triangle: E4/4; blue square: E3/4; black
diamond: E2/4). Error bars represent standard error of the mean (SEM).
doi:10.1371/journal.pone.0038013.g003
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regulatory elements [39], protein levels should be a reflection of

the natural turnover rates of ApoE in the mouse CNS. Several

studies have shown that mice with ApoE3 and ApoE4 have less

total ApoE than mice with ApoE2 [23,24,28,40,41]. However,

other studies have found no differences in the amount of ApoE

between isoforms [27,32]. The reason for these discrepancies is

unclear, but may be due to the use of different ApoE antibodies,

mouse genetic background or tissue lysis conditions.

Since the ApoE protein levels are intrinsically related to the

turnover of ApoE, studying the kinetics of ApoE provides a

mechanistic explanation for the differences, or lack thereof, in

ApoE protein levels in the human CSF and mouse brain. Since we

observed no differences in the FSR, monoexponential slope FCR,

or FTR (compartmental model) of ApoE3 and ApoE4 in the CSF

of humans, our data support the studies that describe no

differences in brain ApoE levels between isoforms. However, the

ability to accurately measure the levels of ApoE in the CNS

remains an important issue that should be resolved. Many studies

measuring the levels of the ApoE isoforms in the CNS rely upon

techniques that use antibodies that might not recognize the

isoforms with equal affinity. Therefore, future studies should

attempt to measure ApoE levels in both the human and mouse

brain using techniques that do not require antibodies, such as

quantitative mass spectrometry.

Our plasma ApoE results are entirely consistent with previous

reports of differential turnover rates for plasma ApoE isoforms

(E4. E3. E2) [13–15]. These results indicate that ApoE turns

over 3- to 6-fold slower in the CNS than the periphery. They also

indicate that the similarity of ApoE isoform kinetics within the

CNS is a result of physiologic and metabolic processes and not an

artifact of our isoform-specific LC/MS method. We also observed

a trend towards decreased levels of ApoE in plasma from E4

carriers (Table S1), consistent with previous results that observe

highest ApoE levels in E2 carriers and lowest in E4 carriers

[42,43]. Since our labeling method confirmed the expected

peripheral ApoE kinetic differences among individuals with

different genotypes, we are confident that the CNS kinetic

measures are valid and reflect physiologic and metabolic ApoE

processing in the CNS.

Given the consistency of our plasma ApoE results with

previous reports, the striking differences between CSF and

plasma ApoE labeling time courses within all 4 individuals

demonstrate that CNS-ApoE synthesis and clearance are largely

independent of peripheral ApoE kinetics (compare Figs. 1 & 3).

These results are consistent with previous findings showing that

plasma and CSF ApoE concentrations are not correlated [44],

and that brain and peripheral ApoE are generated in separate

compartments [3,45].

The FSR and monoexponential slope FCR kinetic parameters

provide simple and convenient indices for ApoE turnover rate, but

these approaches use only a subset of available data points and

utilize assumptions that require validation. The compartmental

models provide a more optimal description of whole-system CNS

or peripheral ApoE kinetics because they provide excellent fits to

the full ApoE TTR time course by incorporating the actual shape

of the plasma 13C6-leu time course and incorporate features

described by the physiology (a long time delay to represent CSF

fluid transport, and a non-plasma exchange compartment for

plasma ApoE). Compartmental models have been derived for

plasma apolipoprotein kinetics [17,46–48], but this is the first

model that describes human CNS-ApoE kinetics.

The CNS ApoE turnover rate in young individuals is 1.5–

2.5%/hour (half-life of ,1 day), which is approximately 4-times

slower than the turnover rate for the total CNS Ab peptide (Fig. 6)

[31], and approximately 10-times slower than CSF turnover [49].

The finding that fractional clearance rates differ for two different

CSF proteins measured in the same person strongly supports the

notion that protein kinetic rates measured in CSF reliably reflect

CNS protein turnover and not just CSF turnover [50]. A slower

CSF ApoE turnover rate compared to amyloid-beta may be

expected given that ApoE recycles into and out of cells.

This stable isotope labeling approach for differentially quanti-

fying protein isoform specific turnover rates may be applied to in

vitro or in vivo model systems and used to inform about differences

Table 2. CNS-ApoE Kinetic Parameters.

Genotype N LGADMEDVcGR (E3/E2) LAVYQAGAR (E3/E4) LGADMEDVR (E4) cLAVYQAGAR (E2)

FSR (h4–16) (%/h)

ApoE 3/3 8 1.5060.39 1.5060.38

ApoE 3/4 6 1.6260.31 1.5860.33 1.5360.46

ApoE 4/4 2 1.4760.13 1.3960.30

ApoE 2/4 2 1.4660.22 1.4860.18 1.4760.14 1.3960.05

Monoexponential slope FCR (h28–44) (%/h)

ApoE 3/3 8 2.1660.52 2.2360.52

ApoE 3/4 6 2.2460.37 2.0660.36 2.7860.92
(n = 2*)

ApoE 4/4 2 1.660.11 1.86(n = 1*)

ApoE 2/4 2 1.760.56 1.860.20 2.2560.07 1.8260.48

Compartmental model FTR (%/h)

ApoE 3/3 8 2.6460.38 2.5560.47

ApoE 3/4 6 2.7660.55 2.5460.43 2.4060.53

ApoE 4/4 2 2.0860.12 2.5960.29

ApoE 2/4 2 2.6060.16 2.5860.06 2.6860.04 2.4060.53

*Linear fits with r2,0.8 were excluded from mean calculations.
doi:10.1371/journal.pone.0038013.t002

In Vivo Human ApoE Isoform Turnover Rates
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between protein isoform kinetics. No difference in CSF ApoE

isoform-specific turnover rates was observed in this young,

cognitively-normal cohort. However, the possibility remains that

isoform-specific differences could emerge with age or during the

onset and progression of disease. Future studies could use our

labeling methodology to address these possibilities. This approach

could also be used to evaluate the effects of therapeutics on ApoE

production or clearance, such as LXR agonists or agents that

modify ApoE receptor levels.

In vivo stable isotope labeling coupled to an isoform-specific LC/

MS method enabled the first study of ApoE kinetics in the human

CSF. Using a novel multi-compartmental model for CNS, we

quantified CSF ApoE turnover rate to be ,2%/h in young,

cognitively-normal individuals. Our results suggest that there is no

significant difference between the turnover of CNS ApoE3 and

ApoE4 in young, cognitively-normal adults or between ApoE3 and

ApoE4 TR mice. This is in sharp contrast to the ApoE isoform-

specific differences in turnover rates observed in the peripheral

venous blood. We also demonstrate that CNS Ab turnover rate is

roughly 4 times faster than ApoE.

Materials and Methods

Definitions of Samples and Kinetic Compartment
Terminology

To provide a specific and consistent terminology with prior

work, we refer to samples as brain, CSF, or plasma. The CNS in

vivo labeling kinetics not only measure CSF kinetics, but also

account for the site of production (astrocytes in the brain) and all

clearance mechanisms in the brain, ISF, and CSF up to the point

of sample collection [50]. Therefore, we refer to the labeling

kinetic compartment as the CNS compartment. With peripheral

kinetic measures, production and clearance are dependent on

liver, blood, and interacting cells and molecules. Thus, we define

and refer to kinetic compartments as either brain, CNS (including

CSF), or peripheral compartments.

13C6-leucine-ApoE Standards
13C6-leucine-ApoE standards were collected from immortal-

ized mouse astrocytes derived from ApoE knock-in mice

expressing human ApoE2 or ApoE4 [51]. Cells were grown to

near confluency in 10% FBS, 0.2 mg/mL geneticin (Invitrogen,

Carlsbad, CA), 1 mM sodium pyruvate, and DMEM; then the

media were changed to serum-free media: DMEM/Ham’s F-12

containing 1% N-2 supplement (Invitrogen), 1 mM sodium

pyruvate, 3 mM 25-hydroxy-cholesterol (Sigma-Aldrich, St.

Louis, MO), and 0–20% 13C6-leucine (13C6-leu) (105 mg/L,

98% 13C6, Cambridge Isotope Laboratories, Andover, MA).

ApoE-containing serum-free media were collected after 48

hours. Media from ApoE2 and ApoE4 expressing cells were

pooled for use as 13C6-leu enrichment standards as previously

described [29].

Cerebrospinal Fluid (CSF) and Plasma
Human CSF and plasma were collected from healthy young

(22–49 years), cognitively-normal volunteers with a familial history

(parent or grandparent) of AD and enrolled in studies approved by

the Institutional Review Board of Washington University [31].

Figure 4. CNS kinetic modeling curves. A, CNS-ApoE compart-
mental model was used to describe whole-system CNS-ApoE turnover
kinetics. The model is based on data from plasma leucine and CSF-ApoE
TTRs (solid triangles). The plasma leucine TTR time course for a given
subject is used as a ‘‘forcing function’’ to define the tracer availability for
ApoE synthesis. The CNS-ApoE system comprises a delay element and a
compartment that turns over, and accounts for isotopic dilution of the
plasma leucine. The model has 3 adjustable parameters: the shape of
the ApoE TTR time course is modified by adjusting the delay time and
the rate constant for ApoE turnover, and the magnitude of the ApoE
TTR is scaled by varying the degree of isotopic dilution. B–D, A typical
compartmental model analysis from a single, representative, ApoE3/3
subject. B, Plasma leucine TTR remains elevated and does not return to
baseline enrichment immediately after the tracer infusion is halted. C–

D, The ApoE TTR time course exhibits a long time delay and sigmoid
rise to a peak enrichment which is well described by the model. C,
ApoE3 peptide LAVYQAGAR; D, ApoE3 peptide LGADMEDVcGR. Solid
line represents model fit to the data.
doi:10.1371/journal.pone.0038013.g004
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Participants were infused with 13C6-leu (2 mg/kg/h) for 9 hours

and CSF was collected hourly for 48 h [30,31]. Plasma was

collected hourly for 14 h, followed by collection every odd hour.

ApoE genotype was determined by PCR in the Washington

University ADRC Genetics Core [52].

Isolation of ApoE from CSF or Plasma and Tryptic
Digestion

ApoE was isolated from 0.25 mL CSF and 1.5 mL pooled

ApoE2/E4 astrocyte media using PHM-L liposorb, reduced and

alkylated, and digested with trypsin as described [29]. Plasma

ApoE was prepared as described for CSF with the following

Figure 5. Brain ApoE kinetics in ApoE3 and ApoE4 targeted replacement mice. ApoE was extracted from brains of ApoE3/E3 and ApoE4/E4
mice labeled with 13C6-leucine. Similar kinetics were observed for ApoE3 and ApoE4 mice with monoexponential slopes of 6.260.48%/h and
4.861.12%/h, respectively (blue: ApoE3, black: ApoE4, n = 3–6 mice per time point, P = 0.2817, error bars represent SEM).
doi:10.1371/journal.pone.0038013.g005

Figure 6. CNS-ApoE has slower kinetics than CNS-Ab. The average of 4 YNC participants’ ApoE and Ab (total) 13C6-leucine enrichment curves
are shown. Ab reaches a higher TTR than ApoE and clears the 13C6-leucine label 46 faster than ApoE. ApoE (total:LAVYQAGAR, black circle); Ab (total,
red triangles) (n = 4, error bars represent SEM).
doi:10.1371/journal.pone.0038013.g006
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exceptions: ApoE was isolated from 50 mL of plasma by

immunoprecipitation with WUE4, a monoclonal total ApoE

antibody [53].

Mouse 13C6-leucine Injection, Tissue Lysis, and ApoE
Isolation

All animal studies were approved by the Animal Studies

Committee of Washington University School of Medicine.

Homozygous PDAPP mice containing the human APP V717F

mutation were generated on a mixed background of DBA/2J,

C57BL/6J, and Swiss Webster (gift from Eli Lilly and Co.). To

generate APP transgenic mouse models with human ApoE,

PDAPP mice were crossed with human APOE knock-in mouse

models in which the endogenous murine APOE gene is replaced

with the APOE3 or APOE4 gene (gift from Dr. Patrick Sullivan,

Duke University) [39]. 3.5 month old ApoE3/E3 and ApoE4/E4

TR mice were injected intraperitoneally with 13C6-leu (200 mg/

kg) and the brain tissue was harvested and plasma collected after

predetermined time points (either 20 min, 40 min, 1, 4, 7, 13, or

19 h). 3–5 mice were used for each time point. One hemisphere of

cortex was then lysed by the addition of 1% triton X-100 lysis

buffer [1% triton X-100, 150 mM NaCl, 50 mM Tris-HCl, 16
complete protease tablet (Roche)], followed by sonication and

centrifugation to remove the tissue debris. ApoE was immuno-

precipitated from the cortex using WUE4 antibody. Briefly,

WUE4 antibody was coupled to Protein G Sepharose 4 Fast Flow

beads (GE Lifesciences) overnight at 4uC and the bound antibody

was cross-linked using dimethyl pimelimidate (20 mM). The tissue

lysate was then incubated with the WUE4- coupled beads O/N at

4uC. The beads were then washed three times with PBS and three

times with triethylammonium bicarbonate (25 mM). The precip-

itated ApoE was then eluted from the beads using formic acid, the

formic acid was removed via vacuum evaporation, and the protein

resuspended in 20% acetonitrile/80% triethylammonium bicar-

bonate. 500 ng of trypsin (Promega) was then added to the

samples and the digest was carried out for 18 h at 37uC.

Identification of MRM Transitions
See supplemental data for detailed LC/MS/MS methods

(Table S3 and Table S4).

NanoLC Tandem MS and Quantitation
Human studies. 13C6-leu labeled and unlabeled ApoE

isoform-specific peptides [LGADMEDVc112GR, LGAD-

MEDVR112, LAVYQAGAR, and c158LAVYQAGAR (‘‘c’’ indi-

cates alkylated cysteine residue M+57)] were separated by reverse

phase on a nanoLC-2D-Ultra (Eksigent Technologies, Dublin,

CA). Peptides were detected by a TSQ Vantage (ThermoFisher

Scientific, San Jose, CA) operating in MRM mode as described in

supplemental data, and quantitated using ThermoFisher’s Xcali-

burH Processing setup and QuanBrowser software (version 2.0.7).
Mouse studies. 13C6-leu labeled and unlabeled ApoE

common peptide SWFEPLVEDMQR was detected by a Xevo

TQ-S (Waters Corporation, Milford, MA) as described in

supplemental data, and quantitated using Waters MassLynx 4.1

software. Human and mouse LC-MS results were exported to

Microsoft Office Excel spreadsheets and GraphpadPrism5 for

further statistical analyses.

Fractional Synthesis Rate (FSR) and Fractional Clearance
Rate (FCR) Calculations

Plasma 13C6-leu tracer to trace ratio (TTR) (the molar ratio of

labeled to unlabeled species) was determined using GC/MS [54],

and used to represent the precursor pool enrichment for ApoE

synthesis. The FSR of ApoE isoforms was calculated by dividing

the slope of the linear regression during the incorporation phase of

ApoE (h4–16 for CSF, and h0–4 for plasma) by the average

plateau of free 13C6-leu enrichment in plasma [31,55]. For the

mouse studies, FSR curves were generated using the 20 min and

40 min labeled/unlabeled ApoE values that had been normalized

to plasma 13C6-leu values obtained from the 20 min time point.

The ApoE isoform monoexponential slope FCR was calculated

using the natural log slope for the clearance portion (h28–44 for

CSF, and h10–19 for plasma) of the ApoE TTR time course [31].

For the mouse studies, the clearance portion of the curve was

considered to be 1 to 13 hrs.

Compartmental Modeling
Compartmental modeling was performed using the SAAM II

program (SAAM institute, University of Washington, Seattle).

The fractional turnover rate (FTR) of peripheral plasma ApoE

was determined using a compartmental model (Fig. 2A) that

features a plasma leucine precursor pool, a plasma ApoE pool

that turns over, and a non-plasma exchange compartment that

is required to completely account for the shape of the time

course. The model used each subject’s measured plasma 13C6-

leu TTR time course and accounted for isotopic dilution

between plasma leucine and ApoE production. The plasma

ApoE FTR is the rate constant for irreversible loss of ApoE.

The model used for CNS ApoE (Fig. 4A) is based on a model

routinely used for very low density lipoprotein apoB-100

turnover kinetics [56]. The model described the shape of the

ApoE TTR time course as a combination of a delay and a

turning over compartment. The residence time (RT) of ApoE in

the whole system was calculated as the sum of the RT for the

delay and turnover compartments, and the whole-system FTR

was calculated as the inverse of whole-system RT.

Statistical Analysis
CSF results were analyzed by a repeated measure analyses of

variance (ANOVA) in which genotypes are between subjects and the

peptides are within group factors. For the mouse studies, statistical

significance between the two genotypes was calculated using analysis

of covariance (ANCOVA) for the FSR and FCR slopes.
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