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Abstract

When rodents are fed in a limited amount during the daytime, they rapidly redistribute some of their nocturnal activity to
the time preceding the delivery of food. In rats, anticipation of a daily meal has been interpreted as a circadian rhythm
controlled by a food-entrained oscillator (FEO) with circadian limits to entrainment. Lesion experiments place this FEO
outside of the light-entrainable circadian pacemaker in the suprachiasmatic nucleus. Mice also anticipate a fixed daily meal,
but circadian limits to entrainment and anticipation of more than 2 daily meals, have not been assessed. We used a video-
based behavior recognition system to quantify food anticipatory activity in mice receiving 2, 3, or 6 daily meals at intervals
of 12, 8, or 4-hours (h). Individual mice were able to anticipate as many as 4 of 6 daily meals, and anticipation persisted
during meal omission tests. On the 6 meal schedule, pre-prandial activity and body temperature were poorly correlated,
suggesting independent regulation. Mice showed a limited ability to anticipate an 18 h feeding schedule. Finally, mice
showed concurrent circadian and sub-hourly anticipation when provided with 6 small meals, at 30 minute intervals, at a
fixed time of day. These results indicate that mice can anticipate feeding opportunities at a fixed time of day across a wide
range of intervals not previously associated with anticipatory behavior in studies of rats. The methods described here can be
exploited to determine the extent to which timing of different intervals in mice relies on common or distinct neural and
molecular mechanisms.
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Introduction

The ability of animals to time intervals of long and short

duration has been studied in two major traditions, chronobiology

and comparative cognition. Chronobiologists, dating to Richter

(Richter, 1922), have been concerned with evidence for timing of

events, such as scheduled meals, that are linked to time of day. In

the canonical paradigm, a rat is fed once daily at a fixed time,

typically in the middle of the light period, when activity levels in

nocturnal rodents are normally low [1,2,3,4]. Within a few days of

restricted feeding, the rat becomes active an hour (h) or more prior

to mealtime, and the intensity of activity (measured by running

wheels, operant levers or food bin motion sensors) rises monoton-

ically to a peak at mealtime. If food is withheld then the bout of

food anticipatory activity (FAA) extends until after the usual end of

the mealtime, and reappears at the appropriate time on

subsequent days of food deprivation [5]. Rats can anticipate

meals that occur at intervals as long as 28 h, and as short as 23 h,

but anticipation has been reported to fail outside of that range

[3,6,7,8,9]. Thus, anticipation of a daily meal has properties of a

rhythm generated by a self-sustaining, entrainable oscillator or

clock that has an endogenous periodicity of about 24 h (i.e.,

circadian). Notably, this rhythm is not affected by ablation of the

master, light-entrainable circadian pacemaker in the suprachias-

matic nucleus (SCN), suggesting the existence of a separate food-

entrainable circadian oscillator [3,10].

The field of comparative cognition has a similarly long history,

dating back to the early behaviorist formulations of learning theory

to explain patterns of operant responding of rats on reinforcement

schedules [11]. A canonical paradigm in this discipline is the fixed

interval feeding schedule, in which food (or some other reward) is

provided contingent on an operant behavior emitted after some

fixed, arbitrary interval, typically in the seconds (s) to minutes

(min) range, following a previous reward or an environmental

stimulus. Anticipatory responding under these short interval

schedules typically fails to persist beyond one cycle if the reward

is withheld. Renewed responding may occur after some delay, but

the original interval is not preserved, can be reset immediately if

the conditioned stimulus or fixed interval reward is delivered early

or late, and exhibits proportionality between the duration of the

bout of anticipation, and the duration of the interval being timed

(longer bouts of anticipation for longer intervals, scaling linearly)

[12,13]. These properties have inspired timing models by which

rats measure elapsed time using, e.g., a neural pulse emitter and

counter [14,15].

The distinct properties of circadian and short-interval timing

suggest that different mechanisms have evolved or have been
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adapted to solve different timing problems encountered in the

natural world. For example, CLOCK mutant mice appear to have

intact interval timing abilities [16]. Questions arise about time

intervals in between those that span hours as opposed to full days

or min. Such timing intervals have received comparatively less

attention. Chronobiological work has yielded consistent evidence

that rats can anticipate two daily meals at fixed times of day

anywhere from 6–18 h apart, and may be able to track two daily

meals with slightly different circadian periods (e.g., 24 h and

24.5 h) [17,18,19]. One study provided evidence that rats in

running wheel cages fail to anticipate more than 2 of 3 daily

mealtimes 6–12 h apart on a given day [18]. These results imply

that the food-entrainable circadian oscillators can be dissociated

into two independently entrainable cohorts capable of driving

separate bouts of anticipatory activity at circadian intervals,

analogous to the two-oscillator organization of the SCN circadian

pacemaker [18]. Rats provided two daily meals can be trained to

look for food in one place at one mealtime and in another place at

a second mealtime, using circadian phase as a time cue [20,21,22].

Birds can make at least 4 distinct time-place associations using

endogenous time of day cues [23]. Finally, bees can anticipate

24 h but not 19 h feeding intervals and can anticipate more than

one meal per day [2]. These observations suggest an alternative

model, wherein meal anticipation and time-place learning are

based on the ability to discriminate and remember multiple phases

of a single clock. Additional cognitive processing would be

required for animals to use one clock to time two meals with

different circadian periodicities.

In the comparative cognition tradition, timing of intervals in the

hourly range has received little attention. There is at least one

report that rats can anticipate meals at long intervals (e.g., 14 h,

16 h, 20 h) that are not multiples of 24 h [24,25,26]. This provides

evidence for non-circadian oscillators with endogenous periodic-

ities in the 14 h and 20 h range. There is also one report that the

duration of anticipation of a single nocturnal mealtime exhibits the

scalar property; the anticipation waveforms for meals 3 or 7 h

after lights-off superimposed when the time scales were normalized

[24]. Whether timing was dependent on the lights-off signal was

not assessed. Given the repeated demonstration that anticipation

of a daily meal persists in constant dark or light, these results imply

that anticipation of a daily meal can be jointly controlled by a

circadian mechanism and by a non-circadian, environmental cue-

based interval timing process that can operate at intervals of up to

7 h.

If there are non-circadian oscillators and interval timers capable

of producing anticipatory behavior at intervals ranging from 7 to

20 h, then some explanation is needed for the observed failure of

rats to anticipate feeding schedules in the 18 to 23 h range

[3,8,17,27], or to stably anticipate more than two of three daily

meals at 6–12 h intervals [28]. A critical factor may be the

behaviors that are measured as assays of meal anticipation. For

example, anticipation of long but non-circadian intervals of less

than a day has been reported in nose poking behavior [24], but

not in wheel running [6,9,27].

To move toward a resolution of these issues, we have utilized a

video based, semi-automated behavior recognition system [29] to

provide a richer behavioral assay to detect anticipatory behavior

prior to 2, 3 or 6 daily meals presented at 12, 8 or 4 h intervals,

respectively. A second 6-meal experiment was conducted to

measure core body temperature to determine if the timing

mechanism controlling behavioral anticipation was tightly coupled

to metabolic processes. An 18-h feeding schedule was used to

assess anticipation of meals recurring at non-circadian intervals

and variable but non-random times of day. To establish a model

for concurrent testing of intervals in the mins, hours and circadian

range, we also examined anticipatory behavior when food was

provided in 6 small meals, provided at 30 min intervals during a

fixed, 2.5 h daily window (Figure 1 summarizes the entire

experimental design). Finally, as a prerequisite to molecular

genetic approaches to study the neuronal basis of FAA, we utilized

inbred C57BL/6J mice rather than rats. Mice readily anticipate a

single daily meal [10], and are capable of anticipating two daily

meals in wheel running behavior [30], but there are no data

available on feeding schedules providing 3 or more meals per day,

or one meal at non-circadian intervals. We found that mice are

capable of anticipating 2 or 3 meals per day, and that individual

mice can anticipate as many as 4 of 6 meals on a given day.

Persistence of anticipatory cycles following meal omission tests

appears to rule out cue-based interval timing as a possible

mechanism. We also observed concurrent circadian and short-

interval anticipatory behavior in mice receiving 6 meals at 30 min

intervals at a fixed time of day. These results establish the mouse as

a model for behavioral timing of events at intervals ranging from

30 min to 24 h and suggest a mechanism other than cue-based

interval timing.

Results

Two-meal calorie restricted feeding schedule
We first sought to confirm that mice can anticipate two daily

meals (Figure 1). Mice were fed 30% of their ad libitum (AL) food

intake twice daily at ZT 9 and 21 for a total of 60% daily (13 h

light: 11 h dark cycle; by convention ZT 12 is defined as ‘‘lights

off’’). Control mice with AL access to food received additional

pellets with the same automated feeding devices twice per day to

control for the disturbance caused by the automated feeder.

Because 60% calorie restriction (CR) has the potential to change

total activity, data were normalized by dividing the s of high

activity (defined as hanging, jumping, rearing, and walking) in

each hourly bin by the total amount per day, yielding a fraction of

high activity occurring within each hourly bin. On day 14 of the

2X feeding experiment the CR cohort showed significant

anticipation of the ZT9 but not the ZT21 meal (Figure 2A–B).

Each data point represents the amount of high activity preceding

that hourly bin; for example, the data at ZT 9 represents the

amount of high activity from ZT 8 to 9 and the meal will be

delivered just after this point. By day 42 of the 2X feeding

regimen, there were two clear anticipatory activity peaks in the

group data for both feedings, beginning at ZT 20 for the dark-

cycle feeding and at ZT8 for the light-cycle feeding (Figure 2C–D).

We quantified the amount of normalized high activity 2 h prior to

each feeding event across the entire experiment and observed

statistically significant anticipation of ZT9 feedings by day 7, and

significant anticipation of the ZT21 feeding only on day 42

(Figure S1). Presumably this reflects either a difficulty in increasing

activity deep into the dark cycle and/or a masking effect of the

increased activity in AL control mice at this time.

Inspection of data from four exemplary individual mice (mouse

#’s 1, 4, 5, and 8) on day 42 shows that activity was increased

prior to both meals for several of the mice (Figure 2E–H). Many of

the individual mice failed to predict one or both meals (the full

dataset is presented in Figure S2). Because of the variability in

activity levels between mice, and for individual mice in different

time intervals, it is not always ‘‘clear-cut’’ whether a particular

mouse anticipates a given meal. As a cutoff, we require a 50%

increase in activity in a time interval preceding the feeding, leading

to an activity level at least 25% higher than the population’s

median activity across the entire light- or dark-cycle, as

A Broad Temporal Range Food Anticipation in Mice
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appropriate. Details of this analysis method are given in the

materials and methods section.

Three-meal calorie restricted feeding schedule
We next tested whether mice could anticipate three CR meals

delivered at 8 h intervals. ‘‘3X CR’’ mice were fed 20% of their

AL food intake (for a total of 60% daily) at ZT 17, 1, and 9 for

42 days, while ‘‘3X AL’’ control mice received food at the same

times but already had several pellets in their food trough.

Normalized high activity data after just seven days of 3X CR

feeding revealed a small but significant increase in activity for both

light cycle feedings (ZT 1 and 9) (Figure 3A–B). By the 35th day of

3X CR, the median normalized high activity showed three striking

peaks of activity preceding each feeding by about 2 h (Figure 3C–

D). In the 3X CR group data, the fraction of normalized high

intensity activity during the 2 h prior to the ZT 1 and ZT 9

mealtimes was significantly different from the AL control group as

early as day 7 (Figure S3). The fraction preceding the ZT17

(nighttime) meal was not significant until day 28, but exceeded that

evident at the other two mealtimes (Figure S3).

To determine the extent to which group data were represen-

tative of individual mice, we examined plots of the number of s of

high activity for each mouse on day 35 of 3X CR feeding–the only

time point for which all three meals showed significant FAA for

group data. These plots revealed that most mice anticipated only

two of the three meals times (Figure 3E–I; Figure S4). For

example, mouse #3 showed a large increase in activity preceding

the dark cycle feeding at ZT17, no anticipation for the following

Figure 1. Diagram of experiments. Each experiment is represented by a rectangle proportional to the duration of the experiment. Video-
recordings are indicated by a camera symbol and days on which recordings occurred are numbered. Feeding times are indicated in italics; for the
18 h interval feeding experiment there were three alternating sets of feeding times. For the first type, the first feeding event is when the video
recording begins at ZT 8 and thus anticipation of this feeding event is not possible so we indicated that feeding event in parenthesis.
doi:10.1371/journal.pone.0037992.g001
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Figure 2. 12 h interval feeding schedule. (A) Normalized median +/2 IQR high activity data on day 14 of 2X feeding. The normalization is
equivalent to dividing the number of frames during which high intensity activity (walking, hanging, jumping, or rearing) is observed per h by the
number of frames the high intensity activity is observed during the duration of the 24 h video, yielding a fraction of high activity per hourly bin. Each
ZT time represents the total number of s of high activity in the h preceding it (eg. The data point at ZT 9 comprises the amount of high activity that
occurred from ZT 8:00-ZT 8:59. (B) The amount of normalized high activity in the 2 h preceding each feeding on day 14. (C) Normalized median +/2
IQR high activity data on day 42 of 2X feeding. (D) The amount of normalized high activity in the 2 h preceding each feeding on day 42. Statistical
significance was determined using the Mann-Whitney Test with asterisks denoting * = p,0.05, ** = p,0.01, *** = p,0.001. n = 8 for both 2X AL and
2X CR at all time points. Yellow arrows represent feeding times. Note: arrows are offset from feeding times to denote that the data point at the
feeding time represents data from before the feeding event. For example, for a feeding at ZT21 the data point at ZT21 represents data from ZT20 to
ZT21 and does not include time when food was present, as food was delivered at ZT21. Gray box indicates the 11h dark period. (E) Individual data
from 2X CR mouse #1 on day 42, (F) for mouse #4, (G) mouse #5, and (H) mouse #8. Mean 2X AL high activity is sown as a blue line and gray bars

A Broad Temporal Range Food Anticipation in Mice
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light cycle feeding at ZT1, and moderate anticipation for the

second light cycle feeding at ZT9 (Figure 3F). Examining

individual mouse data from different days on CR showed that

some mice are better at predicting say, the feeding at ZT1 versus

the feeding at ZT9 (Figure S4). On day 35 of CR, two of the mice,

#2 and #6, had a moderate amount of FAA preceding each meal,

suggesting that entrainment to feeding can occur in intervals as

short at 8 h. On average, CR mice anticipated 1.5 of the 3 meals

on day 7 (vs. 0.33 for AL mice; an increase with significance

p = 0.004 by the Wilcoxon rank-sum test) and 2.5 of the 3 meals

on day 35 (vs. 0.12 for AL mice; p = 0.0002). In aggregate these

results demonstrate that individual mice can anticipate at least 3

daily meals.

Six-meal calorie restricted feeding schedule
Given our evidence for anticipation of three daily meals in

individual mice, we next sought to define an upper limit for

temporal discrimination of daily mealtimes by providing mice with

6 daily meals. Each meal comprised 10% of AL food intake (for a

total of 60% daily), at ZT 4, 8, 12, 16, 20, and 24 for 42 days. By

day 21 of this feeding schedule, the 6X CR mice as a group

showed six activity peaks that mostly preceded the feeding event

(Figure 4A). Anticipation of the meals at ZT 24, 4, and 8 were

most obvious as these meals occurred during the light period when

6X AL control activity was very low. Activity peaks prior to the

three daytime meals were also salient on day 32 of 6X CR, but

activity peaks prior to the three nighttime meals were less obvious

(Figure 4B). On day 42 of the feeding schedule, three false feeding

events were scheduled, during which a plastic pellet was delivered

in lieu of a food pellet at ZT 16, 0, and 8 (Figure 4 C). To

compensate for the missed meals and retain an overall 60% CR

for day 42, the meals delivered preceding a false feeding equal to

20% of AL food intake (i.e. twice the size of typical 6x CR meals).

The mice were then fasted for 24 h on day 43, in constant dark

(DD) and without false feeding events. Activity built up in

anticipation of false feedings and surprisingly returned to baseline

levels quickly, before rising again several hours later in anticipation

of the next feeding event (Figure 4C). During the 24 h fasting day

in DD (day 43), small peaks of high activity were evident in the

group data preceding most of the usual mealtimes. Although the

peak level appeared to diminish, the timing of the peaks was

remarkably consistent with the 4 h interval feeding schedule.

Analysis of normalized high activity during the 1 h preceding

each feeding event on days 21, 32, and 42–43 confirms that

feeding events at ZT 4, 8, and 24 were the most consistently

anticipated, as activity among 6X CR mice was significantly

higher than 6X AL controls at each of these time points

(Figure 4D–F). Remarkably, missing two feeding events did not

preclude proper timing of FAA for the ZT8 feeding of day 42,

where we observed significant anticipation (Figure 4F). The next

scheduled meal should have occurred at ZT12 and, again, the 6X

CR mice significant FAA for this non-event but most of the

following feedings in constant darkness were not anticipated

significantly (Figure 4F). On average, CR mice anticipated 2.21 of

the 6 meals on day 21 (vs. 1.31 for AL mice; p = 0.02) and 3.6 of

the 6 meals on day 32 (vs. 0.69 for AL mice; p = 0.00002).

Overall, activity prior to the 3 nighttime meals was not

consistently elevated compared to the AL control group

(Figure S5). Although no single recording date revealed significant

anticipation prior to every feeding time point in group data, each

meal was significantly anticipated in at least one recording

(Figure S5). Inspection of the data for each individual mouse

revealed that individuals anticipated a variable number of meals,

and that the meals anticipated also varied across days of recording

(Figure S6).

Body temperature and activity measurement during six-
meal calorie restricted feeding schedule

To determine whether anticipation of multiple meals might be

revealed more strongly in a continuous physiological variable,

temperature sensitive transponders were implanted in the perito-

neal cavity of 14 mice. The mice then received either the AL

control diet (n = 7) or the 60% CR diet (n = 7) at ZT 4, 8, 12, 16,

20, and 24 for 33 days. Temperature measurements were made at

15 min intervals for the duration of the experiment and activity

was measured by video recordings on a nearly weekly basis

(Figure 1).

Three days prior to initiating the feeding schedule, the group

average temperature waveforms were very similar although the

mean level was elevated in the 6X CR group from ,ZT12–16,

when these mice were also more active compared to the 6X AL

group (Figure 5A). Body temperature in both groups was increased

at ZT 7.5–8, when the mice were handled after video recordings

were terminated. By day 14 of the feeding schedule, the

temperature and activity waveforms of mice on 6X CR had

changed markedly (Figure 5B). Each mealtime was associated with

a peak of activity preceding food delivery (statistically significant

for meals ZT4, 8, 12, 16; Figure 5D), and a peak of temperature

sometime within the h after meal onset. At the ZT 8, 12, 16 and

20 mealtimes, the temperature rise was initiated prior to mealtime,

although this change was significant by comparison with the AL

group only at the ZT12 mealtime. On day 33 of 6X feeding the

body temperature rhythms of 6X AL control mice showed

similarly marked peaks during mealtime, but the mealtime

anticipatory component of these peaks was if anything less

marked, particularly at the ZT20 and 24 feedings (Figure 5C).

Regression analysis revealed a surprisingly weak relationship

between the amount of anticipatory activity and the change of

body temperature during the h preceding the mealtimes. Data

from the light period mealtimes (Figure 5H–J) and the dark period

mealtimes (Figure 5L–N) were analyzed separately because

daytime feeding events showed greater behavioral anticipation

and 6X AL controls had much higher activity and temperature

measurements in the dark period. Although the correlations were

positive in all but one case, none of the r2 values exceeded 0.4.

Thus preprandial temperature was not well correlated to activity,

showing that behavioral anticipation can occur in the absence of

temperature entrainment.

Eighteen-hour Interval Feeding Schedule
We next used an 18 h feeding schedule to determine whether

mice can anticipate food when meals are provided at a fixed non-

circadian interval (Figure 1). 18 h CR mice were fed 45% CR per

meal (corresponding to 60% CR per 24 h) and AL control mice

received a feeding event at the same times. As expected, during the

first two days of the schedule, the activity levels of 18 h AL and

CR mice were very similar (Figure S7). On days 25–27, the 18h

CR mice showed increased activity prior to consecutive meals at

ZT8 and ZT2, both in the light period (Figure 6A, D). On days

indicate the amount of high activity occurring per one h bin for the CR mouse. Dark line indicates the 11 h dark period and arrows indicate feeding
times.
doi:10.1371/journal.pone.0037992.g002
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Figure 3. 8 h interval feeding schedule. (A) Normalized median +/2 IQR high activity data on day 7 of 3X feeding. (B) The amount of normalized
high activity in the 2 h preceding each feeding event on day 7. (C) Normalized high activity data on day 35 of 3X feeding. (D) The amount of
normalized high activity in the 2h preceding each feeding event on day 42. For 3X AL data n-6 on day 7 and n = 8 on day 35; for 3X CR, n = 8 on day 7
and 35. (E–H) Individual mouse data for 8 h interval feeding. The s of high intensity activity in each h for individual CR mice on days 35 3X CR feeding
for (E) mouse #2, (F) mouse #3, (G) mouse #6, and (H) mouse #8. Black arrows represent feeding times. Weighted black line on the x-axis indicates
the 11h dark cycle.
doi:10.1371/journal.pone.0037992.g003
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Figure 4. Four h interval feeding schedule. (A) Normalized median +/2 IQR high activity data on day 21 of 6X feeding. (B) Normalized high
activity data on day 32. (C) Normalized high activity data on days 42–43 CR feeding. (C) Normalized high activity data on days 42–43 of 6X feeding.

A Broad Temporal Range Food Anticipation in Mice
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37–39, 18 h CR mice showed significant peaks of high activity

preceding the ZT 14, 9, and 2 (Figure 6B, D). On days 45–47, pre-

meal activity was not elevated above controls at ZT 20 or 14 but

there was a notable increase at ZT 8, which occurred during the

light period (Figure 6C–D). Normalized high activity during the

2h preceding mealtimes, expressed as a fraction of the daily total,

was significantly greater in the 18 h CR group for more than a

third of all feedings (8 of 21) and more than half (6 of 11) light

period feeding events after day 25 of the experiment (Figure S7).

As with our other interval feeding studies described above, we

examined behavioral data from individual mice to determine if

sequential meals cycles were being predicted accurately by

individual mice and which, if any, were predicted with consistency

for a particular mouse (Figure 6E–J; Figure S8). Examining the

feeding schedule that was best anticipated (ZT 14, 8 and 2) on days

25–27 for mice #2 and #3 suggested that each of these mice showed

FAA for both of the light period feedings (Figure 6E–F). On days 37–

39, where feedings were again delivered at ZT 14, 8, and 2, mice # 1

and #6 anticipated the dark cycle feeding at ZT 14 (Figure 6G–H).

While mouse #1 did not anticipate the following light period feeding

at ZT8, mouse # 6 showed an impressive peak of activity just

preceding the ZT 8 feeding and even the following ZT 2 feeding

18 hours later, demonstrating FAA for three successive 18 h interval

feedings (Figure 6H). On days 45–47, where there are two

consecutive dark period feedings at ZT 20 and 14 followed by a

light cycle feeding at ZT 8, mice #3 and #6 both anticipated the ZT

8 feeding but only mouse 6 showed anticipation of a dark period

feeding (Figure 6I–J). From these examples, it appears that some

mice are capable of predicting 18 h interval feedings but did not do

so consistently to every feeding. In fact, most individual mice on an

18 h CR feeding schedule did not anticipate scheduled meal

deliveries. Using our cutoffs, CR mice anticipated an average of 2.5

of the 3 meals for days 17–19 (vs. 0.83 for CR mice; p = 0.003), and

1.83 of the 3 meals for days 25–27 (vs. 1.33 for CR mice; p = 0.11);

however, in both cases one of the FTs is soon after the transition from

the light- to dark-cycle, for which a sharp increase in activity may be

explained by the light-entrained clock. This is reflected in the

relatively high average count of ,1 anticipated FT for AL mice.

Concurrent Long and Short Interval Feeding Schedule
In a final experiment, we examined whether mice can express

food anticipation at both circadian and sub-hourly intervals

concurrently. Mice (n = 6) received 60% CR meals in six feedings

at 30 min intervals from ZT 4.5 – 7.5 for 22 days (termed ‘‘LS

CR’’ for long-short interval). An LS AL control group (n = 6 mice)

received food in excess at each mealtime. To pre-adapt to

restricted feeding, the LS-CR group was fed one 60% CR meal

daily at ZT 8 for 7 days. For the next 21 days food was provided

in 6 meals of 10% CR, at ZT4.5, 5, 5.5, 6, 6.5 and 7.

Group waveforms of data plotted in 30 min time bins reveal a

marked increase of high activity beginning , 1.5 h prior to the

first meal at ZT4.5 (Figure 7A–C). This was significantly different

from the AL group by day 3 of the schedule, and reached an

asymptote by day 7 (Figure 7D and Figure S9). Activity remained

elevated throughout the 3-h daily feeding window when food was

provided every 30 mins, and also on the food deprivation day, day

22, when no feedings occurred (Figure 7C, D).

To determine whether the CR mice fed at short intervals were

showing bouts of anticipatory activity on a scale of mins, we then

analyzed the high activity data in 1-min bins (Figure 7E–F). On

day 0 (day 7 of CR but day 1 of LS CR feeding schedule) peaks of

activity were evident after feeding events, but with no consistent

periodicity (Figure S10). By day 7 of LS CR, a 30 min cycle of

activity was clearly evident, with activity rising about 15 min prior

to each feeding event (Figure S10). These activity peaks were

sharper on days 14 and 17 of the LS CR schedule (Figure 7E–F).

AL control mice show little to no activity during these feeding

intervals, confirming that activity is not due to a disturbance

caused by the feeder.

The video recordings were continued for almost one half h

beyond the sixth and final daily feeding event, to determine if

anticipation was linked to a specific phase of a 24 h clock when

meals reliably occurred, or whether it reflects a 30 min timing

process that continues for at least one cycle after the last feeding.

On day 14, a peak of activity was evident ,30 min after the last

food drop, although no food was ever provided at that time

(Figure 7E). On day 17 of the feeding schedule, there was no clear

peak of activity during the 30 min interval after the 6th feeding,

but a robust peak was evident ,20 mins late (Figure 7F).

Data from individual mice indicates that there was substantial

meal anticipation of all 6 LS meals, and in some cases a 7th peak

after the last meal (Figure 7G–I). Using our cutoffs, CR mice

anticipated an average of 5.5 of the 6 meals on day 14 (vs. 0.17 for

AL mice; p = 0.001), and an average of 4.3 of the 6 meals of day 17

(vs. 1.0 for AL mice; p = 0.002). Interestingly, for mouse 901 on

day 14 (Figure 7G) and mouse 903 on day 17 (Figure 7H), the 7th

peak of activity subsides even though there is no feeding event

whereas for mouse 905 on day 14 the activity does not subside for

long and spikes again after the expected feeding time (Figure 7I).

Additional individual mouse data for LS feeding is shown in

Figure S11. On the food deprivation day, day 22, there was no

pattern of 30 min cycles during the expected feeding time range

(Figure S12). To investigate the possibility that the CR mice were

exhibiting continuous FAA throughout the feeding periods that

was being disrupted only by physically eating, we quantified meal

duration by manually scoring the amount of time each mouse

spent eating after food was delivered on days 17 and 21 of LS

interval feeding. We found that each meal lasted, on average,

between 12 and 15 min, with the last meal taking longer

(Figure S13).

Discussion

Food restricted rats and mice fed once a day at a fixed time

become active during the hours immediately preceding mealtime.

There is a wide range of conceptually distinct mechanisms that

could yield daily meal timing. Experimental analysis of food

anticipation in rats has produced an array of findings consistent

with the concept of a food-entrainable circadian oscillator

anatomically distinct from the light-entrained master circadian

clock in the mammalian SCN [3]. Rats can also readily anticipate

two daily meals, but reportedly not three, suggesting a dual

oscillator structure, with dissociable FEOs capable of tracking two,

but not three daily meals independently. In the present study, we

sought to determine the limits of anticipatory behavior in the

(D–F) The fraction of high activity occurring 1h prior to each meal time for days (D) 21, (E) 32, and (F) 42–43 of 6X feeding. Yellow arrows with a slash
through them indicate false feeding events where a small plastic pellet was delivered instead of food. Dashed arrows indicate 4h intervals and do not
represent feeding (or false-feeding) events. n = 12–14 mice at for each group at each time point presented. (G–J) Individual mouse data for 4 h
interval feeding. The s of high intensity activity in each h for (G) mouse # 5, (H) mouse #8, (I) mouse #9, and (J) mouse #11 on day 32 of 6X CR. Black
arrows represent feeding times. Weighted black line on the x-axis indicates the 11 h dark cycle.
doi:10.1371/journal.pone.0037992.g004
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mouse, which is the species of choice for molecular genetic analysis

of food anticipatory rhythms, despite a gap of knowledge needed

to confirm canonical circadian properties of anticipatory rhythms

in this species. We tested C57BL/6J male mice of approximately

the same age using an array of feeding interval schedules but

retaining 60% CR across all of these experiments. While this

ensures internal consistency within our study, it hinders compar-

ison to other studies that used different methods of food restriction

and activity measurement.

We first confirmed that mice can anticipate two daily meals,

quantified using a semi-automated behavior recognition system.

Contrary to results obtained for rats [31], we then found evidence

for anticipation of more than 2 daily meals in mice with access to 3

or 6 daily meals, provided at intervals of 8 h or 4 h, respectively.

In group data, anticipation was visible for all three meals on the

3X CR schedule, and for up to 5 meals on the 6X CR schedule.

Group data could be misleading, if different mice anticipate no

more than 2 daily meals, but at different mealtimes. Careful

inspection of the individual activity records confirms that

individual mice can indeed anticipate meals at 4 h and 8 h

intervals, albeit with variable success. The meals anticipated by

individual mice were not always consistent across weekly video

recordings or between mice.

Entrainment of a non-circadian oscillator is suggested by the

evidence for anticipation of meals at 18 h intervals. Anticipation of

meals at intervals of 14, 16 or 20 h has been reported in rats

[24,26], but most other studies have not observed anticipation at

intervals below 23 h [1,9,18]. This may be related to the

experimental procedures, as studies reporting anticipation in rats

at intervals below 23 h measured operant responding for food

[24,26], whereas those failing to observe anticipation measured

wheel running. Different behaviors may emerge at different times

prior to a scheduled meal, and it is possible that wheel running

emerges later than does operant nose poking in rats, or the ‘high-

activity’ measures quantified in the present study. It may also be

important that on the 18 h feeding schedule employed in the

present study, meals fell at the same time of day (ZT2, 8, 14 or 20)

once every fourth day. If rodents can discriminate the phase of a

circadian clock, it is conceivable that they can learn that food

recurs each day at one or more of 4 possible circadian phases, and

that this probability is sufficient to support a temporal discrimi-

nation. This would explain why the evidence for 18 h anticipation

in our mice is clearly weaker than it is for 24 h anticipation.

Additional experiments, using constant darkness and/or wheel

running as a metric of FAA, will be needed to confirm anticipation

of 18 h and other long, non-circadian intervals. Even in the case of

4, 8, and 12 h meal feeding schedules it is important to note that

meal recurred at the same time each and every day, providing a

strong circadian element to these experiments. One the other

hand, one bold interpretation of these results is that the neural

substrate of FAA (often referred to as the food entrainable

oscillator) is not a circadian entity, though it can cooperate with

circadian oscillators under normal physiological conditions. This

conjecture is in agreement with Storch and Weitz’s study of FAA

in circadian clock mutant mice, where they found that Bmal1

mutant mice can anticipate daily feeding events with high fidelity

despite lacking a functional circadian system [32]. Perhaps such a

non-circadian oscillator would make use of transcriptional/

translational machinery with an operating range broader than

that of the core circadian clock.

The most robust anticipation observed in the present study was

in response to the 6 meal ‘long-short’ interval schedule in which

single food pellets were delivered at 30 min intervals near the

middle of the light period. Mice under this schedule exhibited

prominent anticipation of the daily event, as well as anticipation of

each of the individual meals. The 30 min rhythm induced by this

procedure reflects in part a pause in activity associated with eating.

However, the appearance of a 7th discrete bout of activity of

similar duration following the 6th and last meal of each session is

evidence for a 30 min anticipatory timing process. This timing

process was actuated each day by presentation of the first food

pellet, as no 30 min rhythm was evident during the food

deprivation day, despite the marked increase of activity during

the expected 2.5 h feeding window. This study presents a clear

case of interaction between circadian and interval timing

mechanisms in response to scheduled feeding events. It will be

important in future studies to test FAA across these long and short

intervals simultaneously in mutant mice that are failing to show

FAA across circadian time windows.

No mouse exhibited clear anticipatory activity to every meal on

every recording day, especially in the 3- and 6-meal schedules. It is

possible that expression of anticipatory activity at some mealtimes

on some days is constrained by competing processes that serve

sleep homeostasis or energy conservation. Similar processes may

explain the failure of rats to anticipate more than 2 of 3 daily

meals, especially given that anticipation in those studies was

measured in wheel running, an energetically costly behavior [18].

Mice in the present study did not have access to wheels, which

may have permitted expression of anticipatory activity at more

mealtimes. Consistent with this interpretation, in pilot studies we

have observed stable anticipation of 3 daily meals in SCN-ablated

rats, using a food-bin measure of activity instead of running wheels

(R.E. Mistlberger and E.G. Marchant, unpublished results). This is

consistent with studies by Escobar and colleagues, who showed

that the SCN is inhibited in rats on a consistent restricted feeding

schedule but not in rats fed at variable times [33]. Interestingly,

studies of the expression of period genes in the brain have shown

that circadian genes expressed in structures such as the dorsal

medial hypothalamus can show entrainment in the absence of

behavioral anticipatory activity [34,35]. The limbic system and in

particular, the dorsal striatum, shows robust rhythmic expression

of circadian components [36] and deserves further attention for it

potential role as a mediator of FAA.

Rats and mice restricted to a single daily meal in the middle of

the light period exhibit marked alterations in body temperature in

parallel with activity. Body temperature spikes at mealtime,

declines to below normal values during the late night and early

light periods, and then rises during the hours immediately

Figure 5. Body temperature and activity measurements during 4h interval feeding. (A) Mean body temperature (left y-axis and top of the
panel) and normalized median high activity data (right y-axis and bottom of the panel panel) plotted against ZT time for day -3 (CR and AL groups are
listed separately but no dietary manipulation has occurred at this point). (B) Temperature and activity after 14 days of 4 h interval feeding. (C)
Temperature and activity after 33 days of 4 h interval feeding. Normalized high activity for 1h preceding each feeding event on day 14 (D) and day 33
(E). Change in temperature 1 h preceding each feeding event on day 14 (F) and Day 33 (G). Fraction of high activity plotted against change in
temperature 1h preceding daytime (H–J) and nighttime (L–N) feeding events for days -3, 14 and 33. Least-square regression lines and r2 values are
shown on the top left of each panel. Error bars correspond to SEM for temperature values, and to IQ ranges for activity values. Statistics were
performed using t-test for temperature values and Mann-Whitney for behavior values. * denotes p,0.05, ** denotes p,0.01. n = 7 for AL and CR.
n = 7 for both AL and CR at all time points. Yellow arrows indicate feeding times.
doi:10.1371/journal.pone.0037992.g005
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preceding mealtime [37]. The strong correlation between activity

and temperature during the pre-meal hours suggests regulation by

a common timing mechanism. In our 6 meal, 4 h interval study,

we observed a lack of correlation between prepradial activity and

Figure 6. 18 h interval feeding schedule. (A) Normalized high activity median +/2 IQR profiles during the 48 h recording during days 25–27 for
18 h interval feeding. (B) Normalized high activity profiles for days 37–39. (C) Normalized high activity profiles on days 45–47. Yellow arrows
correspond to feeding events. (D) Fraction of high activity during the h preceding feeding events for days 25–27, 37239, and 45–47. (E–J) Individual
high activity mouse data with mean AL values indicated by a blue line for (E) mouse #2 on days 25–27, (F) mouse #3 on days 25–27, (G) mouse #1
on days 37–39, (H) mouse #6 on days 37–39, (I) mouse #3 on days 45–47, and (J) mouse #6 on days 45–47. All statistics were performed using
Mann-Whitney * denotes p,0.05, ** denotes p,0.01. n = 6 for AL and n = 6 for CR at all time points.
doi:10.1371/journal.pone.0037992.g006
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temperature, with activity rising prior to some mealtimes without a

significant anticipatory rise in body temperature. This suggests

that the timing mechanism responsible for behavioral anticipation

of meals at 4-h intervals does not directly drive body temperature

rhythms. The result also reinforces the argument that core body

temperature is not a good substitute for direct measures of

behavior [38,39].

Collectively, our results show that the effective time-keeping

capabilities of mice are quite remarkable. These results establish a

video-based phenotyping paradigm for experimental analysis of

food anticipatory behavior in mice fed at intervals in the mins,

hours and circadian range. This model can be exploited to

determine the extent to which behavioral timing across a wide

Figure 7. Short interval feeding schedule. (A) Fraction of median +/2 IQR normalized high activity for AL and CR mice on day 14 of LS CR,
corresponding to the 21st day of 60% CR. (Day -7 is the first day of CR feeding, which occurred as a single feeding event at ZT 8, then the mice were
switched to being fed 6 small meals at 30 min intervals beginning at ZT 4.5). (B) Fraction of high activity for AL and CR mice on day 17 (24 total days
of 60% CR). (C) Days 21–22 of LS interval feeding (day 28–29 of CR). The yellow arrows indicate the 6 feeding times, whereas the 6 black dashed
arrows indicate the expected time of feedings, which were omitted, on day 22 of LS feeding schedule. (D) Fraction of high activity in the two h
preceding the first meal delivery for AL and CR mice on days 0, 14, 17, 21, and 22 of LS interval feeding. (E–F) Group median +/2 IQR data for high
activity shown in one min bins for (E) day 14 and (F) day 17. Min 1140 corresponds to ZT 3 and min 1140 corresponds to ZT 8. Blue line indicated
median AL data. (G–I) Individual data for 30 min scheduled CR feeding; (G) s of high activity for CR mouse 901 from ZT3-8 on day 14 of LS interval
feeding, (H) s of high activity for CR mouse 903 from ZT3-8 on day 17 of LS interval, and (I) s of high activity for CR mouse 905 from ZT3–8 on day 14
of LS interval feeding. n = 6 for both LS AL and LS CR at all time points.
doi:10.1371/journal.pone.0037992.g007
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range of intervals relies on common or distinct neural and

molecular mechanisms.

Materials and Methods

Ethics Statement
These experiments were approved by the Caltech Institutional

Animal Care Committee under protocol #1567. Every effort was

made to minimize pain, distress, and the overall number of

animals used in this study.

Behavioral analysis
Video-based activity data was analyzed using HomeCageScan

3.0 [29,40,41]; behavioral definitions were as described previously

[29,42]. High intensity activity was defined as walking, jumping,

rearing, and hanging behaviors. There are several other activity

related behaviors that are not include in ‘‘high activity’’, including

‘sniffing’, ‘turning’, ‘stretching’, ‘food bin entry’, ‘unknown’,

‘grooming’ and ‘chewing’. Activity data were accumulated in 30

or 60 min time bins and evaluated for statistically significant

changes using non-parametric tests such as the Mann-Whitney

Test using GraphPad InStat. All graphs were made with

GraphPad Prism 4; medians are reported +/2 interquartile

ranges. Sample sizes are indicated in the Figure Legends.

A mouse was classified as anticipating a meal if the following

two criteria were met: (1) its activity increased at least 50% during

the interval preceding the feeding, with interval length 4 hours for

2–4X daily feeding; 2 hours for 6X daily feeding; or 15 mins for

the 30 min feeding schedule; (2) its mean activity in the second half

of this interval was at least 25% higher than the median activity for

the entire population of mice (matched for AL or CR) across the

entire LC or DC (matched for the FT). For the 30 min feeding

schedule with 1 min time bins, the population medians were based

on the 5 h up to and including the feedings (as shown in Fig 7E

and Fig 7F) rather than the entire LC. Prior to least-squares fitting

of slopes and means of activity levels in these intervals, the per-

time-bin activity levels were log2-transformed, after adding 5% of

the maximum value attained by any mouse in any time bin to

avoid logs of zero. Then a 50% increase in activity during the pre-

feeding interval corresponds to an increase of log2(1.5) = 0.58 in

the fitted line during this interval. Note that using these criteria,

individual AL mice were on average classified as anticipating 10–

15% of meals. To control for this baseline rate, one-tailed

Wilcoxon rank-sum tests were used (with the R package coin, to

handle ties) to compare the counts of meals anticipated by CR

mice to the counts of meals anticipated by AL mice.

Automatic feeding apparatus
All mice were exposed to feeders at least four days prior to the

beginning of the CR schedule. A comparison between a group of

CR mice hand-fed once daily (n = 4) and a group of CR mice fed

by automatic feeder (n = 4) once daily revealed similar magnitudes

and distribution of all behaviors (such as walking, jumping, and

rearing) with the exception of an increase in the total time hanging

(but no change in the distribution of hanging) in mice fed by the

automatic feeders. Possibly this increased hanging was an attempt

to reach the inaccessible food that was stocked in the feeder

overhead.

Automatic feeders were constructed at Caltech. Food pellets

were stored in a plastic tube suspended above the wire rack. At the

scheduled time, a piston would advance, pushing the pellet

through a hole to drop it into the wire rack below. A laser sensor is

disrupted by the passage of a food pellet and this stops the

advancing of the plunger. The automatic feeders were accurate to

within 5 min and were reset at least once every two to three days.

There were almost no instances of failures of these feeders to

deliver food; rather they occasionally distributed two pieces of food

when the pellets were cut into small pieces in the case of 6X CR

feeding. We minimized these ‘‘double drop’’ events in 6X feeding

experiments by restocking feeders daily, which prevented the

uneven clustering of pellets in the plastic tube.

Mouse strains and feeding conditions
All mice were male C57BL/6J mice aged 10–14 weeks at the

onset of the experiment (Jackson Labs West) except for the mice

used for temperature monitoring experiments, which were

6 months old. These mice were entrained to a 13:11 LD cycle

and single-housed for 4–6 days with AL access to food (Laboratory

Rodent Chow Type 5001) and water prior to being placed on

special feeding protocols. Daily food intake was measured over a

48 h period beginning two or three days after single-housing. For

all experiments, the mass of food provided to CR mice in any 24 h

period was equal to 60% of the average daily intake during AL

food availability, which was measured over a two day period in the

week prior to initiating CR. In all cases, mice consumed the

entirety of each meal (i.e., we never observed left over pellets in the

food bins). The size of CR meals was not adjusted across the

experiment. Sample sizes ranged from n = 6 to 18 for CR and AL

controls and the specific sample size for each experiment is listed

in the figure legends.

Automatic feeder device failure resulting in absent or mistimed

feeding events led us to remove the affected CR mice from the

study. Infrequent double drops and missed meals occurred for

some mice subjected to the 6X CR. Feeders were restocked every

3 days for 2x mice, 2 days for 3x mice, daily for 6x mice, and once

every two to four days for 18 h feeding-interval mice. Control

mice received feeding events at the same time as the CR mice; the

amount of AL food in the food bin was minimized in order to

provide similar mechanical, auditory, and olfactory stimulation for

both CR and AL-fed mice.

For the final recording of the 6X mice, the mice were recorded

for 48 h to test the robustness of the putative entrainment to food

presentation. The first 24 h only differed from a normal recording

in that ‘false’ feeding events, marked by delivery of an inedible

plastic pellet, replaced the third (ZT = 16) and fifth (ZT = 24)

feeding events. During the second 24 h period the mice were

fasted in constant darkness.

For 18h feeding interval experiments, the CR group (n = 6)

received 45% of its daily food intake for each meal (such that it

received 60% of its initial daily food intake during any 24 h

period) while the AL group had constant food availability in

addition to the food supplied by the feeders. Due to a shift of the

feeding intervals in relation to the light schedule, feeding events

occurred in the following sequence across a three day period: ZT

8, ZT 2, ZT 20, ZT 14, and ZT 9.

For L-S interval feeding experiments, due to problems with the

timer in the feeding apparatus, mice in this experiment were first

subjected to 7 days of 60% CR fed in one single meal daily at ZT

8. Then once interval feeding began, the first feeding usually

occurred about 35–40 min after ZT 4, instead of at ZT5, which

was the intended target time. Each subsequent feeding then

occurred almost exactly 30 min after the first feeding event.

For measurement of core body temperature, mice were

implanted with ‘‘ibuttons’’ (Maxim-Dallas) in the peritoneal cavity

as described previously [43].
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Supporting Information

Figure S1 12 hour interval feeding schedule. The amount

of normalized high activity in the 2 h preceding each feeding on

days 7, 14, 21, 28, 35, and 42. Statistical significance was

determined using the Mann-Whitney Test with asterisks denoting

* = p,0.05, ** = p,0.01, *** = p,0.001. n = 528 mice for both

2X AL and 2X CR at all time points.

(PDF)

Figure S2 Group high activity data for 12 hour interval
feeding for days 7, 21, 28, and 35 (no statistical testing
indicated). Individual mouse high activity data for 12 hour

interval CR feeding for days 7, 14, 21, 28, 35, and 42. Blue line

indicates mean AL control activity.

(PDF)

Figure S3 8 hour interval feeding schedule. The amount

of normalized high activity in the 2 h preceding each feeding on

days 0, 14, 21, 28, 35, and 42.

(PDF)

Figure S4 Individual mouse data for 8 hour interval
feeding schedule for days 0, 7, 14, 21, 28, 35, and 42. Blue

line indicates mean AL control activity.

(PDF)

Figure S5 4 hour interval CR feeding schedule. The

amount of normalized high activity in the 1 h preceding each

feeding on days 0, 7, 14, 21, 28, 35, and 42–43. The blue line

indicates mean AL control activity.

(PDF)

Figure S6 4 hour interval CR feeding group data for
days 0 and 28. Individual mouse data from 4 hour interval fed

CR mice on days 0, 10, 18, 21, 28, 32, 35, 38 and 42–43.

(PDF)

Figure S7 18 hour interval feeding group median data
shown for days 0–2, 25–27, 37–39, 45–47, and 53–54. The

amount of normalized FAA during the 2 hours before each me is

graphed in panel F.

(PDF)

Figure S8 18 hour interval individual mouse high
activity data for days 0–2, 9–11, 17–19, 25–27, 29–31,
33–35, 37–39, 41–43 and 45–47. The feedings are organized

by ‘‘type’’, where ‘‘type A’’ was when feedings occurred at the

beginning of a video recording at ZT 9, then at ZT 2, and finally

at ZT 20; days 9, 29, and 41 are shown for type A. ‘‘Type B’’

recordings feedings occurred at ZT 20, then ZT 14, and finally at

ZT 8; days 0 (the first day of CR), 33, and 45 are shown. For ‘‘type

C’’ recordings, feeding occurred at ZT 14, ZT 9, and ZT 2; days

17, 25, and 37 are shown. Anticipatory activity for 18 h interval

CR feedings was most visible in type C recordings, possibly

because two of the feedings occur during the light cycle.

(PDF)

Figure S9 Short interval CR feeding experiment. (A)

Fraction of high activity (in half hour bins) for AL and CR mice on

Day 27. Day 27 is the first day of CR feeding, which occurred as

a single feeding event at ZT 8. (B) Fraction of high activity for AL

and CR mice on day 0, which was the first day of 30 minute

interval feeding but the 7th day of 60% CR. The yellow arrows

indicate the 6 feeding times (C) Day 14 of LS interval feeding (day

21 of CR). (D) Fraction of high activity for AL and CR mice on

day 17 of LS interval feeding (day 24 of CR). (E) Fraction of high

activity for AL and CR mice on day 21 of LS interval feeding (day

28 of CR). (F) Fraction of daily high activity for AL and CR mice

during ZT 3–5 (2 h preceding feeding) at every recorded day of LS

interval feeding. (G) Fraction of high activity for AL and CR mice

on days 21 and 22 of LS interval feeding (days 28 and 29 of CR).

n = 6 for both LS AL and LS CR at all time points. Yellow arrows

represent feeding times and dotted black arrows indicate times at

which feeding times would normally have occurred if the

30 minute cycle had continued.

(PDF)

Figure S10 Anticipation of 30 minute meal delivery
cycles. (A) High activity data (in seconds) for AL controls and

LS CR mice is shown in 1 minute bins from ZT3-8 on Day 0 of

LS interval feeding(the 7th day of CR). The x-axis is in minutes.

Day 0 is the first day of LS interval feeding but day 7 of CR. (A)

High activity data (in seconds) for AL controls and LS CR mice is

shown in 1 minute bins from ZT3-8 on Day 0 of LS interval

feeding (the 7th day of CR). Day 0 is the first day of LS interval

feeding but day 7 of CR. (B) Seconds of high activity for AL and

CR mice from ZT3-8 on day 7 of LS interval feeding (day 14 of

CR). (C) Seconds of high activity for AL and CR mice from ZT3-8

on day 14 of LS interval feeding (day 21 of CR). (D) Seconds of

high activity for AL and CR mice from ZT3-8 on day 17 of LS

interval feeding (day 24 of CR). (E) Seconds of high activity data

for day 21 and part of day 22. (F) Seconds of high activity for

day 22 during the time at which meals were normally scheduled,

but were withheld during this experiment. Normal feeding times

indicated by dashed arrows.

(PDF)

Figure S11 Individual LS CR mice high activity data in 1
min bins for days 14, 17, and 21 shown for mouse 901,
903, 905, 907, 909, and 911.
(PDF)

Figure S12 Short interval feeding schedule. Seconds of

high activity for LS CR mice 901, 903, 905, 907, 909, and 911 for

day 22 when meals were not delivered. The 30 minute intervals

when food was normally delivered are indicated by black arrows.

Minute 1140 corresponds to ZT 3 and minute 1140 corresponds

to ZT 8.

(PDF)

Figure S13 Quantification of meal duration. Meal dura-

tion was quantified by manually scoring the amount of time each

mouse spent eating after food delivery for day 17 and day 21 of LS

interval feeding. For day 17, n = 4 mice and for day 21, n = 6 mice.

(PDF)
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