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Abstract

Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects
have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network
related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported
interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further
evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells.
Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1
inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia
type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since
reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-
1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing
of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1.
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Introduction

Alternative splicing is a key posttranscriptional mechanism

controlling the expression of numerous gene products contributing

to proteome diversity in a cell- and tissue-specific manner [1,2,3].

Variations in the intracellular concentration and localization of

splicing factors influence alternative splicing and may be a natural

mechanism for regulating gene expression [4]. Aberrant splicing

perturbs this normal balanced functionality and is related to

a number of human disorders causing disease directly or mediating

disease modification and susceptibility, as disease genes have the

propensity to be more intron-rich, and therefore are more

susceptible to splicing deregulation [1,3,5].

Of note, a large group of RNA binding proteins regulating pre-

mRNA splicing have been identified, but for most the precise

splicing events are barely understood. To a certain extent the

splicing activities of the RNA binding proteins FOX-1 and FOX-

2, members of the FOX family (feminizing gene on X), have been

revealed (reviewed in [6]). Both splicing regulators are conserved

across mammalian genomes and highly expressed in brain, heart

and muscle. Moreover, FOX-1 and FOX-2 are highly homolo-

gous, as both contain a conserved RNA recognition motif (RRM)

in the central region, which is responsible for binding the

UGCAUG motif of target RNAs, whereas the N- and C-terminal

regions are less conserved. Due to the use of tissue-specific

promoters and alternative splicing, several FOX variants have

been identified, some of these have a specific C-terminal sequence

RF(A/T)PY, which likely serves as a conserved nuclear localiza-

tion signal of this protein family (reviewed in [6]). In contrast,

FOX variants with different C-terminal endings are found to be

predominantly cytoplasmic potentially leading to different cellular

functions [7,8].

Interestingly, a global computational prediction utilizing the

FOX-binding motif UGCAUG resulted in a defined regulatory

splicing network, which comprises more than thousand FOX-1/

FOX-2 targets with enrichment in genes implicated in neuromus-

cular processes [9]. Of note, most of these target genes have been

linked to various human genetic disorders, such as neurological,

neurodegenerative or heart disorders amongst others, or are

encoding splicing factors per se [6,9,10]. Depending upon the

presence of this motif in upstream or downstream intronic flanking

regions, binding of FOX-1 or FOX-2 represses or enhances exon

inclusion, respectively (reviewed in [6]). Besides, mutations in

FOX-1 or its abnormal expression have been found in patients

with epilepsy, mental retardation, autism and heart disease

[11,12,13]. FOX-2 has been found differentially spliced in breast

cancer cells and was identified as a novel hub gene in a colon

cancer-specific gene network [14,15]. Interestingly, both FOX-1

and FOX-2, also known as A2BP1 (ataxin-2 binding protein 1)

and RBM9 (RNA binding motif protein 9), have been identified as

interaction partners of ataxin-1 (ATXN1), which is implicated in

spinocerebellar ataxia type 1 (SCA1) [16]. This disease belongs to

the family of so-called polyglutamine disorders that further

comprises Huntington’s disease, spinobulbar muscular atrophy,
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dentatorubral pallidoluysian atrophy, and spinocerebellar ataxia

type 2, 3, 6, 7 & 17. All usually strike in late midlife and are

characterized by progressive neuronal dysfunction and loss of

specific neuronal populations. Causative for these disorders is an

expansion of the trinucleotide repeat CAG in otherwise unrelated

genes encoding an enlarged polyglutamine region in the disease-

causing proteins, for which the cellular functions are yet not clearly

understood [17,18,19]. The gene causative for SCA1 has been

cloned and identified on chromosome 6p23 and termed ATXN1

[20,21]. Normal ATXN1 alleles comprise 4–39 CAG repeats,

whereas alleles of SCA1 patients comprise 40–83 CAG repeats

leading to an expanded polyglutamine region in the N-terminal

part of ATXN1 [22,23,24]. This mutant protein accumulates in

nuclear inclusions that are detected in post-mortem brain tissue of

SCA1 patients and transgenic SCA1 mouse models representing

a neuropathological hallmark of SCA1 [22,24]. Moreover, these

nuclear ATXN1 inclusions are the source for the recruitment of

other cellular proteins and aberrant protein-protein interactions

thereby contributing to cellular dysfunction [25,26,27,28,29,30].

Interestingly, an interaction between FOX-1 and ataxin-2

(ATXN2), the disease protein in another SCA, spinocerebellar

ataxia type 2 (SCA2), has been reported as well [16,31]. Notably,

interactions between FOX-1 and FOX-2 and other ataxia-causing

proteins have been identified, indicating that both splicing factors

are part of a main hub in a human ataxia protein network [16].

Thus, some of the human inherited ataxias might represent RNA

splicing disorders as proposed or demonstrated for other

neurodegenerative and neurological disorders, since alternative

splicing is particularly prevalent in the brain [16,32]. This is

further supported by the finding that genes implicated in RNA

binding and processing modify neurodegeneration in transgenic fly

models of polyglutamine disorders [33,34].

In this study we set out to functionally characterize the

interaction between FOX-2 and ATXN1 that has been originally

identified in a high-throughput yeast-2-hybrid analysis [16], and

the effect of ATXN1 overexpression on FOX-2 localization and

splicing activity.

Results

Interaction between ATXN1 and FOX-2 variants
As mentioned before, FOX-2 has been shown to be part of

a main hub found in a protein-protein interaction network for

ataxia-causing proteins that have been implicated in more than 20

different inherited cerebellar ataxias [16]. Interestingly, ATXN1

has been identified as one interaction partner of FOX-2 [16]. To

further characterize this interaction, we first carried out directed

yeast-2-hybrid (Y2H) analyses. For this, we generated different

prey constructs for ATXN1, which are schematically shown in

Fig. 1A (left panel). The plasmids pACT-ATXN1-NTQ30 and

pACT-ATXN1-NTQ82 encode the N-terminal region of

ATXN1, which comprises the polyglutamine region with 30 or

82 glutamines, representing normal and disease state, respectively.

Plasmid pACT-ATXN1-AXH encodes the AXH-domain of

ATXN1, an RNA-binding motif, which is implicated in the self-

association of ATXN1 [35]. Furthermore, the transcriptional

repression activity of ATXN1 relies on this domain [36]. Plasmid

pACT-ATXN1-CT encodes the C-terminal portion of the pro-

tein, including the AXH-domain. On the other hand, we

generated bait constructs for expression of a predominantly

nuclear and cytoplasmic FOX-2 variant, termed FOX-2V1 and

FOX-2cyt, respectively, which are schematically shown in Fig. 1A

(right panel; please see Material and Methods and Fig. S1 for

further details). The rationale behind this is based on the fact that

use of alternative promoters and alternative splicing patterns

generate diverse FOX protein variants with different N- or C-

terminal regions that do not preferentially localize to the nucleus

but also to the cytoplasm [7,8,37]. Both variants used show

differences exclusively in the C-terminal region resulting in the loss

of the putative nuclear localization signal in the variant FOX-2cyt
(Fig. S1A). Moreover, we decided to make use of both FOX-2

variants, since ATXN1 has been found to shuttle between the

nucleus and the cytoplasm [25]. First of all we performed Y2H

analyses to exclude the possibility that the bait proteins LexA-

FOX-2V1 and LexA-FOX-2cyt as well as the ATXN1 prey

proteins per se led to the activation of the analyzed reporter genes.

First, bait plasmids pBTM-FOX-2V1 and pBTM-FOX-2cyt
encoding fusion proteins of the DNA binding domain LexA and

the FOX-2 variants, and the prey vector pACT encoding the

activation domain (AD) were co-transformed. Secondly, the bait

vector pBTM encoding the DNA binding domain LexA was co-

transformed with the prey constucts pACT-ATXN1-NTQ30,

pACT-ATXN1-NTQ82, pACT-ATXN1-AXH, or pACT-

ATXN1-CT encoding the fusion proteins AD-ATXN1-

NT(Q30)1–576, AD-ATXN1-NT(Q82)1–576, AD-ATXN1-

AXH559–701, or AD-ATXN1-CT530–816, respectively. Consequent-

ly, the respective yeast transformants were isolated and analyzed

for reporter gene activity. Reporter gene activity was not observed

for all the combinations tested (Fig. 1B and Fig. 1C). In the second

step, we performed directed Y2H analyses to test for a potential

interaction between the two FOX-2 variants and ATXN1. We

observed that yeast cells expressing LexA-FOX-2V1 and AD-

ATXN1-NT(Q30)1–576 or AD-ATXN1-NT(Q82)1–576 exhibited

activity of the reporter genes (Fig. 1B). Interestingly, activity of

reporter genes was also detected for yeast cells expressing LexA-

FOX-2cyt and AD-ATXN1-NT(Q30)1–576 or AD-ATXN1-

NT(Q82)1–576 (Fig. 1C). Reporter gene activity was not observed

for yeast cells expressing LexA-FOX-2V1 or LexA-FOX-2cyt and

AD-ATXN1-AXH559–701 or AD-ATXN1-CT530–816, respectively.

We therefore concluded that an interaction between both FOX-2

variants and the N-terminal region of ATXN1 occurs in the Y2H

system.

To further validate the interaction between FOX-2 and

ATXN1, we performed co-immunoprecipitation (Co-IP) experi-

ments using lysates prepared from HEK293T cells overexpressing

FLAG-ATXN1-Q30 or lysates from non-transfected HEK293T

cells for the detection of endogenous interactions. As shown in

Fig. 1D (left panel), FLAG-ATXN1-Q30 protein was precipitated

with an antibody directed against FOX-2. A minimal amount of

protein was precipitated in the control sample lacking primary

antibody. In addition, endogenous ATXN1 was enriched with an

antibody directed against FOX-2 that recognizes a number of

FOX-2 protein variants as well (Fig. 1D, right panel). Thus,

ATXN1 is found in association with FOX-2 in mammalian cells.

Nuclear ATXN1 inclusions affect FOX-2 localization
To further confirm that the protein-protein interaction between

FOX-2 and ATXN1 is valid, we next carried out localization

studies. The important aspect here is that ATXN1 has been

reported to be predominantly nuclear, however shuttling of

ATXN1 between nucleus and cytoplasm has been reported

[25,38]. In line with this, we observed in our Y2H analyses that

ATXN1 is able to interact with the mainly cytoplasmic FOX-2cyt
splice variant as well. HeLa cells were co-transfected with the

mammalian expression plasmids pcDNA1-FLAG-SCA1-Q30 or

pcDNA1-FLAG-SCA1-Q82 to express full-length ATXN1 with

30 or 82 consecutive glutamines and pCMV-HA-FOX-2V1 or

pCMV-MYC-FOX-2cyt, respectively. Afterwards, cells were pre-
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pared for confocal microscopy as described in Material and

Methods. We observed that the protein HA-FOX-2V1 displayed

a predominantly diffuse nuclear localization, whereas MYC-FOX-

2cyt was evenly distributed in the cytoplasm (Fig. S1B). Moreover,

we detected that in cells overexpressing the proteins FLAG-

ATXN1-Q30 or FLAG-ATXN1-Q82 the variant HA-FOX-2V1
co-localized with the nuclear inclusions formed by these proteins

(Fig. 2A). These nuclear inclusions, which are a pathological

hallmark in SCA1, are heterogeneous and display diverse body

morphology [22,24]. We observed that co-localization of FOX-2

was more prominent with larger inclusions, but co-localization was

also observed with smaller inclusions formed by FLAG-ATXN1-

Q30 and FLAG-ATXN1-Q82. Interestingly, the cytoplasmic

MYC-FOX-2cyt variant co-localized with both larger and smaller

nuclear ATXN1 inclusions as well (Fig. 2B). To further investigate

the specificity of this co-localization, we included the protein

TIAR (TIA1 cytotoxic granule-associated RNA binding protein-

like 1), a splicing regulator comprising RRM domains like FOX-2

[39,40]. For this, HeLa cells were co-transfected with the

mammalian expression plasmids pcDNA1-FLAG-SCA1-Q30 or

pcDNA1-FLAG-SCA1-Q82 and pCMV-MYC-TIAR and pre-

pared as described. In this case, we observed that the presence of

nuclear ATXN1 inclusions had no effect on the localization of

TIAR (Fig. 2C), indicating that the mis-localization of FOX-2

noticed in the presence of nuclear ATXN1 inclusions is specific,

and is not based on unspecific trapping effects of RNA binding

proteins.

Furthermore, we investigated whether the observed mis-

localization of FOX-2 in the presence of ATXN1 inclusions holds

true for endogenous FOX-2 protein. Again, HeLa cells were

transfected with expression plasmids pcDNA1-FLAG-SCA1-Q30

or pcDNA1-FLAG-SCA1-Q82. Of note, we observed that the

localization of endogenous FOX-2 protein (Fig. 3A) was affected,

since it co-localized with nuclear ATXN1 inclusions as well

(Fig. 3B). Once more, co-localization of FOX-2 seemed to be more

prominent with larger nuclear ATXN1 inclusions. To further

Figure 1. ATXN1 interacts with FOX-2 splice variants. (A) Schematic view of ATXN1 and the regions used in the Y2H analyses (left) and FOX-2
variants (right). Prey plasmids pACT-ATXN1-NTQ30 or pACT-ATXN1-NTQ82 cover amino acids 1–576, pACT-ATXN1-AXH amino acids 559–701, and
pACT-ATXN1-CT amino acids 530–816. Bait plasmid pBTM-FOX-2V1 covers amino acids 1–380 of variant 1, including the putative NLS in the C-terminal
region, and pBTM-FOX-2cyt covers amino acids 1–391 of the cytoplasmic FOX-2 variant. Different C-terminal regions of both FOX-2 variants are
highlighted in blue and green. (B; C) For directed Y2H analyses yeast strain L40ccua was co-transformed with the relevant bait and prey plasmids,
and transformants were selected and spotted onto selective media or membrane to analyze activity of the reporter genes. (D) For Co-IP experiments,
HEK293T cell lysates derived from cells overexpressing FLAG-ATXN1-Q30 (left panel) or HEK293T cell lysates (right panel) were incubated with an
antibody directed against FOX-2 (Bethyl or Abnova, respectively). Cell lysates incubated without primary antibody served as controls. Then,
membranes were treated with an antibody directed against the FLAG tag or ATXN1 to detect precipitated protein.
doi:10.1371/journal.pone.0037985.g001
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Figure 2. The FOX-2 splice variants FOX-2V1 and FOX-2cyt co-localize with nuclear ATXN1 inclusions. Confocal microscopy of HeLa cells
transfected with (A) pCMV-HA-FOX-2V1 and pcDNA1-FLAG-SCA1-Q30 or pcDNA1-FLAG-SCA1-Q82, or (B) pCMV-MYC-FOX-2cyt and pcDNA1-FLAG-
SCA1-Q30 or pcDNA1-FLAG-SCA1-Q82, and (C) pCMV-MYC-TIAR and pcDNA1-FLAG-SCA1-Q30 or pcDNA1-FLAG-SCA1-Q82, respectively. Forty-eight
hours post transfection cells were fixed and prepared for microscopic analyses. Proteins were visualized using the respective antibodies against the
tag as described in Material and Methods. Nuclei were stained using Hoechst. Bars represent 20 mm.
doi:10.1371/journal.pone.0037985.g002
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validate this observation in another cell line, we used HEK293T

cells. In addition to HeLa cells, this cell line has been used to study

formation of ATXN1 inclusions as well as ATXN1-induced cell

death. Moreover, it was demonstrated that both cell lines

reproduce molecular mechanisms contributing to SCA1 patho-

genesis in the cerebellum [25,27,41,42]. Accordingly, we trans-

fected HEK293T cells with expression plasmids pcDNA1-FLAG-

SCA1-Q30 or pcDNA1-FLAG-SCA1-Q82 and prepared the cells

for microscopy. As observed in HeLa cells, endogenous FOX-2 co-

localized with nuclear inclusions formed by FLAG-ATXN1-Q30

and FLAG-ATXN1-Q82 (Fig. S2). Thus, overexpression of

normal and mutant ATXN1 caused mis-localization of endoge-

nous FOX-2 proteins under the chosen experimental settings.

Again, to further validate the specificity of this mis-localization, we

also analyzed the localization of endogenous TIAR protein in the

presence of nuclear ATXN1 inclusions. As shown in Fig. 3C, we

observed that nuclear ATXN1 inclusions had no effect on nuclear

localization of TIAR under the chosen conditions.

In the next step, we wanted to investigate if the polyglutamine

region is important for the mis-localization of FOX-2. Here we

took advantage of the plasmids Tsai and colleagues generated,

encoding ATXN1 lacking the polyglutamine stretch or comprising

30 or 82 consecutive glutamines fused to the cyan fluorescent

protein [43]. HeLa cells were transfected with the respective

constructs and CFP-ATXN1 and FOX-2 localization was

examined by confocal microscopy. As described by Tsai and

colleagues, overexpression of CFP-ATXN1-Q0, CFP-ATXN1-

Q30 and CFP-ATXN1-Q82 led to the formation of nuclear

inclusions (Fig. 4). In all cases prominent co-localization of FOX-2

with larger ATXN1 inclusions was detected, demonstrating that

the polyglutamine region within ATXN1 is not required for the

observed co-localization between FOX-2 and ATXN1.

FOX-2 splicing activity is affected in the presence of
nuclear ATXN1 inclusions
Since mis-localization of FOX-2 was observed in the presence of

nuclear ATXN1 inclusions, we investigated next whether ATXN1

overexpression has an effect on FOX-2 splicing activity. Here, we

focused on one target gene of FOX-2 dependent splicing,MAP3K7

Figure 3. FOX-2 co-localizes with nuclear ATXN1 inclusions. (A) Endogenous localization of FOX-2 in HeLa cells visualized with an antibody
directed against FOX-2 (Bethyl). (B; C) HeLa cells expressing normal and mutant ATXN1 were fixed forty-eight hours post transfection. Endogenous
proteins were visualized using respective antibodies against (B) FOX-2 (Bethyl) and FLAG or (C) TIAR and FLAG as described. Nuclei were stained
using Hoechst. Bars represent 20 mm.
doi:10.1371/journal.pone.0037985.g003
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(mitogen-activated protein kinase kinase kinase 7) (Fig. 5A), as it

has been reported that FOX-2 depletion results in increased

inclusion of exon 12 in the MAP3K7 transcript [10]. After

transfection of HEK293T cells with plasmids pcDNA1-FLAG-

ATXN1-Q30 or pcDNA1-FLAG-ATXN1-Q82 or with siRNA

molecules for knock-down of FOX-2 and respective controls, cells

were lysed, RNA was extracted and RT-qPCR performed as

described. Notably, we observed an increase of MAP3K7

transcript with inclusion of exon 12 when either normal or

mutant ATXN1 were overexpressed compared to the vector

control, increasing the ratio between inclusion and exclusion of

MAP3K7 exon 12 by 2.7- or 2.0-fold, respectively (Fig. 5B). Here,

we would like to point out that variations in ATXN1 transcript

levels of normal and mutant ATXN1 could be accountable for the

observed difference in the ratio between inclusion and exclusion of

MAP3K7 exon 12 (Fig. 5C). As control, we also analyzed the effect

of ATXN1 overexpression on FOX-2 transcription. We did not

detect any alterations under the chosen conditions (data not

shown). Moreover, a 6.3- or 15.6-fold increase in the ratio between

inclusion and exclusion of MAP3K7 exon 12 was also observed for

FOX-2 knock-down in HEK293T and HeLa cells, respectively

(Fig. 5D). The transcript level of FOX-2 was reduced to

approximately 20% (Fig. 5E). Thus, FOX-2 dependent splicing

is affected by ATXN1 overexpression.

Interaction of FOX-2 splice variants with ATXN2
In addition to the interaction between ATXN1 and FOX-2, an

interaction between the FOX-2 paralog, FOX-1 (A2BP1),

ATXN1 and ATXN2 has been reported [16] (Fig. 6A). Based

on this, we decided to investigate whether ATXN2 and FOX-2

are also found in association. First, we carried out directed Y2H

analyses using both FOX-2 variants and ATXN2 regions as

indicated in Fig. 6B. Again, we first excluded that the bait LexA-

ATXN2 fusion proteins and prey AD-FOX-2 fusion proteins per se

lead to the activation of the reporter genes by co-transformation of

the respective bait and prey plasmids. Reporter gene activity was

not detected (Fig. 6C; D). Yeast cells expressing the fusion proteins

LexA-ATXN2254–476 and AD-FOX-2V1 (Fig. 6C) exhibited

activity of reporter genes as well as yeast cells expressing LexA-

ATXN2816–1312 and AD-FOX-2cyt (Fig. 6D), indicating a direct

interaction between FOX-2 variants and ATXN2 as well.

Interestingly, we did not detect an interaction between the fusion

proteins LexA-ATXN2(Q22)1–396 or LexA-ATXN2(Q79)1–396,

which comprise the N-terminal region of ATXN2 containing the

polyglutamine stretch, and FOX-2 variants suggesting that the

polyQ region is not critical for this interaction. In addition, Co-IP

experiments were carried out, demonstrating that endogenous

ATXN2 was precipitated from HeLa cell lysate using an antibody

against FOX-2 (Fig. 6E). Thus, besides the interaction with

ATXN1, FOX-2 is also found in association with ATXN2.

Since an accumulation of ATXN2 in cells with nuclear ATXN1

inclusions has been observed in a transgenic SCA1 fly model as

well as in human SCA1 neurons [28], we finally carried out co-

localization studies to investigate whether ATXN2 co-localizes

with ATXN1 in the cell line used. We observed that HeLa cells

overexpressing ATXN2 in combination with normal or mutant

ATXN1 proteins exhibited co-localization of ATXN2 with

ATXN1 inclusions as well (Fig. 6F).

In addition, ATXN2 but also a number of RNA-binding

proteins with RRM-domains are part of cytoplasmic stress

granules under conditions of cellular stress [44,45]. Therefore,

we wanted to further investigate the localization of both FOX-2

splice variants under such conditions. For this, HeLa cells were

transiently transfected with expression vectors encoding HA-FOX-

2V1 or MYC-FOX-2cyt, treated with arsenite and prepared for

microscopic analysis as described. As shown in Fig. S3A, both

FOX-2 variants accumulated in cytoplasmic foci in arsenite-

treated cells that co-localized with ATXN2, indicating that both

FOX-2 splice variants are part of stress granules. Furthermore, we

also monitored endogenous FOX-2 protein localization in HeLa

cells. We observed that FOX-2 exhibited a predominantly nuclear

localization in untreated and arsenite-treated cells (Fig. S3B).

However, quite a few FOX-2 positive cytoplasmic foci were

observed in arsenite-treated cells that are also positive for ATXN2

and for another stress granule marker protein analyzed, TIAR

[45,46], further demonstrating that FOX-2 is indeed a component

of stress granules.

FOX-2 regulates splicing of ATXN2 transcripts
Remarkably, ATXN2 has been described as a modulator of

SCA1 pathogenesis [28]. Therefore it is quite interesting that the

SCA2 gene bears two putative FOX-binding sites , 30–100

nucleotides downstream of exon 18 in the ATXN2 transcript

(Fig. 7A) [9], suggesting that FOX-2 could potentially be involved

in ATXN2 pre-mRNA splicing. To investigate this, we decided to

perform RNAi experiments and to analyze the effect of FOX-2

depletion on splicing of exon 18 of the ATXN2 transcript. After

transfecting HEK293T or HeLa cells with siRNA molecules

specific for FOX-2 or with control siRNA, RNA was isolated and

RT-qPCR performed. As shown in Fig. 7B, reduced levels of

FOX-2 led to an enrichment of ATXN2 transcript lacking exon

18 thereby decreasing the ratio between inclusion/exclusion of

exon 18 in ATXN2 transcripts in both cell lines to 0.086-fold or

0.026-fold in comparison to controls, demonstrating that FOX-2 is

implicated in ATXN2 pre-mRNA splicing. To further confirm the

Figure 4. Co-localization of FOX-2 with nuclear ATXN1 inclu-
sions is independent of the polyglutamine region. Confocal
microscopy of HeLa cells transfected with CFP-ATXN1-Q0, CFP-ATXN1-
Q30 or CFP-ATXN1-Q82, respectively. Forty-eight hours post trans-
fection cells were fixed and prepared for microscopic analyses. FOX-2
protein was visualized using a specific antibody (Abnova). CFP
fluorescence was pseudo-coloured green. Nuclei were stained using
Hoechst. Bars represent 20 mm.
doi:10.1371/journal.pone.0037985.g004
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occurrence of this splice variant, which seems to have a relatively

low abundance as suggested by the RT-qPCR experiments, we

analyzed a panel of cell lines for the existence of ATXN2

transcripts lacking exon 18 with the described primer pair and

obtained respective amplicons, of which one was validated by

sequencing (Fig. 7C). Interestingly, skipping of exon 18 of ATXN2

transcripts leads to a premature stop codon. This would result in

a different C-terminal region, and such a variant has been

annotated as protein-coding in ENSEMBL (ENST00000550104).

Consequently, we also investigated the influence of ATXN1

overexpression, since we had observed an effect on splicing

activities of FOX-2. For this, HEK293T cells were transiently

transfected with plasmids pcDNA1-FLAG-SCA1-Q30 or

pcDNA1-FLAG-SCA1-Q82, or an empty vector as control,

RNA was isolated and RT-qPCR experiments were performed.

We observed that overexpression of FLAG-ATXN1-Q30 or

FLAG-ATXN1-Q82 resulted in a decrease of the ratio between

inclusion/exclusion of exon 18 in ATXN2 transcripts to 0.26-fold

or 0.33-fold (Fig. 7D). Thus, FOX-2 dependent splicing of

ATNX2 transcripts is affected by ATXN1 overexpression.

Discussion

In this study, we functionally analyzed the interaction between

ATXN1 and FOX-2 splice variants. The FOX genes are highly

diverse due to the use of alternative promoters and alternative

splicing, and the respective splice variants exhibit nuclear as well as

cytoplasmic localization [8,37]. As mentioned, FOX-2 is highly

expressed in the brain and in the cerebellar cortex suggesting high

splicing activity in this location [7,47]. Therefore, it is interesting

that FOX-2 localization and splicing activity was affected in the

presence of nuclear ATXN1 inclusions, which are detected in

post-mortem brain tissue of SCA1 patients and transgenic SCA1

mouse models [22,24]. Given that the formation of nuclear

Figure 5. ATXN1 overexpression affects FOX-2 splicing activity. (A) Schematic view of a partial genomic region of the MAP3K7 gene. Exons
are represented by white boxes, the intronic regions by a black line. The FOX-binding sites are shown as black rectangles. (B; C) Total RNA was
isolated from HEK293T cells transiently overexpressing ATXN1 with 30 or 82 glutamines. (B) Splicing of the MAP3K7 exon 12 was analyzed by RT-
qPCR. Inclusion/exclusion ratio of MAP3K7 exon 12 is illustrated. (C) ATXN1 overexpression was analyzed by RT-qPCR. ATXN1 transcript levels
detected in the vector control were set as value one. (D; E) Total RNA was isolated from HEK293T and HeLa cells that were either transfected with
FOX-2-specific siRNA or with control siRNA and splicing of the MAP3K7 exon 12 was analyzed by RT-qPCR. (D) Inclusion/exclusion ratio of MAP3K7
exon 12 is demonstrated. (E) FOX-2 reduction was analyzed by RT-qPCR in HeLa and HEK293T cells. Error bars indicate standard error of the mean.
doi:10.1371/journal.pone.0037985.g005
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Figure 6. ATXN2 interacts with FOX-2 splice variants and co-localizes with nuclear ATXN1 inclusions upon overexpression. (A)
Schematic illustration of ATXN1 interactions. Black lines represent interactions reported by Lim and co-workers [16], the blue line represents the
investigated interaction in this study. (B) Schematic view of ATXN2 regions used in Y2H studies as described earlier [44,51,66]. (C; D) L40ccua yeast
cells expressing the corresponding LexA-ATXN2 and AD-FOX-2 fusion proteins were spotted onto selective media or membrane as indicated and the
activity of the reporter genes was monitored. (E) HeLa cell lysates were incubated with an antibody directed against FOX-2 (Bethyl) and membranes
were treated with an anti-ATXN2 antibody (BD-Biosciences) to detect precipitated protein. (F) HeLa cells were transfected with pCMV-MYC-ATXN2-
Q22 or co-transfected with pCMV-MYC-ATXN2-Q22 and pcDNA1-FLAG-SCA1-Q30 or pcDNA1-FLAG-SCA1-Q82, respectively. Forty-eight hours post
transfection cells were fixed and prepared for microscopic analyses. Nuclei were stained using Hoechst. Bars represent 20 mm.
doi:10.1371/journal.pone.0037985.g006

ATXN1 Affects Fox-2 Dependent Splicing

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e37985



ATXN1 inclusions is independent of the length of the poly-

glutamine stretch [25,43], we did not observe a significant

difference in the co-localization of FOX-2 and normal or mutant

ATXN1 in the cell lines tested. Moreover, overexpression of

normal ATXN1 leads to neurodegeneration in animal models as

well, although to a much lesser extent than mutant ATXN1 [34].

Finally, one should bear in mind that quantitative distinctions are

not feasible in our cell line models.

Interestingly, defects in the cellular RNA metabolism have been

linked to SCA1 pathogenesis. On one hand, ATXN1 itself is

a RNA binding protein whose binding to RNA is affected by the

length of the polyglutamine stretch [48], and gene products

implicated in binding and processing of RNA have been shown to

modify neurodegeneration in transgenic SCA1 fly models [33,34].

On the other hand, complex formation between mutant ATXN1

and the RNA binding motif protein 17 (RBM17) is increased,

thereby lowering the complex between normal ATXN1 and

capicua [27]. Co-expression of human RBM17 and mutant

ATXN1 worsened the ATXN1-induced eye phenotypes in

a transgenic SCA1 fly model [27]. Initially, RBM17 was identified

by mass spectrometry to be part of the human spliceosome [49],

but has been shown to regulate apoptosis through alternative

splicing of FAS, too [50]. Interestingly, an interaction between

ATXN1 and another splicing factor, U2AF65, has been reported

as well [26]. Here, overexpression of normal ATXN1 has an

enhancing effect on U2AF65-mediated splicing, whereas mutant

ATXN1 has not; potentially due to interference of the expanded

polyglutamine stretch with molecular recognition or due to

recruitment or trapping of this factor in nuclear inclusion formed

by mutant ATXN1 [26]. Moreover, the mRNA export factor

TAP/NXF1 has been shown to be recruited into nuclear ATXN1

inclusions [25].

Another intriguing aspect is that ATXN2, a protein itself

involved in the cellular RNA metabolism [44,51,52], has been

shown to modulate SCA1 pathogenesis, since ATXN2 over-

expression enhances, whereas ATXN2 depletion reduces ATXN1-

induced toxicity in a fly model [28]. Moreover, nuclear

accumulation of ATXN2 was observed in post-mortem brain of

a SCA1 patient and correlated to SCA1 pathogenesis [28]. In light

of this, the finding that splicing of ATXN2 transcripts is affected

by FOX-2 depletion as well as by overexpression of normal and

mutant ATXN1 is interesting and it is quite tempting to speculate

that alterations in ATXN2 transcripts and their cellular con-

sequences affect SCA1 pathogenesis (Fig. 8). Although we used

non-neuronal cell lines such as HEK293T and HeLa cells in our

study, the results obtained could be quite relevant for SCA1, since

both reproduce molecular mechanisms contributing to SCA1

pathogenesis in the cerebellum [25,27,41,42]. So far, some

ATXN2 splice variants have been described that might fulfill

different functions [52,53,54], e.g. in the central nervous system

the ATXN2 full-length transcript is predominantly present in the

brain and spinal cord, while expression of a ATXN2 splice variant

lacking exon 10 is more prominent in the cerebellum [54].

Therefore, further insight into the cellular function of different

ATXN2 splice variants and their regulation and whether and how

this relates to mechanisms underlying SCA1 will be an interesting

aspect in the future.

On the other hand, these insights might also be valuable with

regards to the polyglutamine disorder SCA2, in which ATXN2

represents the causative protein. In this study, we have provided

first evidence that both FOX-2 variants directly interact with

ATXN2 as well. Thus, it will be interesting to investigate the

biological consequence of the ATXN2/FOX-2 interaction and

whether mutant ATXN2 has an impact on FOX-2 splicing

activity in general and particularly on ATXN2 transcripts per se.

Notably, we observed an interaction between the predominantly

nuclear FOX-2 variant and the ATXN2 region comprising the

LSm domain that forms the structural core of spliceosomal small

Figure 7. Splicing of ATXN2 transcripts is affected by both,
reduced FOX-2 levels and ATXN1 overexpression. (A) Schematic
view of a partial genomic region of the SCA2 gene. Exons are
represented by white boxes, the respective intronic regions by a black
line. The two potential FOX-binding sites 40 bp downstream of exon 18
are shown as black rectangles. (B) HEK293T and HeLa cells were either
transfected with FOX-2-specific siRNA or with control siRNA. Sub-
sequently, total RNA was isolated and RT-qPCR experiments were
performed as described in Material and Methods. Inclusion/exclusion
ratio of ATXN2 exon 18 is shown. Error bars indicate standard error of
the mean. (C) Schematic view of a region of ATXN2 transcripts lacking
exon 18 (upper panel) and the primers used for its detection in various
cell lines as indicated (lower panel). (D) HEK293T cells were transfected
with pcDNA1-FLAG-SCA1-Q30 or pcDNA1-FLAG-SCA1-Q82 and pro-
cessed as described in (B).
doi:10.1371/journal.pone.0037985.g007
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nuclear ribonucleoproteins and is speculated to bind to splicing

complexes, implicating ATXN2 per se in splicing events [55].

Accordingly, first evidence for a nuclear localization of ATXN2

has been provided [28,56]. On the other hand, the predominantly

cytoplasmic FOX-2 variant was found to interact with the C-

terminal region of ATXN2 containing the PAM motif. Several

splicing factors were also found to function in the cytoplasm or

were detected in stress granules, cytoplasmic sites existing in

mammalian cells under various stress conditions that are involved

in translational control [57,58,59]. In line with these observations,

we discovered that FOX-2, like ATXN2, is a component of stress

granules. Interestingly, the Xenopus homolog of FOX-2, XRbm9, is

part of a cytoplasmic polyadenylation complex [60]. Thus, it will

be interesting in the future to dissect the cellular functionality of

the interactions between the different FOX-2 and ATXN2

variants likely occurring in different compartments.

Splice variants of other polyglutamine proteins have been

described at the transcript as well as protein level as pointed out

recently by Harris and colleagues [61]. For SCA3, a number of

ataxin-3 splice variants have been identified [62,63], and in-

terestingly, for two variants, differences in their aggregation

properties have been demonstrated [61]. Moreover, cell-type-

specific alternative splicing of ataxin-6 is likely to contribute to

SCA6 pathogenesis [64]. For SCA7, a different cellular localiza-

tion of a novel ataxin-7 variant in patient tissue has been reported

[65]. These findings strongly indicate that alternative splicing of

disease-causing genes per se is implicated in the pathogenesis of

polyglutamine disorders. Since several polyglutamine or ataxia-

causing proteins are also connected in a protein-protein in-

teraction network, regulatory effects of splice variants at the

protein level are likely to take place as well [16]. Since there is

evidence that splicing differs in health and disease, isoform-specific

targeting could be a promising therapeutic avenue to approach.

Materials and Methods

Plasmids
Plasmid pJET1.2-FOX-2cyt was generated by subcloning a DNA

fragment generated via PCR using the oligonucleotide pair FOX-

2-s-SalI and FOX-2-as-NotI and human fetal brain library

(Clontech; Mountain View, USA) as template. This FOX-2

variant is identical to the FOX-2 transcript variant 1

(ENST00000449924), but contains an additional 32 bp insertion

between exon 12 (ENSE00001578447) and exon 13

(ENSE00001611944), which corresponds to an annotated exon

(ENSE00001553845) (Fig. S1A; Accession number AB649123,

DDBJ). This insertion results in a frame-shift that generates an

alternative C-terminal region lacking the hydrophobic PY nuclear

localization signal (RF(A/T)PY) that is conserved within the FOX

protein family and required for nuclear localization [6,7].

Confocal microscopy demonstrated that HA-FOX-2V1 containing

the conserved nuclear localization signal RF(A/T)PY was pre-

dominantly located in the nucleus, whereas MYC-FOX-2cyt
mainly displayed a cytoplasmic localization (Fig. S1B). For

generating the Y2H plasmids pACT-FOX-2cyt and pBTM-

FOX-2cyt, plasmid DNA pJET1.2-FOX-2cyt was treated with the

restriction endonucleases SalI and NotI. Afterwards, the respective

DNA fragment was isolated and subcloned into the SalI/NotI sites

of pBTM117c or pACT4-1b, respectively.

Y2H plasmids pBTM-ATXN1-NTQ30, pBTM-ATXN1-

NTQ82, pBTM-ATXN1-AXH, and pBTM-ATXN1-CT were

created by PCR using primer pairs ATXN1-NT-s-SalI and

ATXN1-NT-as-NotI, ATXN1-AXH-s-SalI and ATXN1-AXH-

as-NotI, or ATXN1-CT-s-SalI and ATXN1-CT-as-NotI, respec-

tively, and pcDNA1-FLAG-SCA1-Q30 or pcDNA1-FLAG-

SCA1-Q82 as template DNA (kind gift of Flaviano Giorgini,

University of Leicester). Afterwards, resulting DNA fragments

were treated with SalI and NotI and subcloned into the SalI/NotI

sites of pBTM117c. For generating Y2H plasmids pACT-

ATXN1-NTQ30, pACT-ATXN1-NTQ82, pACT-ATXN1-

AXH or pACT-ATXN1-CT, respective pBTM plasmids were

treated with SalI and NotI. Resulting DNA fragments were

subcloned into the SalI/NotI sites of pACT4-1b, respectively.

The mammalian expression construct pCMV-MYC-FOX-2cyt
was created by treating plasmid pBTM-FOX-2cyt with SalI and

NotI. Subsequently, the relevant DNA fragment was purified and

subcloned into the SalI/NotI sites of the mammalian expression

vector pCMV-MYC (Clontech; Mountain View, USA). The

mammalian expression plasmid pCMV-HA-FOX-2V1 encoding

variant 1 of FOX-2 (ENST00000449924) was generated by

a multi-step PCR using pCMV-MYC-FOX-2cyt as template. First

PCR was performed using primer pair FOX-2-s-SalI and FOX-2-

nuc-as1-E12-E13-blunt, which has been designed to contain the

last 20 nucleotides of exon 12 in combination with the first 11

nucleotides of exon 13 of the FOX-2 sequence. In a second PCR

step primer pair FOX-2-nuc-s1-E12-E13-blunt, which has been

designed to contain the last 10 nucleotides of exon 12 and the first

21 nucleotides of exon 13 of the FOX-2 sequence, and FOX-2-

Figure 8. Schematic model of FOX-2 and ATXN1 effects on ATXN2 transcript. The SCA2 gene bears two putative FOX-binding sites
downstream of exon 18 in the ATXN2 transcript as illustrated. Under normal conditions, FOX-2 binding resulted in inclusion of exon 18, whereas
depletion of FOX-2 or overexpression of ATXN1 resulted in increased levels of ATXN2 transcripts lacking exon 18.
doi:10.1371/journal.pone.0037985.g008
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nuc-as1-NotI was used. Afterwards, both PCR amplicons were

purified and mixed to equal concentrations and used as template

in a final PCR step with primer pair FOX-2-s-SalI and FOX-2-

nuc-as1-NotI resulting in a DNA fragment lacking the 32

nucleotide sequence insertion (ENSE00001553845) present in

pCMV-MYC-FOX-2cyt. After purification, this DNA fragment

was subcloned into vector pJET1.2 to generate plasmid pJET1.2-

FOX-2V1. Next, plasmid pJET1.2-FOX-2V1 was treated with the

restriction endonucleases SalI and NotI and the corresponding

DNA fragment was isolated and subcloned into the SalI/NotI sites

of the mammalian expression vector pCMV-HA or the Y2H

vectors pBTM117c and pACT4-1b, to generate plasmids pCMV-

HA-FOX-2V1, pBTM-FOX-2V1 and pACT-FOX-2V1, respec-

tively.

The mammalian expression construct pCMV-MYC-TIAR

(variant 2) was generated by PCR using the oligonucleotide pair

TIAR-s-SalI and TIAR-as-NotI and human fetal brain library

(Clontech; Mountain View, USA) as template. The amplified

DNA fragment was subcloned into vector pCMV-MYC.

The Y2H plasmids encoding different LexA-ATXN2 fusion

proteins and the mammalian expression plasmid pCMV-ATXN2-

Q22 were described earlier [44,51,66]. Mammalian expression

plasmids encoding CFP-ATXN1-Q0, CFP-ATXN1-Q30 and

CFP-ATXN1-Q82 were a kind gift of C.C. Tsai (Robert Wood

Johnson Medical School, New Jersey, USA).

Primers used in this study are listed in Table 1 and constructs

were validated by sequencing.

Yeast Two Hybrid analysis
Yeast strain L40ccua was co-transformed with the bait

constructs pBTM-FOX-2V1 or pBTM-FOX-2cyt and the series

of pACT-ATXN1 prey constructs, or with the different pBTM-

ATXN2 constructs and pACT-FOX-2V1 or pACT-FOX-2cyt,

respectively. Afterwards, transformants grown on SD media

lacking tryptophan and leucine were isolated and analyzed for

the activity of the reporter genes. For this, yeast cells grown in the

respective liquid media were spotted onto solid medium lacking

leucine and tryptophan and onto solid medium lacking trypto-

phan, leucine, uracil and histidine. For analyzing the activity of the

LacZ reporter gene, cells were spotted onto a nylon membrane

(Micron Separations Inc.; Westboro, USA). Growth on plates was

analyzed after 3–5 days. For analysis of LacZ reporter gene

activity, the membrane was incubated in liquid nitrogen and

subsequently placed on Whatman paper saturated with X-Gal

buffer (phosphate buffer pH 7.0, 0.15% X-Gal, 10 mM DTT) for

four to six hours at 37uC.

Cell cultivation and transfection
HeLa and HEK293T cells (ATCC, Manassas, USA) were

cultivated in Dulbecco’s modified Eagle medium (Gibco-Invitro-

gen; Paisly, UK) supplemented with 100 U/ml Penicillin, 100 mg/
ml G-Streptomycin (Biochrom; Berlin, Germany) and 10% fetal

bovine serum (Biochrom; Berlin, Germany) at 37uC and 5% CO2.

For transient transfections, cells were grown in 12- or 24-well

plates to a confluence of 50–70%. Then, cells were transfected

with 1–2 mg of the corresponding mammalian expression plasmids

using 3 or 6 ml PEI (Polyethylenimine, Polysciences, Inc.;

Warrington, USA) or 2.5 or 5 ml PolyFect (Qiagen; Hilden,

Germany), respectively. To allow transient expression of proteins,

cells were incubated for 24–48 hours at 37uC and 5% CO2.

Protein lysates and Co-Immunoprecipitation
Co-IP experiments were carried out as described earlier [51,66].

Briefly, for the association studies between ATXN1 and FOX-2,

HEK293T cells overexpressing FLAG-ATXN1-Q30 or non-

transfected HEK293T cells were washed once with PBS, treated

for 10 minutes with lysis buffer A [10 mM HEPES pH 7.4 (USB

corporation; Cleveland, USA), 10 mM NaCl, 3 mM MgCl2
(Merck; Darmstadt, Germany), 1 mM DTT (Sigma; St. Louis,

USA), 1/7 complete Mini EDTA-free Protease Inhibitor Cocktail

(Roche; Mannheim, Germany)], and lysates were passed ten times

through a needle. Afterwards, 500 mM NaCl was added, samples

were incubated for 20 minutes at 4uC on a rotation wheel and

cleared by centrifugation (5 minutes, 5000 rpm, 4uC; rotor:

eppendorf FA-45-24-11). Then, the supernatant fractions were

transferred to a new tube. The pellet fractions were treated with

lysis buffer B [10 mM HEPES pH 7.4, 300 mM NaCl, 20 mM

MgCl2, 1 mM DTT, 1/7 complete Mini EDTA-free Protease

Inhibitor Cocktail, 0.2 U DNase (Sigma; St. Louis, USA)] for

30 minutes at 37uC, cleared again by centrifugation and these

fractions were mixed with the initial supernatant fractions. For the

association studies between ATXN2 and FOX-2, HeLa cells were

washed with PBS, treated with lysis buffer [20 mM Tris-HCl

pH 7.4 (Merck; Darmstadt, Germany), 150 mM NaCl (Merck;

Darmstadt, Germany), 1 mM EDTA (Sigma; St. Louis, USA), 1%

Triton X-100 (Merck; Darmstadt, Germany), 1 ml/10 ml Benzo-

nase (Merck; Darmstadt, Germany), 1/25 complete Protease

Inhibitor Cocktail (Roche; Mannheim, Germany)], incubated for

30 minutes on ice, and lysates were cleared by centrifugation

(1 minute, 14000 rpm, RT).

For Co-IP experiments 1 mg of each cell lysate was incubated

with 4 ml antibody against FOX-2 [mouse anti-RBM9 M01

(Abnova; Taipei City, Taiwan)] or 2 ml rabbit anti-RBM9 (Bethyl

Laboratories; Montgomery, USA) and incubated overnight at

4uC. For ATXN1 overexpression experiments, 200 mg cell lysate

and 2 ml rabbit anti-RBM9 was incubated overnight at 4uC as

well. Then, 30 ml Protein G-conjugated Dynabeads (Dynal-

Invitrogen; Paisly, UK) or 15–20 ml IgG-conjugated M-280

Dynabeads (Dynal-Invitrogen; Paisly, UK) were added to lysates

and further incubated for three hours. Dynabeads were pulled

down magnetically and washed twice in 3% BSA/PBS and twice

in PBS. Then, SDS-sample buffer was added to elute bound

proteins, and samples were incubated at 95uC for 10 minutes.

After separation of proteins by 10% SDS-PAGE and transfer to

a PVDF-membrane (Millipore; Billerica, USA) or nitrocellulose

membrane (Whatman; Springfield Mill, UK) using a PerfectBlue

semidry electroblotter (PeqLAB Biotechnologie; Erlangen, Ger-

many), membranes were incubated overnight with anti-ATXN1

[1:500, rabbit (Sigma; St. Louis, USA)], anti-ATXN2 [1:1000,

mouse (BD-Biosciences; Franklin Lakes, USA)] or anti-FLAGM2

[(1:1000, mouse (Sigma; St. Louis, USA)] as primary antibodies.

Following incubation with secondary antibodies [1:10000 POD-

conjugated anti-rabbit (Sigma; St. Louis, USA), 1:10000 POD-

conjugated anti-mouse (Sigma; St. Louis, USA)], proteins were

visualized using Western Lightning ECL (Perkin Elmer; Massa-

chusetts, USA).

RNAi experiments
HeLa and HEK293T cells were seeded in 12-well plates in

Dulbecco’s modified Eagle medium (Gibco-Invitrogen; Paisly,

UK) supplemented with 10% fetal bovine serum and incubated for

twenty-four hours. Then, 2.4 ml of the respective 20 mM siRNAs

[ON-TARGETplus SMARTpool, human RBM9 (FOX-2), ON-

TARGETplus Non Targeting Pool; (Dharmacon; Lafayette,

USA)] were mixed with 100 ml Dulbecco’s modified Eagle

medium and 3 ml Lipofectamine RNAiMAX Transfection Re-

agent (Invitrogen; Paisly, UK) for 20 minutes and subsequently

added to the cells. Total RNA was isolated from cells seventy-two
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hours post transfection using the RNeasy Mini Kit (Qiagen;

Hilden, Germany) as recommended by the manufacturer.

Concentration of RNA isolates was determined with a Nano

Drop ND-1000 Spectrophotometer (NanoDrop Technologies;

Wilmington, USA).

Quantitative real-time PCR
The quantitative real-time PCR (RT-qPCR) was performed as

described [56]. Briefly, for reverse transcription, 2 mg of total

RNA was mixed with 0.5 ml Oligo-dT15-Primer (Promega;

Madison, USA), brought to a final volume of 9.5 ml, and kept

for 5 minutes at 70uC with a subsequent incubation for 5 minutes

at 4uC. Then, 9.4 ml DEPC (Diethylpyrocarbonate)-treated water

(Ambion; Austin, USA), 5 ml 5x M-MLV-reverse transcriptase

buffer (Promega; Madison, USA), 0.5 ml dNTPs and 0.1 ml M-

MLV reverse transcriptase (Promega; Madison, USA) were added,

samples were incubated for 1 hour at 42uC, and the reaction was

stopped by incubating samples at 65uC for 10 minutes. Then, RT-

qPCRs were performed in triplicates in a 10 ml volume and

processed with the ABI Prism 7900HT sequence detection system

(Applied Biosystems; Foster City, USA). Each reaction contained

50 ng cDNA, 0.25 mmol of the respective primers and 2.5 ml
SYBR Green PCR Master Mix (Applied Biosystems; Foster City,

USA). As reference genes ACTB (b-actin), HPRT (hypoxanthine

phosporibosyltransferase) and B2M (b-2-microglobulin) were used.

Fold change was calculated with the DDCt method (User Bulletin

#2, Applied Biosystems), and used for calculating the inclusion/

exclusion ratio of the analyzed mRNA transcripts. Standard error

of the mean was calculated for four independent experiments each

with three replicates. For detection of ATXN2 transcripts lacking

exon 18 conditions as described above were used, and samples

were loaded onto a 3% agarose gel. Primers used are listed in

Table 1.

Table 1: Oligonucleotides used in this study.

Oligonucleotides for PCR
sequence (59-39)
(underlined regions represent introduced restriction sites)

FOX-2-s-SalI GCGTCGACGATGGAGAAAAAGAAAATGGTA

FOX-2-as-NotI ATTTGCGGCCGCTTTATCAGTAGGGGGCAAATCGGC

FOX-2-nuc-as1-E12-E13-blunt CATATCCACCATAGAGGTCAGCACCGTAAA

FOX-2-nuc-s1-E12-E13-blunt TGACCTCTATGGTGGATATGCAGCCTACAG

FOX-2-nuc-as1-NotI ATTTGCGGCCGCTTTCAGTAGGGGGCAAATCGGC

ATXN1-NT-s-SalI ATGTCGACAAAATCCAACCAAGAG

ATXN1-NT-as-NotI TTAGCGGCCGCATCATTTCATGAAGTAGGG

ATXN1-AXH-s-SalI ATGTCGACGTCCGTGGCCTCCCCG

ATXN1-AXH-as-NotI TTAGCGGCCGCATCACACGGGCTGGCCCTTTTT

ATXN1-CT-s-SalI ATGTCGACGAGCGAGAACTTCAAC

ATXN1-CT-as-NotI TTAGCGGCCGCACTACTTGCCTACATT

TIAR-s-SalI GCGTCGACGATGATGGAAGACGACG

TIAR-as-NotI ATTTGCGGCCGCTCACTGTGTTTGGTAACT

Oligonucleotides for qPCR sequence (59-39)

ATXN1-E8-fw AGCCATAGCCCGGGCGTGGCCGTGA

ATXN1-E9-rev CTGGCTGGTTCTCTCCGGAC

ATXN2-E17-18-fw AGGCGTGCAACCTTTATACC

ATXN2-E18-rev CTGCTCTATATGTCTTGGCT

ATXN2-E17-19-fw AGGCGTGCAATACCAAATAT

ATXN2-E19-rev CTGAGACTGATAATGTGGCA

beta-actin_fw CGGATGTCCACGTCACACTT

beta-actin_rev GTTGCTATCCAGGCTGTGCT

B2M_fw ACTGAATTCACCCCCACTGA

B2M_rev CCTCCATGATGCTGCTTACA

HPRT_fw AGGAAAGCAAAGTCTGCATTGTT

HPRT_rev GGTGGAGATGATCTCTCAACTTTAA

MAP3K7-fw GGAGCAGTGTGGAGAGCTTG

MAP3K7-E12-rev CTGATATGACGATCTCAGGG

MAP3K7-E11-13-rev TGTCCGTTGCCTGTGGTTGC

FOX-2-fw CCTGGCTTCCCTTACCCTAC

FOX-2-rev AGCAGGCTGTGCATATCTGT

doi:10.1371/journal.pone.0037985.t001
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Confocal microscopy
For localization studies of endogenous FOX-2 levels, HeLa and

HEK293T cells were cultivated and fixed as described above. For

overexpression experiments, cells were transfected with corre-

sponding constructs, incubated for forty-eight hours, treated with

cold methanol (Merck; Darmstadt, Germany) for 1 hour at –20uC,
washed with PBS and treated for 30 minutes with 3% BSA/PBS.

Then, cells were incubated with primary antibodies [1:200 mouse

anti-ATXN2 (BD-Biosciences; Franklin Lakes, USA); 1:200 rabbit

anti-ATXN2 (Sigma-Aldrich; St. Louis, USA), 1:200 rabbit anti-

RBM9 (Bethyl Laboratories; Montgomery, USA); 1:200 mouse

anti-RBM9 (Abnova; Taipei City, Taiwan); 1:500 mouse anti-

FLAGM2 (Sigma; St. Louis, USA); 1:500 mouse anti-HA (Roche;

Roche; Mannheim, Germany); 1:500 rabbit anti-MYC (Sigma; St.

Louis, USA); 1:500 mouse anti-MYC (Millipore; Billerica, USA)]

for one hour at RT or overnight at 4uC. Afterwards, cells were
washed three times with PBS and the respective dye-conjugated

secondary antibodies [1:500 anti-mouse Alexa Fluor488 (Molec-

ular Probes-Invitrogen; Paisly, UK); 1:500 anti-rabbit Alexa

Fluor568 (Molecular Probes-Invitrogen; Paisly, UK); 1:500 anti-

mouse-Cy3 (Jackson Immuno Research; West Grove, USA); 1:10

HA-Fluorescine (Roche; Mannheim, Germany)] were added for

one hour. Nuclei were stained with bisBenzimide [Hoechst

(Sigma; St. Louis, USA)] and cells were subsequently washed

with PBS and mounted with Fluoromount-G (Southern Biotech;

Birmingham, USA). Cells were analyzed using a confocal laser-

scanning microscope system LSM700 Imager M2 (Carl Zeiss;

Jena, Germany) with oil objectives (Zeiss Plan-NEOLUAR 40x/

1.3 or 63x/ 1.4 DIC). 8-bit images were taken and processed using

ZEN 2009 V5.5 software (Carl Zeiss; Jena, Germany).

Supporting Information

Figure S1 FOX-2 splice variants. (A) (Upper panel)

Schematic view of the FOX-2 splice variants FOX-2V1 and

FOX-2cyt. Sequence of the additional exon within FOX-2cyt is

indicated. (Lower panel) Alignment of the C-terminal region of

FOX-2V1 and FOX-2cyt. Insertion of an additional exon

(ENSE00001553845) causes a frame-shift resulting in a different

C-terminal ending. Yellow highlights identical amino acids. (B)
Localization of FOX-2V1 and FOX-2cyt. HeLa cells were

transiently transfected with expression plasmids pCMV-HA-

FOX-2V1 or pCMV-MYC-FOX-2cyt and incubated for twenty-

four hours. Afterwards, cells were fixed and proteins were stained

with HA-Fluorescine (upper panel) or anti-MYC antibody (lower

panel). Bars represent 20 mm.

(TIF)

Figure S2 FOX-2 accumulates in nuclear ATXN1 inclu-
sions in HEK293T cells. HEK293T cells expressing normal

and mutant ATXN1 were fixed forty-eight hours post transfection.

Endogenous level of FOX-2 was visualized using a specific

antibody (Abnova). Nuclei were stained using Hoechst. Bars

represent 20 mm.

(TIF)

Figure S3 FOX-2 localizes to stress granules under
stress conditions. (A) HeLa cells were transiently transfected

with plasmids pCMV-HA-FOX-2V1 or pCMV-MYC-FOX-2cyt.

Twenty-four hours post transfection, cells were left untreated

(upper panel) or exposed to 0.5 mM arsenite for one hour (lower

panel). Then, proteins FOX-2V1 and FOX-2cyt were visualized

with HA-Fluorescine or with an anti-MYC antibody as indicated

in Material and Methods. ATXN2 as stress granule marker

protein was co-stained using an anti-ATXN2 antibody (Sigma). (B)
For studying endogenous FOX-2 localization, HeLa cells left

untreated (upper panel) or exposed to 0.5 mM arsenite for one

hour (middle and lower panel) were fixed and stained with

antibodies against FOX-2 (Bethyl), ATXN2 (BD-Biosciences) or

TIAR. Nuclei were stained using Hoechst. Bars represent 20 mm.

(TIF)
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