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Abstract

Early endosomal membrane compartments are required for the formation and recycling of synaptic vesicles, but how these
compartments are regulated is incompletely understood. We performed a forward genetic screen in C. elegans for
mutations that affect RAB-5 labeled early endosomal compartments in GABAergic motoneurons. Here we report the
isolation and characterization of one mutation, rabx-5. The rabx-5 mutation leads to decreased intensity of YFP::RAB-5 in the
cell soma but increased intensity in the synaptic and intersynaptic regions of the axon. This effect is due to the bias of the
cycling state of RAB-5, and results from a change in the organization of the early endosomal compartment as well as the
membrane binding state of RAB-5. Synaptic vesicle accumulation is altered in rabx-5 mutants, and synaptic transmission
from cholinergic neurons is decreased. Early endosomal membrane compartments show disorganization with ageing and
rabx-5 mutant animals age faster. These results suggest that rabx-5 regulation of RAB-5 compartments is important for
maintaining proper synaptic function throughout the lifetime.

Citation: Sann SB, Crane MM, Lu H, Jin Y (2012) Rabx-5 Regulates RAB-5 Early Endosomal Compartments and Synaptic Vesicles in C. elegans. PLoS ONE 7(6):
e37930. doi:10.1371/journal.pone.0037930

Editor: Brian D. McCabe, Columbia University, United States of America

Received March 16, 2012; Accepted April 30, 2012; Published June 4, 2012

Copyright: � 2012 Sann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the following funding sources: National Institute of Health (NIH) R01 NS035546 to YJ; NIH R01 GM088333, NIH R01
AG035317, NIH R21 EB012803, National Science Foundation (NSF) CBET-0954578, and Alfred P. Sloan Foundation to HL; and NIH NINDS F32NS067891 to SS. YJ is
an Investigator of the Howard Hughes Medical Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views
of the National Institute of Neurological Disorders and Stroke or the National Institutes of Health. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript. http://grants.nih.gov/grants/funding/r01.htm http://grants.nih.gov/training/nrsa.htm http://www.
nsf.gov/div/index.jsp?div = cbet http://www.sloan.org/program/1 http://www.hhmi.org/research/investigators/.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ssann@ucsd.edu (SS); yijin@ucsd.edu (YJ)

Introduction

Synaptic vesicle formation and neurotransmission require

precise regulation of the proteins and lipids of the exocytic and

endocytic pathways [1,2,3]. Synaptic vesicles contain numerous

members of the Rab family of membrane regulators [4,5,6]

suggesting interactions with multiple endosomal populations

during formation, secretion, and recycling.

In the activated GTP-bound state, Rab GTPases associate with

specific membrane compartments through their C-terminal

prenylation motifs. There, they regulate membrane trafficking

by recruiting effector proteins that bind to proteins responsible for

budding and fusion [7]. Specific Rab proteins act as ‘‘intracellular

cargo address labels’’ [7,8]. Rab-5 functions mainly in early

endosomes, Rab-7 is present in late endosomes, and Rab-11

associates with recycling endosomes [9,10].

In non-neuronal cells, Rab-5 regulates the fusion of endocytic

vesicles to early endosomes as well as the homotypic fusion of early

endosomes [11]. It also regulates transport of early endosomes on

microtubules [12] and the structure of the endoplasmic reticulum

[13].

In neurons, Rab-5 is associated with early endosomes in both

axonal and somato-dendritic compartments; however only in the

latter compartment does it interact with EEA-1 [14]. Rab-5

regulates the polarized sorting and trafficking of proteins to axonal

compartments [15]. Rab-5 is also required for retrograde transport

and signaling from axons [16,17]. Furthermore, Rab-5 has been

demonstrated to localize to synaptic vesicles [18,19] along with

other Rabs involved in endocytosis and recycling such as Rab10,

Rab11, and Rab14 [6].

Rab-5 is required in Drosophila for endosomal integrity during

synaptic vesicle recycling [20] as well as maintenance of synaptic

vesicle size, with impairment of Rab-5 leading to enlarged synaptic

vesicles [21]. Biasing RAB-5 to the GTP-bound state in C. elegans

leads to enlarged endosome-like compartments in the synaptic

terminal with a concomitant decrease in synaptic vesicle numbers

[22]. Overexpression of Rab-5 in mammalian neurons leads to

reduced size of the synaptic vesicle recycling pool in hippocampal

cultured neurons [23]. Impaired Rab-5 decreases the probability

of evoked neurotransmitter release whereas overexpression

increases efficacy of release [20].

While Rab-5 clearly functions in the maturation and recycling

of synaptic vesicles, little is known about its regulation in neurons,

particularly at the synaptic terminal. To identify proteins that may

be involved in neuronal RAB-5 regulation, we conducted a genetic

screen in C. elegans for mutations that disrupt the expression or

localization of fluorescently labeled RAB-5 in GABAergic motor

neurons. We identified RABX-5 as one regulator of neuronal

RAB-5. We demonstrate that RABX-5 is the guanine exchange

factor for RAB-5 in neurons and describe the effects of rabx-5 and
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rab-5 disruption on endosomal populations, synaptic vesicles,

locomotion, and ageing.

Results

Screen for regulators of the endocytic pathway in
neuronal development

Several distinct endosomal compartments are present in the

GABAergic motor neuron synapse of C. elegans [22]. The

expression pattern of a fluorescently tagged RAB-5 reporter is

specifically altered in mutant animals lacking the function of

UNC-16, a kinesin adaptor protein [22,24]. To identify additional

genes involved in the endocytic pathway and axonal transport in

neuronal development, we conducted a forward genetic screen

using a YFP::RAB-5 reporter in GABAergic motor neurons.

These neurons are pseudo-unipolar neurons, with their soma

located in the ventral nerve cord, and nerve processes elongating

along the ventral and dorsal nerve cord, connected by a

circumferential commissure. Presynaptic terminals form en

passant along the ventral (for VD neurons) and the dorsal (for

DD neurons) processes. We have conducted the screen in two

ways: a visual inspection and an automated screen. The visual

screen was conducted in an unc-104 mutant background. UNC-

104 is a KIF1A kinesin motor protein. Because of transport

defects, unc-104 mutant worms have decreased numbers of

synaptic vesicles marked with syntaptobrevin-GFP at the synapse

as well as decreased localization of YFP::RAB-5 to the synapse

[22]. Furthermore, unc-104 mutant worms are severely paralyzed,

facilitating the examination of the YFP::RAB-5 protein localiza-

tion phenotype. In this visual screen, 1,824 haploid genomes have

been screened, resulting in the isolation of eight mutants with

disrupted YFP::RAB-5 protein localization patterns. A parallel

screen, based on a recent technological development using

microfluidic automated screening [25] was carried out using

YFP::RAB-5 in a wildtype background, screening 1500 haploid

genomes and isolating nine mutations. Screening identified

animals in which YFP::RAB-5 protein localization was decreased

within D neuron cell bodies. Further inspection determined

whether there were also synaptic changes (Figure 1a).

These mutations were back crossed, behave as recessive, and

have been classified into at least eight different genes based on

protein localization patterns of YFP::RAB-5 and movement

phenotypes. All identified mutations have decreased YFP::RAB-

5 fluorescence intensity within the cell body. 1) One mutation

(ju746), by non-complementation testing, is an allele of unc-16, a

known regulator of RAB-5 [22,26] validating the screen. 2) Three

alleles (ju752, qa7807, qa7808) have normal synaptic fluorescence

intensity of YFP::RAB-5 and an uncoordinated phenotype. 3) One

allele (ju755) has normal synaptic fluorescence pattern, normal

movement, and is approximately 5 map units from unc-104. 4)

Four alleles (ju747, ju748, ju758) have normal synaptic fluorescence

pattern, are genetically unlinked to unc-104, but require an unc-104

background for the decreased fluorescence intensity of YFP::RAB-

5 in the cell body. Non-complementation tests suggest that these

alleles are in separate genes. 5) Six alleles (ju749, ju751, qa7801,

qa7802, qa7803, qa7804) have normal synaptic fluorescence

intensity, wild-type movement, are unlinked to unc-104 and

preliminarily fail to complement one another suggesting that they

are one gene. 6) One allele (qa7809) has a particularly distinct

decrease in cell body fluorescence intensity, and no movement

phenotype. 7) One allele (qa7805) has increased synaptic

fluorescence intensity in addition to decreased fluorescence

intensity in the cell body and an uncoordinated movement

phenotype. 8) A second allele (qa7800) also has increased synaptic

and decreased cell body fluorescence intensity, but has no gross

movement phenotype. This last mutation, qa7800, was mapped to

rabx-5, the C. elegans homologue of rabex-5, a guanine exchage

factor (GEF) for Rab-5 in other species.

Rabx-5 gene and protein structure and mutant
phenotype

The rabx-5 gene in qa7800 mutant worms possesses a single

nucleotide ct change resulting in a premature stop codon in the

fifth exon of rabx-5 (Figure 1b). The first and second exons of rabx-

5 encode a zinc finger motif that has E3 ubiquitin ligase activity in

mammalian homologues [27,28,29], and the fifth through seventh

exons encode a VPS9 domain that catalyzes guanine exchange in

homologous proteins of other species [30]. Rabx-5(tm1512) is a

deletion mutation which covers the first exon and intron, and part

of the second exon. We found that the rabx-5(tm1512) mutant

revealed a similar YFP::RAB-5 protein localization pattern as with

qa7800 and that rabx-5(tm1512) failed to complement qa7800.

These observations suggest that the YFP::RAB-5 defects likely

result from total loss of function in rabx-5.

Rabx-5 mutants exhibit decreased protein localization of

YFP::RAB-5 in the cell bodies but increased protein localization

within the dorsal cord in both synaptic and intersynaptic regions

(Figure 1C and 1D). Both phenotypes can be rescued by the

injection of a CFP::RABX-5 construct driven by a GABAergic

motor neuron promoter (Figure 1D and 1E). Average soma

intensity significantly decreased from 4.660.4 relative intensity

units (IU) in WT to 2.760.3 IU in rabx-5(qa7800) and 2.260.2 IU

in rabx-5(tm1512) (p,0.01). The rescue construct restored protein

localization to 6.960.5 IU. Synaptic intensity significantly

increased from 1.060.01 IU in WT to 4.860.07 IU in rabx-

5(qa7800) and 6.160.13 IU in rabx-5(tm1512) (p,0.001). Rescue

with CFP::RABX-5 restored synaptic intensity to 0.560.02 IU.

Average intensity of intersynaptic regions significantly increased

from 0.3660.01 IU in WT to 1.860.08 IU in rabx-5(qa7800) and

1.360.09 IU in rabx-5(tm1512) (p,0.01) with intensity in rescue

animals at 0.1460.01 IU. These phenotypes were confirmed using

a second integrated Punc-25YFP::RAB-5 marker (data not shown).

Effects of RABX-5 interacting proteins and other GEFs
In other systems, the vacuolar sorting protein VPS9 domain has

been shown to be the guanine exchange catalytic domain of rabex-

5 [30,31]. Two other C. elegans proteins have VPS9 domains as

identified by homology. RME-6 is a guanine exchange factor for

RAB-5 that regulates clathrin coated vesicles in oocytes and

coelomocytes [32]. The uncharacterized protein, TAG-333, is the

only other C. elegans protein that contains the VPS9 guanine

exchange domain. To ask whether these other guanine exchange

proteins affect RAB-5 in neurons, we examined YFP::RAB-5

fluorescence intensity in rme-6(b1014) and tag-333(gk431) mutant

animals (Figure 2). Rme-6 and tag-333 mutants do not show as

dramatic changes in YFP::RAB-5 fluorescence intensity as seen in

rabx-5 mutants; however rme-6 mutant synaptic intensity (1.560.03

IU) is significantly increased compared to WT (160.01 IU,

p,0.05). From this, we conclude that RABX-5 is the primary

guanine exchange protein for RAB-5 in GABA motor neurons,

with RME-6 also having a role at synapses.

To further understand the role that RABX-5 plays in regulating

RAB-5 labeled endosomes in neurons, we examined other RAB-5

effector proteins. Rabaptin-5 (RABN-5) is a RAB-5 effector that

binds to RABX-5 and increases its GDP to GTP exchange

activity. It is required for homotypic fusion of RAB-5 early

endosomes [33] and may act by preventing the negative

autoregulation of RABX-5 [34]. Rabenosyn is a RAB-5 effector

Rabx-5 on Early Endosomes and Synaptic Vesicles
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that links RAB-5 to the syntaxin binding protein VPS45 [35].

Together these proteins act downstream of RAB-5 to promote

endosomal fusion [36]. To determine the role that these proteins

play in regulation of RAB-5 endosomes in neurons, we have

examined the effects of rabn-5(tm1555) and rabs-5(ok1513) muta-

tions on YFP::RAB-5 fluorescence pattern (Figure 2).

Fluorescence pattern of YFP::RAB-5 in rabn-5 mutant animals

was similar to that of rabx-5 mutant animals with a decrease in

intensity in cell bodies from 4.660.4 IU in WT to 1.96.3 IU in

rabn-5 mutants and increased synaptic (WT 160.01 IU and rabn-5

3.560.09 IU) and intersynaptic intensity (WT 0.460.01 IU and

rabn-5 1.260.07 IU). Rabx-5 rabn-5 double mutant animals showed

a similar decrease in cell body intensity (1.160.2 IU) and increase

in synaptic (5.560.14 IU) and intersynaptic intensity (1.7608 IU),

consistent with rabn-5 and rabx-5 working together to promote

guanine exchange of RAB-5.

YFP::RAB-5 intensity in rabs-5 mutants does not show the

dramatic changes seen in rabx-5 mutants, suggesting an indepen-

dent role. However, rabs-5 mutant animals do show a change in

the pattern of neuronal cell body protein localization of

YFP::RAB-5 into increased numbers of discrete compartments.

Rabx-5;rabs-5 double mutants are homozygous lethal.

Role of guanine exchange in the rabx-5 phenotype
Mammalian Rabex-5 and Rabaptin-5 function to exchange and

stabilize RAB-5 to its GTP-bound state [33]; therefore, loss of

function mutations in these proteins likely bias RAB-5 to its GDP

bound form. In order to determine if changes in YFP::RAB-5

protein localization in rabx-5 mutants depend on changes in the

nucleotide binding state of RAB-5, we expressed constitutively

active YFP::RAB-5(Q78L) or inactive YFP::RAB-5(S33N) [37] in

rabx-5 mutant worms. The RAB-5(Q78L) mutation locks a RAB-5

molecule that has been loaded with GTP into the GTP-bound

state. The RAB-5(S33N) mutation biases RAB-5 to its inactive

GDP-bound state. If changes in RAB-5 localization depend on its

GTP-binding state, we would expect that rabx-5 mutations would

have little effect on constitutively active RAB-5(Q78L) or inactive

RAB-5(S33N). This assumes that there is still guanine exchange

activity to load RAB-5 into its GTP bound state, as may be

provided by RME-6.

While two different markers cannot be accurately compared in

a precise manner, we observed that in a wild type background, the

YFP::RAB-5(Q78L) fluorescence pattern looked grossly like the

wild type YFP::RAB-5 fluorescence pattern with high intensity in

the cell bodies and comparably lower intensity in the dorsal cord.

Conversely, the YFP::RAB-5(S33N) fluorescence pattern in the

WT background looked similar to the YFP::RAB-5 fluorescence

pattern in the rabx-5 mutant background with cell bodies and the

dorsal cord at similar intensities to each other.

Comparing YFP::RAB-5(Q78L) intensity between WT and

rabx-5 mutant animals, we see no significant change in cell body

intensity and a slight but significant increase in dorsal cord

synaptic (WT 0.2760.02, mutant 0.526.03 IU) and intersynaptic

(WT 0.0826.007, mutant 0.176.02 IU) intensity (Figure 3A). This

increase is not as dramatic as the approximately five-fold increase

seen for YFP::RAB-5 intensity. YFP::RAB-5(S33N) exhibits an

increase in cell body intensity in rabx-5 mutants (WT 1.460.3 IU,

mutant 3.660.9 IU), the opposite of the effect on YFP::RAB-5

(Figure 3B). There is no significant change in intensity in the dorsal

cord. These results suggest that the effect of the rabx-5 mutation on

RAB-5 protein abundance and localization is at least partially due

to a bias in RAB-5 guanine cycling state.

When RAB-5 is in its active GTP-bound state, it is recruited to

endosomal membranes; in its inactive, GDP-bound state, it is

cytosolic [10,37]. To describe the cycling state of the YFP::RAB-5

observed in the dorsal cord of WT and rabx-5 mutant animals, we

examined the fluorescence recovery after photobleaching (FRAP)

of YFP::RAB-5 (Figure 3C). In WT animals, bleached synaptic

YFP::RAB-5 recovered to about 65% of its original intensity and

reached a plateau after 60 seconds. In contrast, in unc-16 mutant

animals, in which RAB-5 is biased to its GTP bound state [22],

fluorescence recovery is much slower, presumably because it is

remaining membrane bound, reaching only 30% recovery after

90 seconds. In rabx-5 mutant animals, YFP::RAB-5 synaptic

fluorescence recovery is slower than wild type but not as slow as

in unc-16 mutants. For example, at 15 seconds, WT recovery has

reached 5562% recovery, whereas rabx-5 mutants have reached

4062% recovery (p,0.01) and unc-16 mutants have reached

1762% recovery. In comparison, fluorescence recovery is much

faster in intersynaptic regions, recovering to 8563% intensity at

15 seconds. This is a similar recovery rate to what is seen with free

GFP alone. WT and unc-16 intersynaptic fluorescence is too dim

for accurate FRAP experiments. We interpret this data to indicate

that synaptic YFP::RAB-5 is in its membrane bound state and

speculate that its fluorescence recovers slower in rabx-5 mutants

because of slowed RAB-5 cycling. We interpret the dynamics of

intersynaptic recovery to indicate that this population is cytosolic,

GDP-bound RAB-5 that recovers at the same rate as freely

diffusing GFP.

Specificity of rabx-5
In order to distinguish early endosomes from cytosolic

YFP::RAB-5 we wished to examine the effects of the rabx-5

mutation on another marker of early endosomes. We also aimed to

determine the specificity of rabx-5 within the endosomal

membrane system. Therefore we examined the effects of the

rabx-5 mutation on a series of endosomal markers. HGRS, an

essential tyrosine kinase substrate (HGRS::mCherry), is targeted

specifically to early endosomes in a RAB-5 independent manner

[38]. Syntaxin-13, a SNARE protein (SYN-13::mCherry), marks

both early and recycling endosomes in axonal processes [39] and is

Figure 1. Rabx-5 mutations alter the RAB-5 organization in GABAergic motor neurons. A) A forward genetic screen was conducted by
observing GABAergic motor neurons for changes in localization or intensity of Punc-25YFP::RAB-5. Initial screening isolated mutants in which YFP::RAB-
5 was decreased in the cell soma. Further inspection determined if YFP::RAB-5 was increased at the synapse. B) Gene, transcript, and protein structure
of rabx-5. The RABX-5 protein consists of a zinc finger motif (ZF) and a motif interacting with ubiquitin (U) that together regulate association with
ubiquitinated endosomal cargo; a membrane binding motif and helical bundle required for association with the endosomal membrane; a Vps9
domain that along with the helical bundle promotes guanine exchange activity; and a coiled-coil region that binds rabaptin-5 and contains a motif
for autoinhibition of guanine exchange activity. The rabx-5(qa7800) mutation leads to a truncation at the helical bundle. The rabx-5(tm1512) mutation
deletes the start site and the exons encoding the zinc finger motif and the motif interacting with ubiquitn. C) Punc-25YFP::RAB-5 protein localization in
the soma (left column) and dorsal cord (right column) of GABAergic motor neurons in wild type and mutant animals. D) Punc-25YFP::RAB-5
fluorescence intensity was decreased in the soma of mutant animals and increased in the synaptic and intersynaptic regions. This phenotype is
recovered with expression of Punc-25CFP::RABX-5. Each point represents a single soma, synaptic puncta, or intersynaptic axonal region, respectively.
Bar represents the mean. **p,0.01, ***p,0.001. E) Punc-25CFP::RABX-5 expression recovers the rabx-5(qa7800) YFP::RAB-5 phenotype.
doi:10.1371/journal.pone.0037930.g001
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present in synaptic vesicles [4]. Rab-11 is present in recycling

endosomes, and Rab-7 associates with late endosomes [9,10].

In rabx-5 mutants, HGRS::mCherry intensity is similar to

wildtype within the cell soma but exhibits a significant increase in

synaptic (1.6360.03 IU, 1.06.04 IU in WT, p,0.0001) and

intersynaptic regions (.996.06 IU, 0.46.04 IU in WT, p,0.0001)

(Figure 4A). A similar pattern is observed in localization of SYN-

13::mCherry with significant increases in both synaptic (2.056.05

IU, 1.006.03 IU in WT, p,0.0001) and intersynaptic intensity

(1.046.05 IU, 0.456.03 IU in WT, p,0.0001) (Figure 4B). In

contrast, CFP::RAB-11 exhibits decreased synaptic intensity in

rabx-5 mutants (0.6960.03 IU, 1.0060.02 IU in WT, p,0.0001)

and CFP::RAB-7 exhibits no significant change in intensity from

WT (Figure 4C and 4D). We conclude that rabx-5 regulates the

membranous compartments of early endosomes and not simply

the cytosolic versus membranous localization of RAB-5. We also

observe that rabx-5 acts primarily on RAB-5 with much less, if any,

influence on RAB-11 or RAB-7.

Figure 2. Punc-25YFP::RAB-5 localization in mutations of other RAB-5 effectors and VPS9 domain proteins. A) GABAergic motor neuron
cell somas expressing YFP::RAB-5 in animals mutant for the RAB-5 effectors, rabn-5 and rabs-5, or mutant for the other VPS9 domain proteins, tag-333
and rme-6. B) Quantification of soma YFP::RAB-5 intensity. C) GABAergic motor neuron dorsal cord in these mutant animals. D) Quantification of
synaptic intensity. E) Quantification of intersynaptic intensity. Rabx-5 works in the same pathway as rabn-5 but not rabs-5 to regulate RAB-5. Rme-6
and tag-333 do not exhibit the same phenotype as rabx-5. Each point represents a single soma, synaptic puncta, or intersynaptic axonal region. Bar
represents the mean. *p,0.05, ***p,0.001.
doi:10.1371/journal.pone.0037930.g002
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Figure 3. Rabx-5 acts by biasing the cycling state of RAB-5. A) Soma and dorsal cord of mutant and wildtype GABAergic motor neurons
expressing YFP::RAB-5(Q78L). The rabx-5 mutation does not exhibit as dramatic a phenotype as on YFP::RAB-5. B) Soma and dorsal cord of mutant
and wildtype GABAergic motor neurons expressing YFP::RAB-5(S33N). The rabx-5 mutation does not exhibit as dramatic a phenotype as on YFP::RAB-
5. Each point represents a single soma, synaptic puncta, or intersynaptic axonal region, respectively. Bar represents the mean. *p,0.05, ***p,0.001
C) Fluorescent recovery after photobleaching (FRAP) of YFP::RAB-5 in the synaptic regions of WT, the synaptic and intersynaptic regions of rabx-5, and

Rabx-5 on Early Endosomes and Synaptic Vesicles
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Role of rabx-5 on synaptic vesicle populations
To examine the effect that altered RABX-5 activity has on

synaptic vesicle populations, we examined two proteins associated

with synaptic vesicles (Figure 5A and 5B). Synaptobrevin (SNB-1)

is a SNARE protein anchored to the membrane of synaptic

vesicles and synaptic vesicle precursors [40]. RAB-3 plays a role in

synaptic vesicle exocytosis and marks mature synaptic vesicles

[41]. Both SNB-1::GFP and RAB-3::mCherry exhibited signifi-

cantly increased intensity in synaptic puncta of rabx-5 mutants

(1.866.05 IU, 1.006.02 IU in WT, p,0.01; 2.7560.06 IU,

1.0060.03 IU WT, p,0.0001, respectively), and RAB-

the synaptic region of unc-16 mutant worms in which RAB-5 is biased to the GTP bound state; and FRAP of free GFP. Arrow marks the region of
bleaching. Fluorescence recovery after photobleaching of synaptic YFP::RAB-5 in rabx-5 mutants is significantly slower than WT but faster than unc-16
mutants (p,0.01 at time points from 5–15 sec; mean 6 SEM). Intersynaptic YFP::RAB-5 in rabx-5 mutant animals exhibits similar dynamics to free
GFP.
doi:10.1371/journal.pone.0037930.g003

Figure 4. Effects of the rabx-5 mutation are specific to early endosomal and synaptic compartments. A) Fluorescence intensity of Punc-

25HGRS::mCherry, a tyrosine kinase substrate targeted specifically to early endosomes, is increased in synaptic and intersynaptic regions in rabx-5
mutants. B) Fluorescence intensity of Punc-25Syntaxin-13::mCherry, a SNARE protein that marks early and recycling endosomes as well as synaptic
vesicles is increased in synaptic and intersynaptic regions in rabx-5 mutants. C) Fluorescence intensity of Punc-25CFP::RAB-11 a marker of recycling
endosomes is decreased in soma and synaptic regions in rabx-5 mutants. D) Fluorescence intensity of Punc-25CFP::RAB-7, a marker of late endosomes
is similar in wild type and in rabx-5 mutant animals. Each point represents a single soma, synaptic puncta, or intersynaptic axonal region, respectively.
Bar represents the mean. *p,0.05, ***p,0.001.
doi:10.1371/journal.pone.0037930.g004

Rabx-5 on Early Endosomes and Synaptic Vesicles
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3::mCherry had increased intensity in intersynaptic regions as well

(0.7460.03 IU, 0.226.02 IU in WT p,0.0001). SNB-1::GFP

intensity was significantly increased in cell bodies (0.9360.11 IU,

0.4560.23 IU in WT, p,0.01) whereas RAB-3::mCherry

intensity was significantly decreased (0.8060.09 IU, 1.4560.15

IU in WT, p,0.005). Thus, while there are differential effects in

cell somas, synaptic vesicles appear to be increased in synaptic

regions of rabx-5 mutants.

To determine if this effect is due to the bias of RAB-5 to its

GDP-bound state, we examined SNB-1::GFP fluorescence in

animals in which RAB-5(Q78L) was expressed (mCherry::RAB-

5(Q78L)). We found that expression of RAB-5(Q78L) rescued the

effect of the rabx-5 mutation on SNB-1::GFP, indicating that rabx-5

Figure 5. Rabx-5 mutant animals have aberrant synaptic vesicles. A) Punc-25Synaptobrevin::GFP intensity is increased in soma and synaptic
regions in rabx-5 mutant animals. This phenotype is rescued by expression of Punc-25mCherry::RAB-5(Q78L). B) Punc-25mCherry::RAB-3 intensity is
increased in soma and synaptic regions. C) Punc-25synaptobrevin::GFP is decreased in soma, synaptic, and intersynaptic regions of larval stage 1
animals. D) YFP::RAB-5 intensity is increased in synaptic regions of the dorsal and ventral cord of larval stage 1 rabx-5 mutant animals. Each point
represents a single soma, synaptic puncta, or intersynaptic axonal region, respectively. Bar represents the mean. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0037930.g005
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affects synaptic vesicles by biasing the cycling state of RAB-5

(Figure 5A).

To see if mutations directly in RAB-5 also affect synaptic vesicle

abundance, we examined SNB-1::GFP in rab-5 mutants. As these

mutants are homozygous lethal beyond larval stage 1 (L1), we

examined early L1 animals. At this stage, synaptic vesicles of the

DD motor neurons are localized to the ventral cord. In L1 rab-5

mutant animals, SNB-1 intensity is significantly increased in cell

somas (0.2660.04 IU, 0.1660.04 IU in WT, p,0.05) and

decreased in the ventral cord, in both synaptic (0.7660.05 IU,

0.9960.05 IU in WT, p,0.005) and intersynaptic regions

(0.1760.02 IU, 0.2560.02, p,0.01) (Figure 5C).

We also examined the effect of rabx-5 mutations on YFP::RAB-5

at the L1 stage and found that they subtly paralleled changes

observed in adult animals (Figure 5D). YFP::RAB-5 intensity was

increased in both dorsal (1.560.05 IU, 1.060.06 IU in WT,

p,0.0001) and ventral synaptic regions (3.660.15 IU, 3.060.13

IU in WT, p,0.01) as well as the dorsal cord intersynaptic region

(0.6060.03 IU, 0.3460.03 IU in WT, p,0.0001) of rabx-5

mutants.

These data demonstrate that rabx-5 regulates synaptic vesicles in

addition to endosomal compartments. This action may occur

through the regulation of RAB-5 as rab-5 mutant animals also

exhibit alterations in localization of the synaptic vesicle marker

SNB-1::GFP; however, this altered localization is opposite what

one might expect if RABX-5 acted on synaptic vesicles directly

through RAB-5. Nonetheless, the effect of rabx-5 can be rescued by

expression of activated RAB-5(Q78L), suggesting the rabx-5 effect

depends on the cycling state of RAB-5.

Functional effects of rabx-5 mutations
Changes in synaptic vesicle marker localization and intensity in

rabx-5 mutants suggest that synaptic function may be altered.

However, rabx-5 mutant animals appear grossly normal. To

examine whether the changes in endosomes and synaptic vesicles

observed in rabx-5 mutant animals lead to more subtle synaptic

effects, we performed aldicarb and levamisole synaptic function

assays (Figure 6). Aldicarb is an acetylcholine esterase inhibitor

and levamisole is a cholinergic agonist. Both drugs lead to tetanic

paralysis. Rabx-5 and rabn-5 mutant worms placed on 0.5 mM

aldicarb exhibited significant resistance to aldicarb paralysis

compared to control animals. For example, at 120 minutes, only

14% of WT animals are still moving whereas 50% of rabx-5

mutant animals and 56% of rabn-5 mutant animals are moving

(p,0.0001). The animals did not exhibit any significant difference

in paralysis rate when placed on levamisole. These results indicate

that rabx-5 and rabn-5 mutant animals have a defect in presynaptic

neurotransmitter release.

Role of rabx-5 in ageing
Defects in regulation of the endocytic pathway and axonal

transport contribute to age-related neurodegenerative disease such

as Alzheimer’s disease [42,43], Huntington’s disease [44], and

fronto-temporal dementia [45]. The Alzheimer amyloid protein

precursor is localized to RAB-5 containing organelles of nerve

terminals [46,47], and RAB-5 and APP work together to signal

apoptosis [48]. RAB-5 is up-regulated in brains of patients with

Alzheimer’s disease and Mild Cognitive Impairment [49]. These

findings suggest that regulation of RAB-5 may mediate normal

and disease state age-related changes in neuronal function.

Therefore, we examined whether rabx-5 mutants exhibited any

age-related defects. Compared to WT animals, rabx-5 mutants

aged faster and had a significantly shortened lifespan (log-rank test

p,0.0001) (Figure 7A). In rabx-5 mutant animals, 50% of worms

fail to survive past adult day 10, whereas in WT animals, 50% of

the worms survive until adult day 16. Synaptic YFP::RAB-5

exhibited more variable intensity in adult day 10 WT worms

(0.3661.07 IU, mean 6 SD) than in day 1 adult WT worms

(1.0060.33 IU, F test probability that variances differ p,0.0001),

suggesting a disorganization of endosomes with ageing (Figure 7B).

This progressive disorganization is also observed in rabx-5 mutant

animals (day 1: 3.3561.09, day 10: 2.8861.95, mean 6 SD, F

test probability that variances differ p,0.0001).

Discussion

Here we demonstrate that Rabx-5 is an important regulator of

RAB-5 endosomal compartments and synaptic vesicles in neurons

of C. elegans. Previous studies have demonstrated that RAB-5 is an

integral member of synaptic vesicles [6,18,19] and is needed for

maintenance of synaptic vesicle size as well as neurotransmitter

release [20,21,22,23]. To understand how RAB-5 is regulated at

the synapse, we conducted a forward genetic screen to identify

proteins that function alongside of RAB-5 in neurons. We found

that one of the isolated mutants, rabx-5, regulates synaptic vesicles

and synaptic function through its guanine exchange activity on

RAB-5.

Rabx-5 was identified through a new automated screening

methodology [25]. Two screens were performed in parallel: an

automated screen and a manual screen. Both screens examined

approximately 1500 haploid genomes and identified 8–9 mutant

alleles. The automated screen had a throughput of 500 haploid

genomes per hour whereas we were able to examine approxi-

mately 50 haploid genomes per hour with the manual screen. One

gene was identified by both screens and the other genes were

unique to each screen (as assessed by non-complementation). The

automated screen is a significant advance in technology, allowing a

10-fold increase in screening efficiency.

Rabx-5 regulates RAB-5 in both the GABAergic motor neuron

soma and synapse, exhibiting a decrease in YFP::RAB-5 in the

soma and an increase of YFP::RAB-5 at the synapse. In other

systems, RAB-5 is localized to early endosomal compartments and

synaptic vesicles [6,9,18,19]. In the soma of C. elegans GABAergic

motoneurons, RAB-5 localization extends beyond that of SNB-1

[22] suggesting localization to early endosomes as well as synapses.

Synaptic vesicle proteins found in the somas of neurons comprise

synaptic vesicle and active zone precursors prepared for transport

to synaptic terminals [50,51] and mediate paracrine release of

neurotransmitters and neurohormones directly from the soma

[52,53].

RABX-5 functions to promote RAB-5 cycling from the GDP to

GTP-bound state via the catalytic vacuolar sorting protein VPS9

domain [30,31]. The two other C. elegans proteins with VPS9

domains, RME-6 and TAG-33 do not exhibit the same

YFP::RAB-5 phenotype as rabx-5. RME-6 has been shown to

function in clathrin coated vesicles in oocytes and coelomocytes

[32]. Our data suggest RABX-5 is the primary exchange factor for

RAB-5 in neurons with additional activity from RME-6. RAB-5

may have tissue specific exchange factors [30].

We found that rabn-5 mutant animals exhibit a similar

YFP::RAB-5 phenotype as rabx-5. Structural evidence suggests

that rabaptin functions by preventing the negative autoregulation

of rabex-5 [34]. The rabx-5 rabn-5 synaptic double mutant

phenotype is consistent with this model, suggesting that these

two genes are working together in the same pathway.

Our data suggest that RABX-5 regulates early endosomal

compartments and synaptic vesicles by biasing the cycling state of

RAB-5 and by altering early endosomal and synaptic vesicle
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membrane compartments. YFP::RAB-5 markers locked in a GDP

or GTP bound state do not show the same changes in intensity in

rabx-5 mutant animals as freely cycling YFP::RAB-5, suggesting

that the phenotype is due at least in part to a bias of the cycling

state of RAB-5. The dynamics of RAB-5 FRAP suggest that the

RAB-5 that becomes localized in intersynaptic regions in rabx-5

mutants is cytosolic whereas RAB-5 in synaptic regions is

membrane bound. Changes in intensity of two other markers of

early endosomes, HGRS-1::mCherry and Syn-13::mCherry,

parallel the changes with YFP::RAB-5, indicating that endosomal

membrane is altered in addition to the RAB-5 cycling and

concomitant membrane-bound state. These changes are not seen

in markers of late or recycling endosomes. Synaptic vesicle

markers exhibit an increase in synaptic intensity in rabx-5 mutant

animals and this phenotype is rescued by expression of RAB-

5(Q78L), suggesting that it depends on the cycling state of RAB-5.

Activated GTP-bound RAB-5 promotes the homotypic fusion and

enlargement of early endosomes [37]. Conversely activated RAB-5

is required to prevent the homotypic fusion and enlargement of

synaptic vesicles and maintain synaptic vesicle size [21]. RAB-5

biased to the GTP-bound state leads to decreased numbers of

synaptic vesicles as observed by electron microscope [22]. RAB-5

is present on both synaptic vesicle and endosomal membranes

[6,18,19]. In unc-16 mutant C. elegans in which RAB-5 is biased to

the GTP bound state, there is an decrease in YFP::RAB-5 in

intersynaptic axonal regions; and in the rabx-5 mutant animals,

where RAB-5 is biased to the GTP bound state, there is an

increase in YFP::RAB-5 in intersynaptic regions. However in both

mutants, at the light microscopic level, there is an increase of

YFP::RAB-5 at the synaptic regions. We speculate that a bias to

the GDP bound state, as in rabx-5 mutants, leads to increased

cytosolic RAB-5 and an increase of RAB-5 containing synaptic

vesicle membrane at the synapses whereas a bias to the GTP

bound state leads to less cytosolic RAB-5 and increased RAB-5 on

the early endosomes of the synaptic region.

We observe subtle effects of the rabx-5 mutation on synaptic

release as measured by aldicarb assays. Resistance to aldicarb

paralysis but not levamisole paralysis indicates a decrease in

presynaptic release of acetylcholine. This is consistent with work

in Drosophila demonstrating that impaired RAB-5 function decreases

the probability of evoked transmitter release [20], although RAB-5

did not come out positive in an RNAi screen for aldicarb resistance

in C. elegans [54], perhaps because of the subtlety of the effect.

Rabx-5 mutant animals age faster than wildtype animals and both

wildtype and mutant animals exhibit a disorganization of endosomal

compartments with age. The endocytic pathway is implicated in age

related neurodegenerative diseases [42,43]. Patients with Alzhei-

mer’s disease have higher levels of RAB-5 in the brain [49]. Amyloid

precursor protein and beta-site amyloid cleavage protein (BACE-1)

show increasing interactions within endosomes with ageing. A

dominant negative RAB-5 inhibits this interaction and decreases

Abeta production [55]. The disorganization of the endosomal

membrane system may advance these age-associated diseases. By

Figure 6. Rabx-5 and rabn-5 exhibit subtle presynaptic release defects. Animals placed on 0.5 mM aldicarb, an acetylcholine esterase
inhibitor, or levamisole, an acetylcholine receptor antagonist were assayed for movement over time. Rabx-5 and rabn-5 mutant animals exhibit
significant resistance to aldicarb compared to wild type animals. Mean 6 SEM, *p,0.05.
doi:10.1371/journal.pone.0037930.g006
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regulating RAB-5 and the early endosomal compartments, rabx-5

may contribute to healthy ageing.

Methods

Screen, Genetics, Plasmids, and Transgenic Animals
C. elegans strains were generated from N2(Bristol) and

maintained at 20–23 C as described [56]. The manual screen

examined ethylmethane sulfonate (EMS) mutagenized unc-

104(e1265) animals carrying the integrated chromosomal array Punc-

25YFP::RAB-5(juIs198); Pttx-3RFP. The automated screen was per-

formed in WT worms carrying the same marker as described [25].

The following mutations were used in this study: rabx-5(qa7800), rabx-

5(tm1512), rabx-5(ok1763), rabn-5(tm1555), rabs-5(ok1513), rme-

6(b1014), tag-333(gk431), unc-16(ju146), unc-104(e1265). Homozygous

mutants were confirmed by allele specific PCR and restriction digest.

We used the following markers Punc-25YFP::RAB-5(juIs198), Punc-25

CFP::RABX-5(juEX3160), Punc-25YFP::RAB-5(juIs199), Punc-25YF-

P::RAB-5Q78L(juEx1447), P
unc-25

YFP::RAB-5S33N(juEx3411), Punc-25m

Cherry::HGRS-1(juEx3266), Punc-25mCherry::SYN-13(juEX3259), Punc-25

CFP::RAB-11(juEX1145), Punc-25CFP::RAB-7(juEx989), Punc-25SNB-

1::GFP(juIs1), Punc-25mCherry::RABX-5Q78L(juEx3904), and Punc-25m

Cherry::RAB-3(juEX1368). Punc-25CFP::RABX-5 (pCZGY1419) plas-

mid contained rabx-5 cDNA starting from the ATG start site [57].

Plasmids were generated using Gateway technology (Invitrogen,

Carlsbad, CA).

Confocal imaging and analysis
Images were taken on a Zeiss LSM510 laser scanning confocal

microscope using a 63X objective. Argon laser output was set to

40% current. Transmission was set to a constant value ranging

from 1% to 20% depending on the marker. In the case of

YFP::RAB-5, using the same transmission rate across conditions

did not capture the full dynamic range of the fluorescence.

Control images were taken at each transmission rate used, and

intensity was normalized to control as described [22]. Maximum

intensity projection merged images from stacks of 5–12 0.4 mm

sections were exported as 16 bit tiff files and analysed on

Metamorph image analysis software (Molecular Devices, Sunny-

vale, CA). Images were thresholded to select individual puncta

and average intensity measured for each puncta. Intersynaptic

intensity was measured by drawing line scans through the dorsal

cord between synaptic puncta. Soma average intensity was

measured by drawing a region of interest around the soma. All

reported fluorescence intensities had background fluorescence

subtracted and were normalized so that average synaptic puncta

intensity of that marker in WT animals is equal to one. Data was

analyzed using one-way ANOVA followed by Tukey post-test

and reported as mean 6 SEM except where otherwise noted.

FRAP analysis was performed by bleaching puncta using 100

iterations at 100% laser power over a constant diameter region of

interest such that bleaching took 4.9 seconds. Images were

captured every 5 seconds at 20% laser transmission. Average

intensity of the region of interest was analyzed using Zeiss

software, and a background region of interest was subtracted.

Intensity was normalized such that intensity before bleaching

equaled one and intensity after bleaching equaled zero. Statistical

comparisons were made on individual time points using a one-way

ANOVA and Bonferonni post-test.

Pharmacological Assays
Worms were placed on 0.5 mM aldicarb, an acetylcholine

esterase inhibitor, or levamisole, an acetylcholine receptor

antagonist, and assayed for movement over time. Dishes of at

least 10 worms per condition were assayed on at least three

different days. Statistical comparisons were made using a two-

way ANOVA and Bonferroni post-test.

Ageing Assay
Animals were grown on standard bacterial plates at 23 C and

transferred as needed to distinguish from progeny. Animals were

assayed for survival daily and touched with a worm pick to

Figure 7. Rabx-5 mutant animals age faster and RAB-5
endosomal compartments become disorganized with age. A)
Survival assay indicates that rabx-5 mutant animals age faster than wild
type animals (log-rank test p,0.0001). B) Punc-25YFP::RAB-5 expression
in the soma and dorsal cord of adult day 1 and day 10 wild-type and
rabx-5 mutant animals. Synaptic intensity is more variable in adult
day 10 animals (F test probability that variances differ p,0.0001). Each
point represents a single soma, synaptic puncta, or intersynaptic axonal
region, respectively.
doi:10.1371/journal.pone.0037930.g007
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distinguish dead from sluggish worms. At least 27 worms were

used per condition. Log-rank test was performed using OASIS

software [58].
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