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Abstract

RNA interference via exogenous short interference RNAs (siRNA) is increasingly more widely employed as a tool in gene
function studies, drug target discovery and disease treatment. Currently there is a strong need for rational siRNA design to
achieve more reliable and specific gene silencing; and to keep up with the increasing needs for a wider range of
applications. While progress has been made in the ability to design siRNAs with specific targets, we are clearly at an infancy
stage towards achieving rational design of siRNAs with high efficacy. Among the many obstacles to overcome, lack of
general understanding of what sequence features of siRNAs may affect their silencing efficacy and of large-scale
homogeneous data needed to carry out such association analyses represents two challenges. To address these issues, we
investigated a feature-selection based in-silico siRNA design from a novel cross-platform data integration perspective. An
integration analysis of 4,482 siRNAs from ten meta-datasets was conducted for ranking siRNA features, according to their
possible importance to the silencing efficacy of siRNAs across heterogeneous data sources. Our ranking analysis revealed for
the first time the most relevant features based on cross-platform experiments, which compares favorably with the
traditional in-silico siRNA feature screening based on the small samples of individual platform data. We believe that our
feature ranking analysis can offer more creditable suggestions to help improving the design of siRNA with specific silencing
targets. Data and scripts are available at http://csbl.bmb.uga.edu/publications/materials/qiliu/siRNA.html.
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Introduction

RNA interference (RNAi) is a gene silencing phenomenon

mediated by a short interfering RNA (siRNA) which comes from a

double-stranded RNA (dsRNA). The RNAi process is to introduce

a siRNA into the cytoplasm, where the guide strand of the siRNA

is incorporated into the RNA-induced silencing complex (RISC).

As RISC binds with the target mRNA, the guide strand of the

siRNA pairs up with the complementary mRNA sequence, leading

to post-transcriptional gene silencing [1,2]. The silencing effect of

RNAi on specific genes makes it a powerful tool in gene function

studies, drug target discovery and disease treatment [3–7].

The efficacy of different siRNAs may vary widely due to the

specific characteristics of the siRNA sequences [8]. Considerable

efforts have been made to study the silencing effects of siRNAs,

and a number of features have been previously identified, which

may affect the efficacy of a siRNA such as GC content, position-

dependent nucleotide composition and the symmetric 39 TT

overhangs [9–12]. More recent studies have proposed a number of

new rules, derived by employing more sophisticated statistical and

machine learning methods as well as based on improved

understanding about the RNA silencing mechanism [11,13–18].

However, these empirical rules were often not discriminative

enough between highly efficacious and inefficacious siRNAs [19]

when tested on independent data. A key issue is that the proposed

rules were generally not derived from a comprehensive dataset

that covers the silencing effects by different siRNAs, which has led

to poor performance by the existing siRNA design tools as

reported in the literature. For instance, Saetrom et al. claimed that

the sequence information alone can determine the efficacy of

siRNAs [10] while several other groups suggested that thermody-

namic features are important to siRNAs effectiveness (a compre-

hensive list of different concerns on related features in siRNA

design is provided in the RESULTS section).

A number of RNAi datasets are publicly available but each

dataset was typically generated by a different group possibly using

a different platform under specific experimental conditions,

making integrated analysis and utilization of these datasets a

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e37879



challenge. For example, a variety of assays/platforms/scales were

used when measuring and assessing the siRNA efficacy, such as

different cell types (Hela, fibroblasts), test methods (Western

Blotting, real-time PCR) or siRNA delivery methods (vectors

method, synthetic oligos method). In addition, very different

concentrations of siRNAs might have been used in different

experiments. We observed from our own previous study that

generally the siRNA efficacy for different platforms cannot be

easily compared, hence making a simple integration of heteroge-

neous datasets hardly useful [20].

To address these issues, an effective integration strategy is

needed, which should maximally utilize information from different

datasets to provide a reliable association analysis between features

and the siRNA efficacy than analyses based on any specific dataset

as done in the previous studies. All these require us to re-consider

the current in-silico siRNA design strategies and rectify several

confounding and potentially conflicting viewpoints on specific

features related to siRNA design.

In this study, the features important to siRNA designs across

different datasets were identified, including compositional, ther-

modynamic and structural features of siRNAs. Joint feature

ranking was achieved by integration of feature selections using

three learning methods, namely the L1,2-norm regularization,

L1,?-norm regularization and trace norm regularization [21,22]

on ten meta-datasets. Three ranked feature lists based on the three

methods were integrated into one final ranking list. Our prediction

results show an improved performance over the existing ones in

terms of the silencing efficacy of the designed siRNAs.

Methods

Data sets
Ten siRNA efficacy datasets [17] were used in this study. The

datasets were limited to siRNA sequences targeted at mammalian

mRNAs. By convention, siRNA sequences were represented as

anti-sense sequences from 59 to 39 and the siRNA potency was

measured by the mRNA/protein product levels after gene

silencing. Klingelhoefer et al. [17] noticed the heterogeneous

nature of the ten datasets, and tried to combine the datasets into

one through rescaling the data. However, this simple integration

strategy has hardly led to satisfactory performance [20]. Never-

theless, the meta-datasets curated by Klingelhoefer et al. [17]

provided a good starting point for us to carry out a comprehensive

analysis on feature selection needed for siRNA design.

A detailed description of the ten datasets is presented in Table 1.

Note that the siRecord data [23] was excluded from our study

considering that the data used categorical values, unlike contin-

uous values used in the other datasets when measuring the siRNA

potency. The remaining datasets contain nearly all the RNAi data

using numerical siRNA efficacy values reported so far. In total the

datasets contain 4,482 unique and experimentally validated 19 nt

siRNAs along with their efficacy values. All the datasets can be

downloaded from the Supplementary Information.

The same 497 features proposed by Klingelhoefer et al. [17]

were adopted as the starting point of our study, including

compositional, thermodynamic and structural features. The

compositional features describe the occurrence of certain nucle-

otides at certain positions of the aligned siRNA sequences,

including position-dependent nucleotide preference, GC content,

presence of specific 2-, 3- and 4-mer sequence motifs, presence of

the motifs that stimulate innate immune response and presence of

palindromes. Thermodynamic features cover the binding free

energies and stabilities of the folded structures; and structural

features include secondary structure content. These features cover

the vast majority of the features reported in recent studies, and

provided a comprehensive starting feature set for our study. It

should be noted that the features of the target mRNA do have

important implications on siRNA potency [15,24], however we

did not take them into consideration in this study simply due to

that we just keep the same feature set as proposed by Klingelhoefer

et al. [17] for comparison purpose. The 497 features were listed in

Table S1 for reference.

Computational strategies for feature selection
Data integration and feature selection were carried out by

applying a linear regression model on data generated using three

learning strategies. It exploits possible synergies across different

datasets rather than combines them directly, to learn a predictor

for siRNA efficacy. This predictor allows different regression tasks

to enhance each other during the training process, which

eventually makes the efficacy prediction and the selected features

more reliable than when the datasets are used separately. Three

regularization methods were used, namely, L1,2-norm regulariza-

tion, L1,?-norm regularization and trace norm regularization

[21,22] to provide different constraints during model construction.

The three methods will give rise to three different ranking lists of

features for siRNA design, which will be then integrated to give

one final rankling list. Figure 1 gives an outline of the whole

procedure of our approach while the details of each step are given

in the following subsections.

Algorithms
Multi-Task Learning and Norm Regularization. For a

given set of siRNAs represented as a set of feature vectors,

traditional siRNA model is focused on a specific individual dataset

to learn a regression model for the efficacy prediction. In our

study, we aim at learning a joint efficacy prediction model for all

the given datasets simultaneously, so a multi-task learning

procedure is applied here. Under this framework, a ‘‘Task’’

represents an individual dataset used for the regression model for

siRNA efficacy prediction. The goal of such multi-task learning

model is to learn a set of sparse functions across all the tasks, by

exploiting the possible synergies across different datasets rather

than use only one dataset or combines them directly.

Specifically, the given datasets contain N tuples (the number of

siRNA efficacy data is N), (zi~xi,yi,ki) for i~f1:::Ng, where

xi[Rd is a feature vector containing d features for description for a

specific siRNA, yiis the corresponding efficacy value, and

ki[f1:::Mg is the indicator specifying to which of the M tasks

the example (xi,yi)corresponds. The square loss:

l(z,W )~(y{wT
k
:x)2was adopted to learn the regression models,

where W is a combination of the weight vector for each regression

model which refers to W~½w1,w2,:::,wM �[Rd|M for M tasks and

the j-th row of W is denoted as Wj[R1|M , corresponding to the i-

th feature in all M tasks. W is enforced to be sparse to achieve the

goal of cross-platform feature selection. In a sparse multi-task

learning, joint sparsity across different tasks is obtained by adding

the norm of the matrix W to the loss function, which leads to only

a few non-zero rows of W , representing the leading features for

cross-platform siRNA efficacy prediction. Overall, such a joint

multi-task regression problem was formulated as the following

optimization function to solve for W :

min
W

1

2

XN

i~1

l(zi,W )zy(W )

( )
ð1Þ

where y(W )corresponds to the norm function. Note that the three

In-Silico siRNA Design Based on Feature Selection
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different norm forms, i.e., DDW DD1,2 (L1,2-norm), DDW DD1,? (L1,?-

norm) and DDW DD� (Trace norm) are used respectively. The

definition of each norm is defined as:

DDW DD1, 2~
Xd

j~1

DDWj DD ð2Þ

DDW DD1,?~
Xd

j~1

DDWj DD?~
Xd

j~1

max
1ƒkƒM

DWjk D ð3Þ

DDW DD�~trace(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W T W
p

) ð4Þ

The optimization problems resulting from the above sparse

learning formulations were solved using the SLEP (Sparse

Learning with Efficient Projections) package [22], by using

Nesterov’s method and the accelerated gradient method. Detailed

information can be found in [22].

The reason for using three different norms rather than only one

specific norm is explained below: at first, the common character-

istic of all these regularized functions is that it encourages multiple

tasks to share similar sparsity patterns. BasicallyL1,2-norm and

L1,?-norm belong to the L1,q-norm regularization(qw1), which

Table 1. Data description for ten siRNA datasets.

ID Dataset Size Source siRNA sequence Concentration

1 Novartis’s data 2431 Huesken, et al., 2005 antisence 50 nM

2 Jagla’s data 601 Jagla, et al., 2005 antisence 100 nM

3 Katoh’s data 702 Katoh and Suzuki, 2007 sense 10/25 nM

4 Amgen-Dharmacon 239 Reynolds, et al., 2004 antisence 100 nM

5 Harborth’data 42 Harborth, et al., 2003 antisence 100 nM

6 Hsieh’s data 108 Hsieh, et al., 2004 antisence 100 nM

7 Khvorova’s data 10 Khvorova, et al., 2003 antisence 100 nM

8 Vickers’data 76 Vickers, et al., 2003 antisence 100 nM

9 Ui-Tei’s data 50 Ui-Tei, et al., 2004 antisence 50 nM

10 Amarzguioui’s data 223 Amarzguioui and Prydz, 2004 sense 25 nM

doi:10.1371/journal.pone.0037879.t001

Figure 1. The computational framework for integrated cross-platform feature selection in siRNA design.
doi:10.1371/journal.pone.0037879.g001
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contributes to representation sparsity, while trace-norm contrib-

utes to the matrix rank minimization. However, although each of

the three norms can make sparse models in the siRNA efficacy

regression, their induced levels of sparsity are unclear; and which

norm should be applied for a specific case still remains an open

problem [22]. For this particular reason, three different norms

were adopted, and then integrated into one model to reveal the

most un-biased features associated with the siRNA silencing

efficacy, taking advantage of the integration of multi-view

regularization norms.

Feature selection across multiple predictions. In sparse

multi-task learning, the joint sparsity across different tasks is

achieved by adding the regularization norm of matrix W to the

loss function, thus providing an efficient way to evaluate the joint

feature importance in the siRNA design across multiple platforms.

Based on the parameter W derived from the above three methods,

we obtained bi according to the following equation:

bi~
DDwi DD2

DDW DD2,1

,i~1,:::d: ð5Þ

If bi=0, the ithfeature is the common feature; otherwise, the ith

feature is not useful to the regression learning across different tasks,

since its regression weights are zeros for all the tasks. The value of

bi indicates the weight of the corresponding feature, providing a

quantitative way to evaluate the importance of individual features

for cross-platform siRNA design.

Rank integration. Rank integration was used to integrate

the three feature lists derived based on three regularization forms

[25]. An objective function is defined to cast the rank integration

through solving an optimization problem:

W(d)~
Xm

i~1

wid(d,Li), ð6Þ

where d is an ordered list of length k~DLi D, wi is the importance

weight associated with list Li, d is a distance function that will be

discussed below, and Li is the ith ordered list [26–28]. The

intuition herein is to find a ‘‘super’’-list that would be as ‘‘close’’ as

possible to each individually ordered list simultaneously. In other

words, d� is calculated to minimize the total distance between d�

and Li’s, d�~arg min
Pm
i~1

wid(d,Li). The Kendall distance was

selected here [25] to measure the distance between the ordered

lists; and the Cross-Entropy Monte Carlo (CE) algorithm was

applied to solve for the optimal objective value [25,26].

T-test for feature significance evaluation. One-tailed, two

samples, unequal variance t-tests were used to compare the mean

activity for siRNAs which contain a given feature, with the mean

activity of the remaining siRNA that are without such a feature, to

generate the corresponding p-values for their significances. The

threshold was set to be 0.05 as usual.

Results

Results of Ranking Integration
Our study is focused on an improved feature selection strategy

for in-silico siRNA design based on cross-platform data integra-

tion. There are two main issues left to be addressed based on such

an integrated study: (1) how to present an efficient data integration

and feature selection model for siRNA design taking advantages of

the largely distributed experimental siRNA data; and (2) how to

rank these features to uncover their different contributions for

screening highly efficient and specific siRNA as well as to rectify

several confounding and conflicting viewpoints on specific features

related to the current siRNA design. The computational

procedure for addressing these problems is listed in Figure 1.

Specifically, we ran our feature selection algorithm using three

regression models. For each model, we used 10-fold cross-

validation (CV) to conduct feature selection and test the prediction

performance of the model. We selected the overlapping features

across 10-fold CV to form a feature list in which features were

ranked by their weight, and the predictive accuracy was evaluated

by the average RMSEs shown in Table 2. It can be seen that the

performance of the three models gave rise to nearly the same

results, and the L1,2-norm model is slightly superior to the other

two. After the above procedure, we obtained three feature ranking

lists from the regularization forms and the overlap 31 features were

used to be aggregated. Rank integration was applied to obtain the

final rank of the 31 features. Figure 2 shows a visual representation

of the aggregation results. From the top plot, we can see that the

performance stabilizes after roughly 100 iterations, implying the

ranking result is convergent and will not change significantly

anymore. In addition, the bottom plot clearly shows why the

aggregation makes sense, on which the three light-gray lines

represent the input lists, the red line represents the obtained

solution to the optimization problem of ranking aggregation and

the dark grey line represents the integrated optional average

ranking list. Among them, the dark grey line and the red line fit

quite well, indicating the CE algorithm successfully performs and

achieve a satisfying result. It can also be seen that features ranked

high in the final list usually belong to the lists as indicated by

multiple intersecting lines.

To identify whether the selected features are significantly

preferred or avoided for efficient siRNAs, the correlation between

the feature and the siRNA efficacy (product level variable) and p-

values were calculated on dataset 1–4 and 10, respectively, as they

have sufficient data to assure the sample sizes. Table 3 presents the

correlation between the value of each feature and its siRNA

efficacy, as well as the p-value for the significance of the feature.

We also divided the features based on their feature categories (See

Table S14 to Table S16) and rank them according to the

correlation coefficients (R) respectively.

Identified features
The following provides a discussion about the top features

identified through the above analyses and a detailed comparison

between our results with those from Klingelhoefer’s et al. [17],

which were considered representatives of the up-to-date large-

scaled siRNA feature selection, aimed to provide some informa-

tion regarding why they are relevant to siRNA design. It should be

noted that the features discussed here are referred in Table 3 as

rank IDs.

Compositional features. Nucleotide preferences or avoid-

ance are identified at positions 1, 7, 10, 13–14 and 18–19.

Position 1: It was confirmed in our study that nucleotide U and

A are preferable at position 1 (Rank ID: 2, 15) [9,13,14,24,29].

Similar with Klingelhoefer’s results [17], our ranking list also

indicates that U is more preferred than A at this position.

Nucleotide G and C are depleted in the terminal position at the 59

end of the antisense strand (Rank ID: 5, 7).

Position 7: nucleotide C at position 7 (Rank ID: 11) is associated

with a negative effect on the siRNA efficacy, which is consistent

with a few previous studies [9,13,24]. However, this feature was

not found by Klingelhoefer et al [17].

Position 10: having an A at this position was positively

correlated with the siRNA efficacy (Rank ID: 10). This has been

In-Silico siRNA Design Based on Feature Selection
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suggested by numerous previous studies, including Klingelhoefer’s

et al. study [17], and is confirmed by our analysis; and our ranking

also indicates that A has a more positive effect than U at this

position (Rank ID: 27), which can be interpreted by the striking

difference of correlation and p-value.

Positions 13 and 14: our analysis indicates that nucleotide G

should be avoided at both positions (Rank ID: 23, 9). This is

consistent with the observations made by Matveeva et al., Katoh et

al. and Vert et al. [14,24,30], respectively. Klingelhoefer et al. [17]

also reported the negative correlation between G14 and siRNA

potency.

Position 18: In Klingelhoefer’s et al results, nucleotide G at this

position can reduce the siRNA efficacy [17]. However, our

analysis shows that nucleotide A is found to be negatively

correlated with the siRNA efficacy (Rank ID: 25), while nucleotide

C at this position may increase the siRNA efficacy (Rank ID: 20).

To identify the preference or avoidance at position 18, we

carefully searched the previous literature and found our results

Table 2. Accuracy of three regression models for siRNA efficacy prediction.

RMSE

Norm form D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

L1,2-norm 0.1521 0.2359 0.1493 0.2432 0.1062 0.2159 0.0155 0.1938 0.1921 0.2809

L1,?-norm 0.1502 0.2495 0.1584 0.2643 0.0864 0.2318 0.0000 0.2188 0.2893 0.2885

Trace norm 0.1575 0.2503 0.1624 0.2716 0.0813 0.2319 0.0018 0.2028 0.2690 0.2893

doi:10.1371/journal.pone.0037879.t002

Figure 2. A representation of the integrated ranking results.
doi:10.1371/journal.pone.0037879.g002

In-Silico siRNA Design Based on Feature Selection

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e37879



Table 3. Feature ranking and correlation coefficients for siRNA design derived from cross-platform data integration.

Rank ID Feat No Feature explanation R p-value Support Opposite

1 414 ‘GGain PSb[1,2]’

0.3716 0.0000 Lu and Mathews, 2008 [38]; Klingelhoefer et
al., 2009[17];

Matveeva et al., 2007 [14];

Shabalina et al., 2006 [13];

2 40 ‘U @ PS1’ 0.2791 0.0003 Jagla et al., 2005 [29];

Katoh and Suzuki, 2007 [24];

Reynolds et al., 2004 [9];

Shabalina et al., 2006 [13];

Vert et al., 2006 [30];

3 20 ‘A @ PS19’ 20.1443 0.1572 Huesken et al.,2005 [11];

Matveeva et al., 2007 [14];

Shabalina et al., 2006 [13];

4 431 ‘GG in PS[18,19]’ 20.1684 0.1044 Klingelhoefer et al., 2009 [17];

Lu and Mathews, 2008 [38];

Matveeva et al., 2007 [14];

Shabalina et al., 2006 [13];

5 21 ‘G @ PS1’ 20.2137 0.0023 Matveeva et al., 2007 [14];

Shabalina et al., 2006 [13];

6 494 ‘GC content,0.55’ 0.2441 0.0038 Matveeva et al., 2007 [14];

Chalk et al., 2004 [35];

7 59 ‘C @ PS1’ 20.1836 0.0075 Matveeva et al., 2007 [14];

Shabalina et al., 2006 [13];

8 77 ‘C @ PS19’ 0.1120 0.2283 Huesken et al.,2005 [11];

Jagla et al., 2005 [29];

Katoh and Suzuki, 2007 [24];

Matveeva et al., 2007 [14];

Shabalina et al., 2006 [13];

9 34 ‘G @ PS14’ 20.1366 0.0876 Matveeva et al., 2007 [14];

Chalk et al., 2004 [35];

10 11 ‘A @ PS10’ 0.1374 0.0288 Huesken et al.,2005 [11];

Jagla et al., 2005 [29];

Katoh and Suzuki, 2007 [24];

Matveeva et al., 2007 [14];

Reynolds et al., 2004 [9];

Vert et al., 2006 [30];

11 65 ‘C @ PS7’ 20.1264 0.0743 Katoh and Suzuki, 2007 [24];

Reynolds et al., 2004 [9];

Shabalina et al., 2006 [13];

12 491 ‘GC content,0.7’ 0.2408 0.0024 Elbashir et al., [39];

13 492 ‘GC content,0.65’ 0.2436 0.0043

14 493 ‘GC content,0.6’ 0.2444 0.0170 Wang et al., 2004 [40];

15 2 ‘A @ PS1’ 0.1269 0.1147 Jagla et al., 2005 [29];

Katoh and Suzuki, 2007 [24];

Matveeva et al., 2007 [14];

Reynolds et al., 2004 [9];

Shabalina et al., 2006 [13];

16 39 ‘G @ PS19’ 0.0675 0.1340 Jagla et al., 2005 [29];

Katoh and Suzuki, 2007 [24];

Matveeva et al., 2007 [14];

17 125 ‘GCC in PS[1..19]’ 20.1272 0.2189 Klingelhoefer et al., 2009 [17];

In-Silico siRNA Design Based on Feature Selection
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have been proposed by Matveeva et al. and Shabalina et al., for

A18 and C18 respectively.

Position 19: nucleotides C and G are preferable at this position

(Rank ID: 8, 16). Meanwhile, A’s undesirability (Rank ID: 3) is

consistent with Klingelhoefer’s et al suggestion [17].

The connection between the GC content and the siRNA

efficacy is focused by a few research groups [9,14,31–34]. It has

been argued that a high GC content may be a negative

determinant of the functionality of a siRNA, inhibiting the

dissociation of the duplex, which is necessary for RISC loading.

Several published studies indicated that a very low GC content is

also associated with the decreased functionality, presumably due to

the lowered target affinity and specificity of the siRNA [33,35].

However, how to quantitatively describe such association between

the GC content and the siRNA functionality remains unclear. To

address this issue, we investigated five GC content thresholds

potentially important to siRNA efficacy, i.e., GC content,0.55,

GC content,0.7, GC content,0.65, GC content,0.6 and GC

content.0.45 (Rank ID: 6, 12, 13, 14, 24). As ‘GC content,0.55’

ranks much higher than the other three upper limits, we infer the

proper upper-bound of GC content to be around 0.55. It is

somewhat surprising that the lower bound has a negative

correlation, which may be due to the inefficient siRNAs with

high GC content (higher than 0.55). To confirm the speculation

and identify the lower limit of GC content, we discard the siRNA

data which have a GC content higher than 0.55 and selected those

siRNAs with GC contents in the range of 45–55%, 40–55%, …,

5–55% with setting the GC content at an interval of 0.5 (the

lower/higher thresholds are between 5–45%/55–95%, details

showed in Supplementary Material). Statistical analysis indicated

that when the lower limit is 25%, 51.7% of the siRNAs with GC

content in the range of 25–55% are potent for a product level

threshold of 0.3, which is the largest percentage among the

candidate lower limits. Our analysis therefore infers that siRNA

sequences with GC content in the range of 25–55% have an

increased potency. This is similar with the range of GC content

proposed by Reynolds et al. and Matveeva et al. [14] but differs

from the GC content windows come from Klingelhoefer’s et al.

[17]. We also found that when the GC contents are in the range of

35–70% and 35–75% similar to the GC content 35–73% reported

by Klingelhoefer’s et al. [17], only 43.5% and 42.2% of the

siRNAs are potent respectively.
Motif features. Four motifs: ‘CUU’ (Rank ID: 18), ‘CU’

(Rank ID: 19), ‘UCU’ (Rank ID: 26), ‘GUU’ (Rank ID: 31), are

found to increase the siRNA efficacy. It is surprising that a new

motif ‘UCU’ was identified, which has escaped the previous

studies until its detection by Klingelhoefer et al. [17]. Further-

more, our analysis indicates that ‘UCU’ has a positive correlation

with the siRNA efficacy, which is in accordance with the result of

Klingelhoefer et al. [17]. Among the 4,482 siRNA sequences in

our datasets, ‘UCU’ was found to occur in 1,345 sequences and

53% of these siRNAs were potent with product levels ,0.3. We

also made the detailed breakdown of the motif’s occurrences by

position in the siRNA sequence, which can be found in Tables

S2to Table S13.

When looking for position-specific effects of ‘UCU’, they

revealed that siRNAs with high potency always contain the

‘UCU’ motif at either end of the anti-sense sequence, which is

accordant with Klingelhoefer’s finding [17]. However, we

observed a remarkable frequency drop for siRNAs with the motif

at positions 6–8 and position 10–12 (Table S2) while Klingelhoe-

fer’s et al. [17] observed the drop at position 10–12 and position

11–13. We think our observation is more convincing since when

analyzing the motif’s occurrences at each position, we not only

took into account the percentage of a certain motif at a specific

position of potent siRNAs against of all siRNAs, but also

considered the different percentage of a certain motif in different

positions of potent siRNAs. From our point of view, the motif

frequency drop at position 6–8 suggests the avoidance of ‘C’ at

position 7 and the drop at position 10–12 may demonstrate that

potent siRNAs prefer an ‘A’ at position 10, the cleavage site.

Table 3. Cont.

Rank ID Feat No Feature explanation R p-value Support Opposite

18 152 ‘CUU in PS[1..19]’ 0.1420 0.0673 Vert et al., 2006
[30];

19 92 ‘CU in PS[1..19]’ 0.1260 0.2946

20 76 ‘C @ PS18’ 0.0705 0.2627 Shabalina et al., 2006 [13];

21 157 ‘CCC in PS[1..19]’ 20.0856 0.2423 Vert et al., 2006 [30];

22 117 ‘GGC in PS[1..19]’ 20.1259 0.1330

23 33 ‘G @ PS13’ 20.1174 0.1282 Matveeva et al., 2007 [14];

24 485 ‘GC content.0.45’ 20.1719 0.0388

25 19 ‘A @ PS18’ 20.0867 0.2145 Matveeva et al., 2007 [14];

26 140 ‘UCU in PS[1..19]’ 0.1395 0.0562 Klingelhoefer et al., 2009 [17];

27 49 ‘U @ PS10’ 0.0064 0.4615 Jagla et al., 2005 [29];

Katoh and Suzuki, 2007 [24];

28 155 ‘CCG in PS[1..19]’ 20.1352 0.1027 Vert et al., 2006 [30];

29 115 ‘GGG in PS[1..19]’ 20.1561 0.0092

30 471 ‘G stretch of length . = 3’ 20.1561 0.0092

31 120 GUU in PS[1..19]’ 0.0362 0.3726 Vert et al., 2006
[30];

aGG denotes the thermodynamic stability of dinucleotides in siRNA antisense strand.
bPS denotes the position of nucleotides in the siRNA sequence.
doi:10.1371/journal.pone.0037879.t003
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Therefore it can be noted that in our study, the positive

correlation found between ‘UCU’ and silencing efficacy is likely to

reflect a compositional characteristic of the sequences containing

the specific motif. This is partly inconsistent with the conclusion of

Klingelhoefer et al. [17].

Motif ‘CCG’, which was selected by our model, seems to relate

with the motif ‘UCCG’ reported to increase siRNA efficacy by

Klingelhoefer et al. [17] since both motifs contain ‘CCG’ but with

opposite effect on siRNA efficacy. Of 820 siRNAs containing motif

‘CCG’, only 239 appear to be potent. Nevertheless, the position-

specific analysis shows that when ‘CCG’ occurs at position 4–6,

14–16 and 16–18, it leads an increase of siRNA efficacy (Table

S5). We also conduct a position-specific analysis on motif ‘UCCG’

to find some relations between ‘UCCG’ and ‘CCG’. Interestingly,

we found that potent siRNAs share an enrichment of motif

‘UCCG’ at position 3–6, 7–10 and 15–18 (Table S7), which can

explain the occurrence of ‘CCG’ at position 4–6 and 16–18 and

indicates a ‘U’ in position 7.

Five motifs: ‘GCC’ (Rank ID: 17), ‘CCC’ (Rank ID: 21), ‘GGC’

(Rank ID: 22), ‘CCG’ (Rank ID: 28) and ‘GGG’ (Rank ID: 29) are

found to be negatively correlated with the siRNA potency, among

which ‘GCC’ has also been pointed out by Klingelhoefer et al.

[17] while ‘CUU’ and ‘GUU’ were contrary to the results of Vert

et al. [30]. It can be seen from Table 3 that motif ‘CUU’ has a

remarkable positive correlation coefficient with p-value ,0.1,

tends to be positively affect siRNA efficacy. In the later position-

specific analysis, we found a sharply frequency drop of motif

‘CUU’ at position 7–10 in potent siRNAs, indicating the

avoidance of ‘C’ at position 7 once more (Table S8). We inferred

that the contradiction between our result and that of Vert’s et al.

[30] may be caused by the difference of dataset. In Vert’s study

[30], they only used Novartis’s data to select the features and

inevitably missed some important information from other datasets.

Unlike motif ‘CUU’, although motif ‘GUU’ is represented in

our feature list, this feature was not found to be significantly

correlated with siRNA efficiency. The three 4-mer motifs selected

by Klingelhoefer et al. [17] were not selected by our algorithm as

well, which may due to comparative lack of data.In addition, motif

‘GGG’, along with the feature ‘G stretch of length . = 3’, suggest

that continuous nucleotide ‘G’ should be removed in siRNA

design, especially at position 1–3 and 17–19 after analyzing their

position-specific effects (Table S13).

Thermodynamic features. Half of the top-4 features are

thermodynamic features, indicating the critical role of the

thermodynamic properties of a siRNA in duplex unwinding and

strand retention by the complex [9,36]. It is generally believed that

siRNAs with high efficacy tend to have more instable 59-ends in

their antisense strands [9,13–15]. Previous studies have found a

strong correlation between the siRNA efficacy and the thermo-

dynamic stability of dinucleotides (GG), especially for the first

(GG1–2, Rank ID: 1) and the last (GG18–19, Rank ID: 4)

dinucleotides on the siRNA antisense strand, which is consistent

with our observation. Besides, GG1–4 and GG13–14 which were

suggested by Klingelhoefer et al. [17] have not been selected by

our models. Although GG13–14 was not in our result, two

compositional features, nucleotide G in position13 and 14 also

implied the positive effect of GG13–14 in potent siRNAs.

Validation of selected features
We believed that in-vivo experimental studies on specific

mutations in siRNAs will help to validate some of the identified

features. Nevertheless, as a computational study, we can validate

the selected features in-silico. In order to compare the features

with other proposed ones, a linear ridge regression model was

trained using 31 identified features on each of the 10 datasets for

siRNA efficacy prediction to check the performance. We used

1,000 rounds of 2-fold cross-validation to train each model and test

it. The average Root Mean Square Error (RMSE) was calculated

for each experiment. Then linear regression models were

constructed using 19 features reported by Klingelhoefer et al.

[17] through 1,000 rounds of cross-validation, which will be served

as the comparison. From Table 4, we can see that the prediction

model with our feature set outperformed those from Klingelhoefer

et al. [17] in 7 out of 10 datasets. For the smallest dataset (Dataset

7), model trained with Klingelhoefer’s feature set [17] obviously

gave rise to a better performance than that with our feature set.

The poor performance of this experiment may result from the

limited training samples, and such samples may lack of the most of

the 31 selected features. When excluding the results of Dataset 7,

the p-value for one-tailed pair t-test is 0.1, indicating that our

prediction results are statistically significantly superior to those of

Klingelhoefer’s et al [17].

Discussion

In this study, a joint feature selection across multiple siRNA-

efficacy datasets was conducted. Three norm regularization

methods were employed to exploit the feature space for siRNA

design, which prevented the deviation resulted from using only one

method, thus making the selected features more reliable and

useful. The rank integration method was applied to obtain a more

effective list of 31 features, which all have more significant

correlations and p-values than the lower ranked ones.

We succeeded in confirming the majority of the previously

reported features in silico, rectifying several conflicting rules as well

as identifying several novel features.

Generally, siRNAs with high potency prefer to contain A or U

towards the 59 ends and G or C towards the 39 ends of their guide

strands. It should be noted that the p-values of some identified

features, like G and C at the 39 ends, are larger than 0.1. This can be

explained by the fact that almost all the siRNAs are designed to have

G or C at the 39 ends on their antisense strand, no matter whether

the siRNA is efficient or not. In the middle of the guide strands, the

requirement of an A is related to the previously characterized A-

Table 4. Comparison between the model with 31 identified features (31_Feat) and the model with Klingelhoefer’s et al. 19
features (19_Feat) for siRNA efficacy prediction.

RMSE

D1 D2 D3 D4 D5 D6 D8 D9 D10

31_Feat 0.1557 0.2486 0.1615 0.2650 0.1592 0.2418 0.4474 0.2601 0.2205

19_Feat 0.1641 0.2516 0.1595 0.2662 0.1601 0.2517 0.4161 0.2546 0.2753

doi:10.1371/journal.pone.0037879.t004
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cleavage site [37]. Nucleotide G depleted at positions 13 and 14

corresponds to the duplex stability in these two positions, suggesting

a positive correlation between the free energy of the base pair in

these positions and the siRNA efficiency of silencing.

Motif ‘UCU’ identified by our methods is essential for efficient

RNA interference, which has been discovered as a novel feature by

Klingelhoefer et al. [17]. Failing to identify the role of ‘UCU’ by

previous studies may be caused by the insufficient siRNA efficacy

data. Our analysis suggests that ‘UCU’ is a reliable feature positively

correlated with the siRNA potency because it reflects and

demonstrates the compositional characteristic in potent siRNAs.

By observing the general characteristics of the motifs that

correlate with the increased or decreased potencies, we drew an

opposite conclusion to that by Vert et al. [30], which is that potent

siRNAs still can carry motifs containing C or G at 59 in the

antisense strand as long as they do not appear at specific positions,

such as ‘G/C’ at 59end and ‘C’ at position 7.

The finding that the dinucleotide thermodynamic stability at the

59-end of the siRNA sequence, dG1–2, is more decisive for siRNA

potency than the tetranucleotide stability, dG1–2 is also very

interesting in terms of understanding the mechanism of siRNA

incorporation into the RISC complex. The thermodynamic

stability in the first two base pairs (GG1–2, GG18–19) is a good

indicator of siRNA efficacy and thermodynamic consideration of

four terminal nucleotides provides poorer correlation with siRNA

efficacy which doesn’t appear in our feature list. We infer that the

thermodynamic stability of two base pairs at other positions may

vary greatly even in potent siRNAs.

For the future research, we will include other features such as

the properties of the target mRNAs as well as the matching

properties between mRNAs and miRNAs. Considering the

diversity and heterogeneity of data generated by different research

groups, we strive to find novel methods to deal with the issue

associated with the multiple platform data sources. A novel

method named ‘heterogeneous transfer learning’ for utilizing

siRNA datasets whose marginal distributions and output criteria

are different is under preparation, which is expected to provide

another new way to improve the reliability of the siRNA efficacy

prediction from cross-platform data.
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