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Abstract

Hypothalamic neurosecretory systems are fundamental regulatory circuits influenced by thyroid hormone. Monocarbox-
ylate-transporter-8 (MCT8)-mediated uptake of thyroid hormone followed by type 3 deiodinase (D3)-catalyzed inactivation
represent limiting regulatory factors of neuronal T3 availability. In the present study we addressed the localization and
subcellular distribution of D3 and MCT8 in neurosecretory neurons and addressed D3 function in their axons. Intense D3-
immunoreactivity was observed in axon varicosities in the external zone of the rat median eminence and the neurohaemal
zone of the human infundibulum containing axon terminals of hypophysiotropic parvocellular neurons. Immuno-
electronmicroscopy localized D3 to dense-core vesicles in hypophysiotropic axon varicosities. N-STORM-superresolution-
microscopy detected the active center containing C-terminus of D3 at the outer surface of these organelles. Double-labeling
immunofluorescent confocal microscopy revealed that D3 is present in the majority of GnRH, CRH and GHRH axons but only
in a minority of TRH axons, while absent from somatostatin-containing neurons. Bimolecular-Fluorescence-Complemen-
tation identified D3 homodimers, a prerequisite for D3 activity, in processes of GT1-7 cells. Furthermore, T3-inducible D3
catalytic activity was detected in the rat median eminence. Triple-labeling immunofluorescence and immuno-
electronmicroscopy revealed the presence of MCT8 on the surface of the vast majority of all types of hypophysiotropic
terminals. The presence of MCT8 was also demonstrated on the axon terminals in the neurohaemal zone of the human
infundibulum. The unexpected role of hypophysiotropic axons in fine-tuned regulation of T3 availability in these cells via
MCT8-mediated transport and D3-catalyzed inactivation may represent a novel regulatory core mechanism for metabolism,
growth, stress and reproduction in rodents and humans.
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Introduction

Thyroid hormone is essential to normal brain development and

function [1,2]. Thyroxine (T4) is transported through the blood-

brain barrier and converted to triiodothyronine (T3) to bind and

activate thyroid hormone receptors (TR). This pathway is

catalyzed by type 2 deiodinase (D2) in glial cells [3,4,5] from

which T3 exits for uptake into TR-containing neurons to establish

a transcriptional footprint [6]. However, regulation of thyroid

hormone economy in the CNS also utilizes a second deiodinase,

type 3 deiodinase (D3), that inactivates thyroid hormone in

neurons [7,8,9,10]. Hence, the interplay between D2 and D3 is a

crucial mechanism to achieve temporally and spatially controlled

regulation of thyroid hormone action, as has been described

during hypoxia-induced brain hypothyroidism [6].

The hypothalamic hypophysiotropic neurosecretory system

regulates metabolism, stress, growth and reproduction [11,12] in

a thyroid hormone-dependent manner. The negative feedback

regulation of the hypophysiotropic thyrotropin-releasing hormone

(TRH)-synthesizing neurons is well known to play a critical role to
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maintain peripheral thyroid hormone levels [12]. Local hypotha-

lamic T3 regulation is also indispensible for reproductive function

[13,14]. Furthermore, thyroid hormone is necessary for ACTH

and GH secretion from the anterior pituitary [15,16,17].

While hypophysiotropic neurons are located in different

hypothalamic areas including the hypothalamic paraventricular

nucleus (PVN), arcuate nucleus and medial preoptic area [18],

hypothalamic D2 activity is predominantly confined to the

mediobasal hypothalamus where tanycytes, a specialized glial

cell-type lining the wall of the third ventricle have been shown to

be the predominant D2 expressing cell-type [3,4,19]. Regulation

of T3 generation of these cells impacts the function of

hypophysiotropic neurons [6,14,20]. Since the cell bodies of most

hypophysiotropic neurons are located some distance from

tanycytes, it is currently unclear how tanycyte-derived T3 affects

hypophysiotropic neurons. The hypothalamic median eminence

represents a locus where D2-expressing tanycytes and hypophys-

iotropic axons could interact. Therefore in the present study, we

determined whether tanycyte-generated T3 could be taken up and

metabolized by axon terminals of hypophysiotropic neurons in the

median eminence. Accordingly, we studied cellular and subcellular

localization of D3 in the axon terminals of hypophysiotropic

neurons and investigated whether monocarboxylate-transporter-8

(MCT8), the predominant neuronal T3 transporter [21,22], is

localized on these terminals.

We demonstrate that in the median eminence, D3 is present in

subsets of GnRH-, GHRH- CRH and TRH containing axon

terminals in a system specific level, and is subjected to trafficking in

axonal dense core vesicles. MCT8 is expressed in the majority of

these axons. We conclude that the axonal uptake and local

degradation of T3 in the axonal compartment of hypophysiotropic

neurons may be a novel pathway to regulate T3 concentrations in

the hypothalamic median eminence.

Results

Distribution of D3 Protein in the Median Eminence of the
Rat

The D3-immunoreactivity appeared as small puncta distributed

unevenly in the hypothalamus. The highest density was observed

in the external zone of the median eminence (Fig. 1A–B), where

the axons of the hypophysiotropic neurons accumulated around

the portal capillary system. D3 immunoreactivity was also

observed in most hypothalamic regions including those known to

project to the median eminence (i.e. the medial preoptic area,

paraventricular and arcuate nuclei), although less intense than the

median eminence. The punctate appearance in these regions

suggested localization in axons similar to that observed in axons in

the median eminence as no D3 immunoreactivity was identified in

neuronal perikarya.

At the ultrastructural level, D3-immunoreactivity was localized

exclusively to hypophysiotropic axon terminals in the external

zone of the median eminence (Fig. 2). The majority of the silver

grains denoting the D3-immunoreactivity were associated with

dense core vesicles ranging between 80–120 nm (Fig. 2). Large

dense core vesicles (200–350 nm), characteristic of magnocellular

axons, were not labeled in the internal zone of the median

eminence (Fig. 2A). A few scattered silver grains were also found in

small clear vesicles and the plasma membrane (Fig. 2C). N-

STORM superresolution microscopy was used to asses D3

topology in the dense core vesicles in the outer zone of the

hypothalamic median eminence. The C-terminal portion of D3

formed immunoractive clusters of 83.9 nM, that was significanty

larger than clusters containing intravesicular GnRH clusters of

65.6 nM and slightly bigger than clusters containing Rab3

(81.4 nM) (ANOVA followed by Newman-Keuls post-test,

N = 500) a protein covering the outer surface of the dense core

vesicles [23] (Fig. 3).

Catalytic Activity and T3-mediated Regulation of the
Axonal D3 Enzyme

To determine whether D3 could be catalytically active in axon

terminals, we first determined whether homodimer formation, a

feature required for D3 catalytic activity [24], occurs in the axon-like

processes of the GT1-7 neurosecretory cell line that has both GnRH

[25] and endogenous D3 expression (Fig. 4A). Bimolecular

Fluorescence Complementation (BiFC) was used to detect dimer-

ization between transiently expressed D3 monomers tagged with

either the N or C-terminal fragment of YFP (Fig. 4B). First, the

distribution of a transiently expressed D3 tagged with full-length

YFP was studied. The D3-YFP fusion protein was observed in the

axon-like processes of GT1-7 cells showing that a D3 monomer can

be present in this compartment under the conditions used (Fig. 4C).

To perform BiFC, the YFP-(1-158aa)-D3 and YFP-(159–238aa)-D3

were co-transfected and produced YFP activity in cell processes in a

similar pattern as the monomers in Fig. 4C, confirming the presence

of D3 homodimers in this compartment (Fig. 4D). No YFP signal was

detected in negative controls using separate transfections of either

the (YFP-(1-158aa)-D3 or YFP-(159–238aa)-D3 constructs, or in the

absence of D3 after cotransfection of YFP-(1-158aa) and YFP-(159–

238aa) (not shown). Importantly, D3 activity was detected in rat

median eminence samples by deiodinase assay and this activity was

up-regulated by ,4-fold in hyperthyroid rats (17.362.8 vs.

84.5621.4; mean6SEM, N = 3, p,0.05 by t-test) (Fig. 4E).

Phenotype of D3- Immunoreactive Hypophysiotropic
Terminals in the Rat Median Eminence

To determine the phenotype of the D3-containing axon

terminals in the median eminence, co-localization of D3-immu-

noreactivity with hypophysiotropic releasing- or inhibiting hor-

mones was performed with double-labeling immunofluorescence

and confocal microscopy (Fig. 5). D3-immunoreactivity was

observed in 71.863.8% of GnRH axon terminals (Fig. 5A–C).

The D3-immunoreactive loci appeared as small islands within

axon varicosities. In addition, D3 immunoreactivity was also

detected in 63.267.5% of CRH- and 64.262.7% GHRH-

immunoreactive axons, mostly in distal varicosities and terminal

portions (Fig. 5D–F, and G, H). However, D3 was present only in

26.665.0% of TRH-immunoreactive varicosities. The lower D3

occurrence in TRH axons was significantly different from that

observed in GnRH, CRH and GHRH axons (n = 3; *P,0.01

TRH vs. GnRH, GHRH, CRH by ANOVA followed by

Newman-Keuls post-test) (Fig. 6). D3 was absent from somato-

statin (SST)-immunoreactive axon varicosities (Fig. 5I, 6) and

magnocellular neurons (not shown).

MCT8-immunoreactivity is Present in the
Hypophysiotropic Terminals of the Rat Median Eminence

To determine whether the D3-containing hypophysiotropic

terminals are capable of accumulating T3, the distribution of

MCT8-immunoreactivity was studied in the median eminence.

Intense and diffuse MCT8-immunoreactivity was observed in cell

bodies and processes exhibiting the characteristic distribution and

morphology of tanycytes (Fig. 7A,B). In addition, punctate MCT8-

immunoreactivity was detected among the tanycyte processes in the

external zone of the median eminence (Fig. 7C). Ultrastructural

analysis of the MCT8-immunoreactive elements in the external

Axonal Regulation of T3 in the Median Eminence
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zone of the median eminence demonstrated strong MCT8-

immunoreactivity distributed uniformly in the tanycyte processes

(Fig. 8A). In addition, MCT8-immunoreactivity was also observed

in axon terminals, where the silver grains focally accumulated in a

segment of the axon varicosities in close proximity to the plasma

membrane (Fig. 8B,C). A series of double-labeling immunofluores-

cent staining for MCT8 and hypophysiotropic peptides demon-

strated the presence of MCT8-immunoreactive puncta on the

surface of the vast majority of GnRH-, TRH-, CRH-, GHRH- and

somatostatin-containing axon varicosities in the external zone of the

median eminence (Figs. 9A–G).

Colocalization of MCT8 and D3 in a Subpopulation of
Hypophysiotropic Axons in the Median Eminence

In triple-labeled preparations, MCT8-immunoreactive puncta

were observed on the surface of the vast majority of D3-

immunoreactive axon varicosities containing either GnRH,

CRH (Fig. 9H,I) and TRH, or GHRH (not shown). In contrast,

somatostatin containing axons had only MCT8 without the

presence of D3 (not shown).

Distribution of D3 and MCT8 in the Infundibular Stalk of
the Human Hypothalamus

Comparative studies in human mediobasal hypothalami showed

a pattern of immunostaining for D3 and MCT8 similar to rat

tissues. D3-immunoreactivity was present in the neurovascular

zone of the human infundibular stalk where D3-immunoreactive

puncta, reminiscent of axon varicosities, were detectable

(Fig. 10A,B). MCT8 immunoreactivity was localized to various

axons within the human infundibular stalk (Fig. 11A–C). The

MCT8-immunoreactivity appeared in fibers exhibiting small

varicosities (Fig. 11B) or relatively large swellings (Fig. 11C).

MCT8 was also detected in tanycyte processes (not shown).

Discussion

Although serum thyroid hormone concentrations are remark-

ably constant under physiological conditions, many biological

processes require rapid and spatially controlled thyroid hormone

action. Thyroid hormone transporters and deiodinase enzymes

facilitate this purpose by enabling the trafficking of thyroid

hormones and either increasing local thyroid hormone concen-

trations through the conversion of T4 to T3 by type 2 deiodinase,

or degrading T3 by type 3 deiodinase [26,27]. Collectively, the

deiodinase enzymes are responsible for fine-tuned control of

thyroid hormone levels and especially important in the brain to

maintain thyroid hormone levels required for normal neuronal

development and function [8]. In support of this concept is the

observation that absence of D3 during neonatal development

results in CNS abnormalities that are sustained into adulthood

[28].

Thyroid hormone also plays a critical role in the regulation of

hypothalamic function. Beyond its well-described role in regula-

tion of hypophysiotropic TRH neurons, thyroid hormone has a

complex impact on the regulation of other hypothalamic-pituitary

axes [29,30] including, the reproductive axis, adrenal axis and GH

secretion [11,13,14,15,16,17]. To further our understanding of

how these neuronal systems are regulated by thyroid hormone, we

identified the location and subcellular distribution of D3 and the

major neuronal T3 transporter, MCT8, in hypophysiotropic

neurons. These neurons have a common locus of termination in

the external zone of the median eminence in close juxtapositon to

the portal capillaries into which they secrete to modulate hormone

production in the anterior pituitary. Their cell bodies of origin,

however, are more widely distributed in the hypothalamus

including the arcuate nucleus, paraventricular nucleus and

preoptic region [31,32].

D3-immunoreactivity was highly enriched in the external zone

of the median eminence, and the authenticity of the signal was

established by Western blot, showing a band identical that

previously reported for D3 in the human [33]. In contrast to

D2, which is located in tanycytes in the median eminence, D3 was

seen in axon varicosities, primarily in dense core vesicles of

neurosecretory granules of hypophysiotropic axons, while only

limited immunostaining was also present in the plasma membrane

of axon terminals. N-STORM superresolution microscopy

revealed that the size of the D3-immunoreactive clusters had

similar size as the RAB3-immunoreactive clusters and had

significantly larger diameter than the GnRH-immunoreactive

Figure 1. D3 immunoreactivity in the rat mediobasal hypothalamus. (A) Abundant D3 immunoreactive structures are seen in the external
zone of the rat median eminence marked by silver grains. The inset on the left demonstrates the complete disappearance of D3- immunoractivity
from the MBH when sections were incubated with D3 antisera previously preabsorbed with the corresponding peptide antigen. The boxed region is
enlarged in (B). Black arrowheads indicate immunoreactive loci, which frequently were adjacent to blood vessels. Scale bars: 50 mm in A, 20 mm in B.
doi:10.1371/journal.pone.0037860.g001

Axonal Regulation of T3 in the Median Eminence
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clusters. Since RAB3 is known to be located on the outer surface of

the dense core vesicles and GnRH is packaged inside the dense

core vesicles, this data indicate that similarly to RAB3, the C-

terminal of D3, containing the peptide that was used for the

generation of the antiserum, is also located on the outer surface of

the dense core vesicles. As the C-terminal globular domain of D3

containing the active center of the enzyme is located in the cytosol,

this localization allows an easy access to substrate. The

transmembrane proteins with single transmembrane domain are

classified according to their membrane orientation. Type 1

transmembrane proteins are single pass molecules with their C-

terminus exposed to the cytosol [34]. Since D3 has one

transmembrane domain on its N-terminal end [35], our findings

provide in vivo evidence that D3 is a type 1 transmembrane protein

and suggest that in hypophysiotropic neurons D3 exerts its biologic

effects primarily in the membrane of dense core vesicles.

Figure 2. Ultrastructure of D3 immunoreactive elements in the rat mediobasal hypothalamus. (A) D3 immunoreactivity, identified by
silver grain deposits, appear primarily in axon varicosities containing dense core vesicles of 80–120 nm diameter in the upper external zone of the
median eminence, characteristic of axons of parvocellular (PC) neurons. No or a few silver grains could be observed in association with organelles of
magnocellular neurons (MC) or tanycytes (Tc), respectively. (B) D3-positive axons exhibiting various degrees of labeling are mixed with non-labeled
fibers (asterisks) in the external zone of the median eminence. (C) Although silver grains occasionally appear in association with the plasma
membrane (black arrowheads) and with small clear vesicles (white arrowheads) of the axon varicosities, the majority are not labeled (asterisks). (D) In
contrast, the dense core vesicles accumulate most the reaction product (black arrowheads), as visible at high power magnification in the vicinity of
the capillaries of the external zone of the median eminence. Unlabeled small clear vesicles are indicated with asterisk. Tc, tanycyte; Scale bars: 1 mm in
A–B, 250 nm in C, 100 nm in inset on C, 500 nm in D.
doi:10.1371/journal.pone.0037860.g002
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Functional importance of D3 in axon terminals was proved by the

demonstration of D3-homodimerization, a prerequisite for D3

catalytic activity [24], in cellular processes of GT1-7 cells and by

the demonstration that elevated T3-levels evoke increased D3-

medited axonal thyroid hormone in the rat median eminence.

Not all axons in the external zone of the median eminence were

observed to contain D3 imunoreactivity. Rather, D3 was most

prominently associated with GnRH-containing varicosities

(71.863.8%). Thyroid hormone is known to have critical role in

the regulation of the reproductive axis both in adult and

developing animals [36]. Transient hypothyroidism during devel-

opment has a major impact on the number and distribution of

GnRH neurons in the hypothalamus [37]. Furthermore, thyroid

hormone is essential for the photoperiod induced transition

between the breeding phase and anestrus in seasonal breeding

animals [38]. Since GnRH neurons express thyroid hormone

receptors [39], the presence of D3 contained within GnRH

terminals indicates that thyroid hormone may have an essential

role in the regulation of reproductive function through direct

effects on GnRH neurons. Thus, under certain conditions,

controlling the amount of T3 within the GnRH neurons may be

important to maintain normal function of the reproductive axis.

This is supported by the phenotype of the D3 KO mouse in which

deficits in reproductive function are observed [28]. Thyroid

hormone also has a role in regulating the pulse frequency of

GnRH in rhesus monkeys, particularly at the end of juvenile

development when there is a thyroid hormone dependent

resurgence in pulsatile GnRH release [36].

In addition to GnRH axon terminals, D3 was also

prominently associated with CRH- and GHRH-containing axon

terminals. Hypophysiotropic CRH neurons are well known to be

regulated by thyroid hormone. Hypothyroidism decreases CRH

gene expression in the PVN, while T4 replacement induces

upregulation of CRH mRNA levels [40]. Furthermore, experi-

mental hyperthyroidism results in a hyperexcitability of the

hypothalamic-pituitary-adrenal axis [41]. Therefore, prevention

of an increase in T3 concentration by axonal D3 may be

beneficial for normal functioning of the adrenal axis. Relatively

less is known about thyroid regulation of the GHRH neurons,

although hypothyroidism results in increased GHRH synthesis

and release [42], and the severe growth retardation of the D3

KO mice [28] suggests the importance of D3 in the regulation of

the GHRH neurons. The presence of D3 in GHRH axon

terminals raises the possibility that some of these effects may be

exerted directly on the GHRH neurons.

At first glance, the relative paucity of D3 in axon terminals of

hypophysiotropic TRH neurons (26.6%) might seem surprising,

given that negative feedback effects of thyroid hormone on these

neurons are so important for regulation of the hypothalamic-

pituitary-thyroid axis [12]. The presence of D3 in neurons,

however, may serve to modulate intracellular thyroid hormone

levels, perhaps as a way to maintain constant thyroid hormone

levels despite alterations in circulating levels. This type of

regulation would not be to the advantage of hypophysiotropic

TRH neurons that must sense increases or decreases in circulating

levels of thyroid hormone to enhance or diminish anterior

pituitary TSH secretion. Nevertheless, a small subpopulation of

TRH-containing axon terminals did co-contain D3, indicating a

heterogeneity among hypophysiotropic TRH axon terminals. A

heterogeneity of the hypophysiotropic TRH neurons was also

suggested by [43] showing that different subsets of hypophysio-

tropic TRH neurons respond to cold and suckling. Further studies

are needed to understand whether the D3 expressing TRH

neurons correspond to TRH neurons activated by cold environ-

ment, in which intracellular metabolism of T3 by D3 when

circulating levels of thyroid hormone are elevated may be

advantageous to promote upregulation of TRH gene expression.

In addition to the expression of D3 in axon terminals, the

majority of axon varicosities in the median eminence express the

T3 transporter, MCT8. This transporter is considered to be the

predominant, neuronal T3 transporter, and mutations thereof in

humans are characterized by a severe neurologic phenotype;

[21,22,44]. As tanycytes express both MCT8 and OATP1C1

thyroid hormone transporters [33,45], and type 2 deiodinase [4],

these cells are capable of accumulating T4, converting T4 to T3,

and then releasing T3 into the surrounding neuropil. As axon

terminals in the external zone of the median eminence lie in

close proximity to tanycyte endfeet processes [46], the observa-

tion that practically all hypophysiotropic axon terminals in the

median eminence express MCT8 indicate that T3 could readily

accumulate in the majority of hypopysiotropic axon terminals

and then reach the nucleus of these cells by retrograde transport.

Although the machinery driving the retrograde transport of T3 is

yet unknown, fast retrograde axonal transport of biologically

active molecules is not unprecedented [47]. Since the perikarya

of the hypophysiotropic neurons are located relatively far from

the tanycytes, it is likely that the retrograde axonal transport of

T3 is the main route of T3 trafficking between tanycytes and

hypophysiotropic perikarya.

T3 influx may also be directed to axonal mitochondria, affecting

mitochondrial biogenesis and/or modulation of uncoupling

proteins with important consequences on oxygen consumption,

ATP generation and heat production [48,49]. Modulation of

neuronal energy homeostasis via mitochondrium-coupled mech-

anisms is known to affect neurotransmission, a process that is

highly energy dependent [50]. In agreement with this, robust

uncoupling protein-2 (UCP2) expression has been demonstrated in

the neuronal processes of the hypothalamic-hypophysial system,

paralleled with decreased mitochondrial respiration and elevated

hypothalamic temperature compared to the non-UCP2 expressing

thalamus [51]. This suggests that T3 mediated changes of

mitochondrial function in hypothalamic axons could serve as

potential regulator of neurotransmission.

Figure 3. Diameter of immunoreactive clusters in the outer
zone of the rat hypothalamic median eminence stained for D3,
GnRH or Rab3 detected by N-STORM superresolution micros-
copy. **P,0.001; *P,0.05 by ANOVA followed by Newman-Keuls post
test. Data are shown as Mean 6 SEM (N = 500).
doi:10.1371/journal.pone.0037860.g003
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Figure 4. D3 expression in processes of mouse immortalized GT 1-7 GnRH neurons in vitro. (A) GT 1-7 cells endogenously express D3
mRNA. –RT: minus reverse transcriptase control; + and -: positive and negative controls, respectively (B) Schematic illustration of Bimolecular
Fluorescence Complementation used to study D3 homodimerization. YFP(N) and YFP(C) stand for YFP(1-158aa) and YFP(159–238aa), respectively. (C)
GT 1-7 cells were transfected with a plasmid encoding the fusion protein D3-YFP(full-length). (D) Co-expression of YFP(1-158)-D3 and YFP-(159–238)-
D3 fusion proteins results in fluorescence complementation and demonstrates D3 homodimers in the axon-like processes of GT1-7 cells. Arrows
indicate D3 along the processes. Scale bars: 10 uM. (E). Axonal D3 activity is increased by T3-treatment in the median eminence of male Wistar rats.
Mean6SEM (n = 9) *P,0.05 by t-test.
doi:10.1371/journal.pone.0037860.g004
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In addition to the rodent median eminence, we also observed

D3 and MCT8 to be present in the neurohemal zone of the

human hypothalamus, corresponding to the rodent median

eminence. These species similarities indicate that the proposed

mechanisms of axonal T3 uptake and regulation via degradation

are conserved across evolution and importantly, also function in

humans.

Based on the MCT8 and D3 content in hypophysiotropic

terminals, we propose that hypophysiotropic axons in the median

eminence can be divided into two categories. The first are axon

terminals that can uptake T3 and regulate the intracellular T3

concentration by axonal D3. This type of axon can be protected

from sudden changes of T3 concentration by maintaining normal

levels of cytoplasmic T3. The second type are axon terminals that

accumulate T3 but unable to regulate intracellular T3. These

axons may be very sensitive to changes in local T3 concentration

that may be important for normal hypophysiotropic neuronal

function.

In summary, we propose a novel concept of MCT8-mediated

T3 uptake into two types of hypophysiotropic axons that either

contain or lack D3 in the median eminence (Fig. 12). The

strikingly different incidence of D3 in GnRH, GHRH, CRH and

TRH or somatostatin neurons suggest a different capacity for T3

regulation in these neurosecretory cells. Axonal uptake and

neuron-type specific regulation of intracellular T3 concentration

in the rodent and human median eminence could represent a

novel pathway for the modulation of hypothalamic control of

reproduction, growth, stress and metabolism.

Methods

Animals
Adult, male Wistar rats (n = 20, b.w. 220–250 g, Toxi-Coop

Ltd., Budapest) were kept under standard laboratory conditions

with food and water ad libitum. Brains were perfused with a fixative

solution described in the section of the specific experiments.

Experimental procedures were approved by the Animal Welfare

Committee of the Institute of Experimental Medicine and carried

out in accordance with legal requirements of the European

Community (Decree 86/609/EEC). Perfusion-fixed (4% PFA)

brains of the MCT8-KO [52]. (n = 1) and the wild-type littermate

mice (n = 1) were kindly provided by Dr. H. Heuer (Jena,

Germany).

Human Samples
For immunocytochemistry, human hypothalamic samples from

two male and two female individuals who died from sudden causes

of death were obtained at autopsy from the Forensic Medicine

Department of the University of Debrecen, with the permission of

the Regional Committee of Science and Research Ethics (DEOEC

RKEB/IKEB: 3183-2010) according to Hungarian Law (1997

CLIV and 18/1998/XII.27. EÜM Decree/). All personal data

were anonymized. Hypothalamic tissue blocks were dissected and

immersion-fixed for 7–14 days with 4% PFA in PBS. For Western

blot, fresh-frozen hypothalamic samples were obtained from the

Human Brain Tissue Bank, Semmelweis University.

Light Microscopic Immunohistochemistry for D3 and
MCT8

Coronal 25–30 mm-thick sections through the anteroposterior

extent of the median eminence of rats perfused with 4%

paraformaldehyde in PBS (150 ml) and through the infundibulum

of human samples were prepared on a freezing microtome (Leica

Microsystems, Vienna, Austria) and processed for immunohisto-

chemistry to study the distribution of D3- and MCT8-immuno-

reactivity. The sections were incubated in a mixture of 0.5% H2O2

and 0.5% Triton X-100 in PBS for 15 minutes to increase

antibody penetration and reduce endogenous peroxidase activity.

To reduce nonspecific antibody binding, the sections were treated

with 2% normal horse serum in PBS for 20 minutes. To detect D3

immunoreactivity, sections of rat and human hypothalami were

incubated (for 2 days at 4uC) in an affinity-purified, rabbit,

polyclonal antiserum (0.5–1 mg/ml; NBP1-05767B; Novus Bio-

logicals, Littleton. CO). MCT8 immunoreactivity was sought in

hypothalamic sections of rats, humans and WT and MCT8-KO

mice using a rabbit polyclonal antiserum (1:5,000–10,000; kind

gift of Dr. TJ Visser Rotterdam, The Netherlands). The primary

antisera were reacted with biotinylated donkey anti-rabbit IgG

(1:500; Jackson ImmunoResearch, West Grove, PA) for 2 hours,

followed by incubation in biotin-avidin-complex (ABC, 1:1,000;

Vector, Burlingame, CA) for 1 hour. The peroxidase signal was

visualized with a NiDAB developer consisting of 0.05% diamino-

benzidine, 0.15% nickel ammonium sulfate, and 0.005% H2O2 in

0.05 M Tris buffer (pH 7.6). The resulting reaction product was

silver-gold-intensified using the Gallyas method [53,54]. The

immunostained sections were mounted onto glass slides from

polyvinyl alcohol (Elvanol, Sigma, Budapest, Hungary), dried, and

coverslipped with DPX mounting medium (Fluka, Buchs, Swit-

zerland).

Figure 5. Dual-immunofluorescence images illustrate the overlapping distribution of fibers immunoreactive for D3 (green
fluorochrome) and GnRH (A) or TRH (D) (red color) in the median eminence. Sites of overlap (yellow color) occur along the axonal pathway
in the median eminence (B,E). High power confocal images demonstrate dual-labeled axon varicosities (yellow color in composite images)
immunoreactive for D3 and GnRH (C) or D3 and TRH (F). The D3 immunoreactivity appears as yellow patches (arrowheads) within the axon
varicosities. Single channels are also shown in C’, C’’ and F’, F’’, respectively. High power dual-immunofluorescent images are also shown for fibers
labeled for D3 (green fluorochrome) and CRH (G), GHRH (H) or somatostatin (I) (red color). These D3-immunoreactive sites (arrowheads) correspond
to axon varicosities (G, H). Somatostatin (SS)- immunoreactive axon varicosities show virtually no signal for D3. Scale bars: 20 mm in A, 5 mm in B,
5 mm in C, 10 mm in D,E, 5 mm in F–I.
doi:10.1371/journal.pone.0037860.g005

Figure 6. Quantification of D3 distribution in parvocellular
axon terminals in the rat median eminence. (n = 3; *P,0.01 TRH
vs. GnRH, GHRH, CRH and somatostatin (SST) by ANOVA followed by
Newman-Keuls post-test.)
doi:10.1371/journal.pone.0037860.g006
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Ultrastructural Detection of D3- and MCT8-
immunoreactivities in the Rat Median Eminence

To study the cellular and subcellular distribution of D3 in the

rat median eminence, 30–50 mm-thick coronal sections were cut

from the 4% acrolein/2% PFA – fixed brains (n = 5) on a

Vibratome. Excess aldehydes and endogenous peroxidase activity

were eliminated by treatment in 1% sodium borohydride (30 min

in PBS) and in 0.5% H2O2 (15 min in PBS), respectively. The

sections were cryoprotected with 15% sucrose (15 min), then 30%

(12 h) sucrose in PBS, followed by permeabilization using three

sequential freeze-thaw cycles in liquid nitrogen. Finally, 2%

Figure 7. MCT8 immunoreactivity in the rodent mediobasal hypothalamus. Low magnification photograph illustrates the presence of
MCT8-immunoreactivity associated with tanycytes (A). In the median eminence, strong MCT8-immunoreactivity is observed in tanycyte processes (B,
arrows). In addition to occurring in tanycyte processes (arrows), MCT8-immunoreactivity is also observed in small dot like structures reminiscent of
axon varicosities (arrow heads) (C). MCT8 immunoreactivity in the mediobasal hypothalamus of wild-type (D) and MCT8-KO mice (E). III, third
ventricle; Scale bars: 200 mm in A, 100 mm in B, 20 mm in C, 50 mm in D,E.
doi:10.1371/journal.pone.0037860.g007
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normal horse serum was applied (20 min) to prevent nonspecific

antibody binding. The pretreated sections were incubated in the

primary antibodies (anti- D3 in 0.5–1 mg/ml or anti-MCT8

1:20,000 ) for 36–48 h at 4uC, followed by biotinylated donkey

anti-rabbit IgG (1:500) for 2 h and ABC complex (1:1,000) for

1.5 h. The immunoreactive sites were visualized with NiDAB

developer. Finally the immunoreaction product was silver-gold

intensified [53,54]. The sections were treated with 1% osmium

tetroxide for 60 min and 2% uranyl acetate (prepared in 70%

ethanol) for 40 min, dehydrated in an ascending series of ethanol

and propylene oxide, and then, flat-embedded in TAAB 812

medium epoxy resin between a pair of glass microscope slides

precoated with liquid release agent (Electron Microscopy Sciences,

Hatfield, PA). The embedded sections were photographed and

then, cut into ultrathin sections (50–60 nm) with a Leica Ultracut

UCT ultramicrotome (Leica Microsystems, Wetzlar, Germany).

The ultrathin sections were mounted onto Formvar-coated single

slot grids, contrasted with 2% lead citrate and examined with a

Jeol-100 C transmission electron microscope.

Superresolution Microscopy (N-STORM)
Coronal 10 mm-thick sections through the anteroposterior

extent of the median eminence of rats perfused with 4%

paraformaldehyde in PBS (150 ml) were cut on a freezing

microtome. The sections were pretreated for light microscopic

immunocytochemistry as described above. The pretreated sections

were incubated in one of the following antisera for 3 days at 4uC:

rabbit anti-D3 serum (4 mg/ml), guinea pig anti-GnRH (#1018,

1:4,000,000) [55], mouse monoclonal anti-Rab3a IgG clone 42.2

(1:2000; Synaptic Systems). After washing in PBS, the sections

were immersed overnight at 4uC in 1:50 dilution of donkey anti

rabbit, guinea pig or mouse IgG (Jackson Laboratories), respec-

tively, doubly conjugated with CY3 (GE Healthcare) and Alexa

647 (Invitrogen). The Cy3/IgG ratio of the conjugated IgG was

between 2 and 3, while the Alexa 647/IgG ratio was between 0.6

and 0.8. After washing in PBS, the sections were mounted on glass

coverslip and air dried. Just before imaging the coverslipes holding

the slides were mounted on glass slide using the following imaging

medium: DPBS, 1 M mercaptoethylamine (MEA), 50% glucose

solution in water, and the GLOX system (10 mg of glucose

oxidase plus 25 ul of cata-lase and 100 ul of DPBS) in 80:10:10:1

volume ratio [56]. Axon varicosities located in the external zone of

the median eminence were imaged using a Nikon N-STORM

super-resolution microscope system (Nikon Instruments Ltd.)

based on Nikon inverted Ti-E microscope equipped with

perfect-focusing system (PFS) and the Nikon 100x NA 1.49 oil

TIRF objective. A 561 nm wavelength laser (Sapphire 561-100-

CW, Coherent) was used for excitation of the activator dye (Cy3)

while a 647 nm wavelength laser (MPB Communications Inc,

Montreal, Canada) was applied for excitation and bleaching of the

reporter dye (Alexa647). The 2D images were acquired with an

Andor Ixon DU-897 EMCCD camera (AndorTechnology,Belfast,

Northern Ireland) using 30 ms exposition, one activation frame

followed by three frames of imaging for 4000 cycles. The image

trajectories were analysed by the N-STORM 2 module of the NIS-

Elements followed by exporting as a high resolution bitmap

(1.4 nm/pixel).

Using the NIKON NIS software, the diameter of at least 500

immunoreactive clusters from each staining was measured.

Immunofluorescent Double-labeling for D3 and the
Parvocellular Releasing- or Release-inhibiting Hormones

Immunofluorescent colocalization experiments were carried out

on tissue sections fixed with 4% PFA (for detection of GnRH,

CRH, GHRH and somatostatin) or 4% acrolein/2% PFA (for

detection of TRH). Acrolein was inactivated with 1% sodium

borohydride (30 min). All sections were pre-treated with H2O2

combined with Triton X-100 (0.5% each in 0.1 M PBS, 20 min),

followed by normal horse serum (2% in 0.1 M PBS) for 10 min.

First, the sections were incubated in rabbit anti-D3 antiserum

(2 mg/ml, 48 h), which was detected with biotinylated-donkey

anti-rabbit IgG (1:500, 2 h) and Alexa-488-conjugated streptavi-

dine (1:400, 12 h). Then, one of the following primary antibodies

(48 h, 4uC) were used: guinea pig anti-GnRH (#1018, 1:5,000);

sheep anti-TRH (#08W2, 1:1,500) [57]; guinea pig anti-CRH

(#T-5007, Bachem, 1:3,000); sheep anti-GHRH (#19–4,

1:30,000, kindly donated by Dr. I Merchenthaler Baltimore,

MD, USA) [58]; rat anti-somatostatin (#354; Chemicon, 1:50).

These primary antibodies were reacted (12 h, 4uC) with appro-

Figure 8. Ultrastructure of MCT8 immunoreactive structures in the rat median eminence. MCT8-immunoreactivity (silver grains) is
associated with tanycyte (A) and axon varicosities (B, C) in the external zone of the median eminence. In the axon varicosities, silver grains
accumulate in a small region of the varicosity close to the cytoplasmic membrane (B, C). Scale bar: 500 nM.
doi:10.1371/journal.pone.0037860.g008
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priate CY3-conjugated secondary IgG raised in donkeys (1:500,

Jackson ImmunoResearch Laboratories, Inc.).

For quantification of the colocalization of D3 with the

hypophysiotropic peptide, confocal images were taken from the

external zone of the median eminence using 60 X oil immersion

objectives. The fluorochromes were detected with the following

laser lines and filters: 488 nm for Alexa 488 and 543 nm for Cy3

and dichroic/emission filters 560 nm/500–530 nm for Alexa 488

and 560–625 nm for Cy3. Pinhole sizes were set to obtain optical

slices less than 0.7 mm thick. Colocalization of D3 and the other

peptides were counted in the axon varicosities in the external zone.

For each double labeling combination, brain sections from three

animals were used. One randomly selected microscopic field

(2600 mm2 each) from the external zone of median eminence of

Figure 9. MCT8 and D3 immunoreactivities in axon varicosities of the rat parvocellular hypophysiotropic neurons. Confocal images
were subjected to deconvolution. Boxed areas are enlarged in B and C, respectively. The immunofluorescent signal for MCT8 (red) is distributed as
small dots throughout the external zone of median eminence and appears (arrowheads) on the surface of gonadotropin-releasing hormone (GnRH,
C), thyrotropin-releasing hormone (TRH, D), corticotropin-releasing hormone (E), growth hormone-releasing hormone (GHRH, F) and somatostatin
(SST, E) immunofluorescent axon varicosities (green). (H,I) Representative images of triple immunofluorescent labelings demonstrate D3 (blue), MCT8
(red) and a hypophyseotroph hormone (green) in the axons of the median eminence. MCT8-immunoreactive puncta (arrowheads) appear on the
surface of the following categories of axon varicosities; single-labeled for D3 (Ha), single-labeled for GnRH (Hb), and double labeled for D3 and GnRH
(Hc) or CRH (I). Scale bars: A: 10 mm, B: 5 mm, C-I: 2 mm.
doi:10.1371/journal.pone.0037860.g009
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each animal was analyzed. Every field was divided into 100 equal

parts to facilitate the counting of the double-labeled axon

varicosities and the percentage of D3 occurrence in immuno-

stained varicosities was determined.

Immunofluorescent Double-labeling for MCT8 and the
Parvocellular Releasing- or Release-inhibiting Hormones

Sections were pretreated identically as described above were

incubated in rabbit anti-MCT8 antiserum (1:1000, 48 h), and

detected with Alexa 555-conjugated anti-rabbit IgG (1:500, 2 h).

Then, one of the following primary antibodies (48 h, 4uC) were

used: guinea pig anti-GnRH (#1018, 1:5,000) [55]; sheep anti-

TRH (#08W2, 1:1,500) [57]; guinea pig anti-CRH (#T-5007,

Bachem, 1:3,000); sheep anti-GHRH (#19–4, 1:30,000, kindly

donated by Dr. I Merchenthaler Baltimore, MD, USA) [58]; rat

anti-somatostatin (#354; Chemicon, 1:50). These primary anti-

bodies were reacted (2 h) with appropriate FITC-conjugated

secondary IgG that were raised in donkeys (1:50, Jackson

ImmunoResearch Laboratories, Inc.).

Confocal images were taken from the external zone of the

median eminence using 60 X oil immersion objectives. The

fluorochromes were detected with the following laser lines and

filters: 488 nm for FITC and 543 nm for Cy3 and dichroic/

emission filters 560 nm/500–530 nm for FITC and 560–625 nm

for Cy3. Pinhole sizes were set to obtain optical slices less than

0.7 mm thick.

Labeled sections were scanned by using a Radiance 2100

confocal microscope (Bio-Rad Laboratories, Hemel Hempstead,

UK). Deconvolution of 150 nm thick optical slices was performed

using Xming (public domain at http://sourceforge.net/projects/

xming/) software.

Immunofluorescent Triple-labeling for MCT8, D3 and the
Parvocellular Releasing- or Release-inhibiting Hormones

Half of the sections that were double-labeled for MCT8 and the

parvocellular releasing- or release-inhibiting hormones were

incubated in biotinylated rabbit anti-D3 antiserum (2 mg/ml,

48 h), followed by treatment in ABC (1:1000, 2 h). The sections

were then subjected to tyramide amplification according to the

manufacturer’s instructions (NEN, Boston,MA). To further

amplify the reaction product, the ABC treatment and the tyramide

Figure 10. D3-immunoreactivity in the infundibular stalk of the human hypothalamus. (A) D3 immunoreactive fibers (arrowheads) are
present in the human infundibular stalk (IS); these fibers are shown in medium (B) and high (inset in A) power micrographs. opt: tractus opticus, VMH:
ventromedial hypothalamic nucleus, III: third ventricle Scale bars: 500 mm in A, 50 mm in B, 10 mm in inset.
doi:10.1371/journal.pone.0037860.g010
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amplification were repeated. Finally the sections were incubated in

CY5-conjugated streptavidin (1:250).

Confocal images were taken from the external zone of the

median eminence using 60 X oil immersion objectives. The

fluorochromes were detected with the following laser lines and

filters: 488 nm for FITC, 543 nm for CY3, and 637 nm for CY5;

dichroic/emission filters, 560/500–530 nm for FITC, 650/565–

625 nm for CY3, and a 660-nm-long pass filter for CY5. Pinhole

sizes were set to obtain optical slices less than 0.7 mm thick.

Deconvolution was performed as described above.

Staining Specificity
The specificity of the D3 antiserum in the rat brain was

described elsewhere [6]. To further determine the specificity of the

antiserum in the examined region, the D3 antiserum was

preabsorbed with the immunizing peptide (10 mg/ml) that resulted

in loss of immunoreaction product in the MBH (Fig. 1A). The

specificity of the antiserum was also demonstrated by Western Blot

(see below) showing bands of expected size for rat and human D3

(Fig. 13). To test the specificity of the anti-MCT8 antibody in the

examined region, hypothalamic sections of MCT8-KO mice were

used as a negative control (the MCT8-KO brain was kindly

provided by Dr. H. Heuer, Jena, Germany) [52]. MCT8-

immunoreactivity was completely absent in the median eminence

of the MCT8-KO mice (Fig. 7D,E). Specificity of the antisera

against the hypophysiotropic hormones was earlier described

[55,57,58]. The employed secondary antibodies were designed for

multiple labeling and pre-absorbed by the producer with

immunoglobulins of several species, including those in which the

current non-corresponding primary antibodies were raised.

Omission of any of the primary antisera from the triple-labeling

immunofluorescence did not influence the pattern of the other two

immunoreaction signals.

Western blot was performed using standard methodologies as

described earlier [59]. Adult, male, Wistar rats were decapitated

and the hypothalamus immediately frozen. A fresh-frozen human

hypothalamic sample was obtained from the Human Brain Tissue

Bank, Semmelweis University.

Fifty micrograms of rat and human hypothalamic protein

sonicate was resolved by 10% SDS PAGE, and the D3 band

identified using rabbit anti-D3 antibody (NBP1-05767, Novus,

0.5 ug/ul) and visualized using the BM Chemiluminescence

Western Blotting Kit (Roche Diagnostics Co., Indianapolis, IN,

USA). The blot showed bands of expected sizes of the rat and

human D3 and also demonstrated the calculated 3 kDa size

difference between the D3 proteins of the two species (Fig. 13.).

After overexposure of the blot, faint bands of ,22 and 120 kDa

bands also appeared in the rat but not in the human sample.

DNA Constructs
The constructs expressing human cysteine mutant D3 tagged

with FLAG or YFP on its amino terminus have been previously

described [24,60]. For Bimolecular Fluorescence Complementa-

tion (BiFC), D3 was tagged at its N-terminus with YFP fragments.

In short, the cys mutant D3 was generated with Vent polymerase,

cut with BglII and BamHI and subcloned into the BglII site of the

YFP-(1-158aa)pcDNAI and YFP-(159–238aa)pcDNAI vectors.

The YFP BiFC fusion vectors were kindly provided by Dr. C

Berlot (Danville, PA, USA) [61].

Cell Culture, Transfection
The mouse GT 1-7 GnRH expressing cell line [25] was grown

in DMEM-high glucose/F12 containing 10% FCS; 5% HS,

supplemented with 3 mM glutamine. The D3-YFP mammalian

expression constructs have been previously described [24]. Cells

were transfected with Lipofectamine to transiently express the D3-

YFP fusion proteins.

Figure 11. MCT8-immunoreactivity in the infundibular stalk of the human hypothalamus. A dense network of MCT8-immunoractive
axons is present in the infundibular stalk (A). A high magnification image illustrates MCT8-immunoractive axon varicosities in the proximity of a
putative portal blood vessel (BV) in the neurovascular zone of the infundibular stalk (B, arrows). Long, MCT8-immunoractive axons with large
varicosities are frequently encountered (C). Scale bar: 100 mm in A, 20 mm in C (also corresponds to B).
doi:10.1371/journal.pone.0037860.g011
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Detection of Expressed D3 and Bimolecular Fluorescence
Complementation (BiFC)

GT 1-7 cells were fixed with 4% PFA. The D3-YFP fusion

protein was visualized directly with confocal microscopy. The

YFP-(1-158aa)-D3 and YFP-(159–238aa)-D3 were coexpressed for

(BiFC) and studied in 4% PFA fixed cells using confocal

microscopy. The YFP-(1-158)-D3 and YFP-(159–238)-D3 con-

structs were also expressed separately while the YFP-(1-158aa) and

YFP-(159–238aa) were coexpressed to serve as negative controls

for BiFC.

RT-PCR
RT-PCR was performed using standard procedures. In short,

total RNA was isolated by Trizol (Invitrogen), reverse transcribed

and amplified by Taq polymerase using mouse D3-specific

oligonucleotides (sense, CCATATGCGTATCAGACGACAA;

antisense, GTGCACCTTGTTGTAGTACTCT). Since the

Dio3 gene is intronless, the RNA sample was also subjected to

reverse transcription in the absence of reverse transcriptase

enzyme (-RT control), then amplified by PCR to exclude the

presence of genomic contamination.

Animal Treatment and D3 Activity Assay
Adult male Wistar rats were injected i.p. with 50 mg/of T3/

100 g body weight (N = 9) or vehicle (N = 9) every second days in 8

days. After decapitation the median eminence was dissected under

a Zeiss Semi DV4 stereomicroscope (Carl Zeiss GMBH,

Hamburg, Germany) and immediately frozen on dry ice. Three

median eminence samples were pooled from nine, while five

cortex samples were collected from five animals. The samples were

sonicated in 0.1 M phosphate, 1 mM EDTA at pH 6.9 with

10 mM dithiothreitol and 0.25 M sucrose, and subjected to D3

assay as previously described [62].

Figure 12. Schematic illustration of axonal uptake and regulation of T3 in the mediobasal hypothalamus. We suggest that T3
generated by D2 is released from tanycyte processes and taken up by MCT8 into axons of hypophysiotropic neurons. T3 concentrations are subjected
to local regulation by D3-containing axon varicosities (At1), but absent in D3-negative axons (At2). T3 could be subjected to retrograde transport to
reach the soma and nucleus of hypophysiotropic neurons and/or could act locally by affecting mitochondrial function and local thermogenesis. At,
axon terminal; Tc, tanycyte; Pc, portal capillary.
doi:10.1371/journal.pone.0037860.g012

Figure 13. D3 detection by Western Blot in the rat and human
hypothalamus. Note that the human D3 protein runs slightly faster
compared to rat D3, in agreement with the calculated ,3 kDa size
difference between the two proteins.
doi:10.1371/journal.pone.0037860.g013
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Statistics
All data are shown as mean 6 SEM. Groups were compared

with two-tailed t-test. Multiple comparisons were made by

ANOVA followed by Newman-Keuls posthoc test.
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