
Multi-Label Multi-Kernel Transfer Learning for Human
Protein Subcellular Localization
Suyu Mei*

Software College, Shenyang Normal University, Shenyang, China

Abstract

Recent years have witnessed much progress in computational modelling for protein subcellular localization. However, the
existing sequence-based predictive models demonstrate moderate or unsatisfactory performance, and the gene ontology
(GO) based models may take the risk of performance overestimation for novel proteins. Furthermore, many human proteins
have multiple subcellular locations, which renders the computational modelling more complicated. Up to the present, there
are far few researches specialized for predicting the subcellular localization of human proteins that may reside in multiple
cellular compartments. In this paper, we propose a multi-label multi-kernel transfer learning model for human protein
subcellular localization (MLMK-TLM). MLMK-TLM proposes a multi-label confusion matrix, formally formulates three multi-
labelling performance measures and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario,
based on which to further extends our published work GO-TLM (gene ontology based transfer learning model for protein
subcellular localization) and MK-TLM (multi-kernel transfer learning based on Chou’s PseAAC formulation for protein
submitochondria localization) for multiplex human protein subcellular localization. With the advantages of proper homolog
knowledge transfer, comprehensive survey of model performance for novel protein and multi-labelling capability, MLMK-
TLM will gain more practical applicability. The experiments on human protein benchmark dataset show that MLMK-TLM
significantly outperforms the baseline model and demonstrates good multi-labelling ability for novel human proteins. Some
findings (predictions) are validated by the latest Swiss-Prot database. The software can be freely downloaded at http://soft.
synu.edu.cn/upload/msy.rar.
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Introduction

Recent years have witnessed much progress in computational

modelling for protein subcellular localization [1]. However,

researches on human genome and proteomics seem more urgent

and important for human disease diagnosis and drug development.

Unfortunately, there are far few specialized predictive models for

human protein subcellular localization thus far [2,3,4,5]. Further-

more, many human proteins have multiple subcellular locations,

which renders the computational modelling more complicated. Up

to the present, there are only two models (Hum-mPLoc [4] and

Hum-mPLoc 2.0 [5]) that can be applicable to multiple subcellular

localization of human proteins.

Although many protein sequence feature extraction methods have

been successfully developed for protein subcellular localization, such

as signal peptide [6], sequence domain [7], PSSM [8,9], k-mer [10,11] etc.,

the accuracy of the models is still moderate or unsatisfactory, most of

which average about 70% [6,7,9,10,11]. Garg A et al (2005) [3] used

sequence features only (amino acid composition and its order

information) for human protein subcellular localization, and the

result is satisfactory (84.9%), but it covers only 4 subcellular

locations. The Gene Ontology (GO) project has developed three

structured controlled vocabularies (ontologies) that describe gene

products in terms of their associated biological processes, cellular

components and molecular functions in a species-independent

manner, and the GOA database [12] provides high-quality electronic

and manual associations (annotations) of GO terms to UniProt

Knowledgebase (UniProtKB) entries [13]. Because the three aspects

of gene ontology are closely related and the GO terms of

cellular component contains direct indicative information about

protein subcellular location, GO has become a generally effective

feature for the prediction of protein subcellular localization

[2,4,5,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]. Chou

K.C. et al [2] proposed an ensemble leaning model called Hum-

PLoc for human protein subcellular localization. The model consists

of two parts: GO-based kNN and PseAAC-based kNN, and the latter

part was designed to compensate for the model performance in the

case of GO unavailability. To cover multiplex human proteins that

reside in or transport across multiple subcellular locations, Shen HB

et al [4] further proposed an improved model called Hum-mPLoc,

which extended the number of subcellular locations from 12 to 14

and formally formulated the concept of locative protein and the

success rate for multiplex protein subcellular localization. Hum-PLoc,

Hum-mPLoc and the work [2,15,16,17,18,19,20,21,22] used the

target protein’s own GO information to train model, thus inappli-

cable to novel protein prediction. Many recent GO-based methods

generally exploit the homolog GO information for novel protein

subcellular localization [5,23,24,25,26,27,28,29,30]. Based on Hum-

mPLoc, Shen HB et al [5] further proposed Hum-mPLoc2.0 for

multiplex and novel human protein subcellular localization, where a

more stringent human dataset with 25% sequence similarity
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threshold is constructed to train a kNN ensemble classifier. Hum-

mPLoc2.0 incorporated those homologs with sequence similarity

§60%, but achieved relatively low accuracy (62.7%). However, the

method of setting threshold for homolog incorporation has the

following disadvantages: (1) significant homolog (high sequence

identity, assuming §60%) may potentially be divergent from the

target protein in terms of protein subcellular localization, for instance,

the target protein P21291 resides in subcellular locations: Nucleus,

while its significant homolog P67966 (sequence identity: 90.16%;

PSI-Blast E-value: 13e-174072, obtained by Blast default options)

resides in subcellular locations: Cytoplasm and Cytoskeleton. High

threshold of sequence identity, e.g. 60%, can not guarantee that no

noise would be introduced to the target protein; (2) remote homolog

(low sequence identity, assuming v30%) may be convergent to the

target protein in terms of protein subcellular localization, for instance,

the target protein P21291 resides in subcellular locations: Endoplasmic

reticulum, Membrane and Microsome, while its first 7 significant remote

homologs queried against SwissProt 57.3 database [13] with default

Blast option: O75881(26.82%,4e-041),O02766(25.05%,4e-028),

Q63688 (25.66%,2e-027),P22680(23.68%,4e-026),Q16850(23.92%,

4e-025),O88962 (25.05%, 4e-025), Q64505 (23.13%, 1e-024) (the

first number in parenthesis denotes sequence identity and the second

number denotes PSI-Blast E-value), also reside in the subcellular

locations: Endoplasmic reticulum, Membrane and Microsome. High

threshold of sequence identity (60%) would filter out all the convergent

remote homologs that are informative to protein subcellular

localization, and thus no homolog knowledge would be transferred

to the target protein P21291. We can see that both significant homolog

and remote homolog can be convergent homolog, or divergent homolog in

terms of protein subcellular localization, thus we should conduct

homolog knowledge transfer in a proper way, so that the noise from

divergent homolog can be effectively depressed. Mei S et al [25]

proposed a transfer learning model (gene ontology based transfer

learning for protein subcellular localization, GO-TLM) to measure

the individual contribution of GO three aspects to the model

performance, where the kernel weights are evaluated by simple

nonparametric cross validation. Mei S [26] further proposed an

improved transfer learning model (MK-TLM), which conducted

improvements on GO-TLM from the two major concerns: (1) more

rational noise control over divergent homolog knowledge transfer; (2)

comprehensive survey of model performance, especially for novel

protein prediction. However, many human proteins reside in or

transport across multiple cellular compartments, and the proteins

with multiple locations may help reveal special biological implica-

tions to basic research and drug discovery [30,31]. Neither GO-TLM

nor MK-TLM is applicable to multiple protein subcellular localiza-

tion prediction.

In this paper, we propose a multi-label multi-kernel transfer

learning model for large-scale human protein subcellular localiza-

tion (MLMK-TLM). Based on the work [25,26], MLMK-TLM

proposes a multi-label confusion matrix and adapts one-against-all

multi-class probabilistic outputs to multi-label learning scenario.

With the advantages of proper homolog knowledge transfer,

comprehensive survey of model performance for novel protein and

multi-labelling capability, MLMK-TLM gains more practical

applicability. To validate MLMK-TLM’s effectiveness, we conduct

a comprehensive model evaluation on the latest human protein

dataset Hum-mPLoc 2.0 [5].

Methods

1. Transfer learning
As a research field of machine learning community, transfer

learning has attracted more and more attentions in recent years

[32]. Traditional supervised learning generally assumes that all the

data, including training data and unseen test data, are subjected to

independent and identical distribution (iid), which doesn’t hold

true under many practical circumstances, especially in the field of

biological data analysis. For example, the microarray gene

expression data from different experimental platforms would be

subjected to different level of experimental noise [33]. Transfer

learning can be viewed as a bridge to transfer useful knowledge

across two related domains with heterogeneous feature represen-

tations and different distributions. Pan S et al [32] reviewed the

recent progress of transfer learning modelling and classified

transfer learning into three categories based on the way of

knowledge transfer: instance-based knowledge transfer [34],

feature-based knowledge transfer [35] and parameter-based

knowledge transfer [36].

Transfer learning modelling is generally conducted around

three central dogmas: (1) how to define the relatedness between

domains; (2) what to transfer; (3) how to transfer. In our work, we

explicitly define the relatedness between protein sub-families and

super-families by protein sequence evolution, i.e. protein homolog.

Evolutionally closely-related proteins share similar subcellular

localization patterns with high probability. Correspondingly, what

to transfer is naturally the homolog GO term. Such a way of

transfer learning modelling is computationally simple and

biologically interpretable. In order to reduce the risk of negative

transfer, GO-TLM [25] and MK-TLM [26] proposed a non-

parametric multiple kernel learning method to measure the

contribution of GO three aspects, target GO information and

homolog GO information to the model performance. In this paper,

we redefine confusion matrix, so that the GO kernel weights can be

derived by cross validation for multi-label learning scenario.

2. GO feature construction
All the proteins are represented with both the target GO terms

and the homolog GO terms, which are extracted from GOA

database [12] (77 Release, as of 30 November, 2009), and the

homologs are extracted from SwissProt 57.3 database [13] using

PSI-Blast [37]. Assume there are u GO terms xi (i = 1, 2,…, u), then

protein X can be represented as follows:

X~x1x2:::xu ð1Þ

If GO term xi is assigned to the protein x in GOA database, then

xi = 1; Otherwise, xi = 0. To expressly estimate the individual

contribution of the three GO aspects, GO-TLM [25] decomposed

the feature vector (1) into the following three binary feature

vectors:

XP~(xP,1,xP,2,:::,xP,l); XF ~(xF ,1,xF ,2,:::,xF ,m); XC

~(xC,1,xC,2,:::,xC,n)
ð2Þ

However, GO-TLM aggregated the target GO information and the

homolog GO information into one single feature vector, such that

the two kinds of GO information are treated equally. We know that

such a way of feature construction is not rational because divergent

homolog GO information carries much noise. Figure 1 shows the

difference of subcellular localization patterns between target

human protein (P61221 thru. Q9Y2Q3) and its homolog protein.

The homologs are queried against SwissProt 57.3 database [13]

with default Blast options (E-value: 10; substitution matrix:

BLOSUM62). E-value is relaxed to 10 to obtain remote homologs

for those proteins that have no significant homologs. For a target

protein, we may encounter three cases for the selected homologs:

Multi-Label Multi-Kernel Transfer Learning
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(1) all homologs are significant homologs; (2) one part of homologs is

significant homolog and the other part of homologs is remote

homolog; (3) all homologs are remote homologs. Some remote

homologs are convergent to the target protein in terms of protein

subcellular localization (e.g. remote homologs O75881, O02766,

Q63688, P22680, Q16850, O88962 and Q64505 to target protein

P21291), thus we should exploit the useful information from remote

homologs; meanwhile, some remote homologs are divergent to the

target protein, thus we should prevent negative knowledge transfer

from the remote homolog. As compared to remote homolog, significant

homolog is more likely to be convergent in terms of protein

subcellular localization, but in some case, significant homolog is

also likely to be divergent. Figure 1 lists one divergent homolog for

each target protein. The illustrated divergent homolog has the

highest sequence identity and PSI-Blast E-value among the target

protein’s divergent homologs. From Figure 1, we can see that the

significant homologs reside in definitely distinct subcellular locations

from the target protein, which implies that we should also depress

noise from the significant homologs even though we encounter the

above case (1). Similar to MK-TLM [26], we also separate the

target GO information from its homolog GO information for the

convenience of noise control. Here, we use T to denote the target

protein and H to denote its homolog, thus the target GO feature

vector is expressed as formula (3), and the homolog GO terms are

aggregated into one homolog feature vector as formula (4):

X T
P ~(xP,1,xP,2,:::,xP,l); X T

F ~(xF ,1,xF ,2,:::,xF ,m); X T
C

~(xC,1,xC,2,:::,xC,n)
ð3Þ

X H
P (x)~(xP,1,xP,2,:::,xP,l); X H

F (x)

~(xF ,1,xF ,2,:::,xF ,m); X H
C (x)~(xC,1,xC,2,:::,xC,n)

ð4Þ

Thus, each protein is represented by six binary feature vectors:

X T
P ,X T

F ,X T
C ; X H

P ,X H
F ,X H

C .

3. Non-parametric multiple kernel learning
The six binary GO feature vectors {X T

P ,X T
F ,X T

C ; X H
P ,X H

F ,X H
C }

are used to derive six GO kernels {KT
P ,KT

F ,KT
C ; KH

P ,KH
F ,KH

C }, and

the GO kernels are further combined in the way that MK-TLM

does [26]. In such a setting, higher homolog GO kernel weight

implies more positive knowledge transfer, and lower homolog GO

kernel weight can depress the potential noise by divergent homolog.

Different to MK-TLM, MLMK-TLM adapts confusion matrix to

multi-label learning scenario based on the concept of locative

protein [4,5]. For self-contained description and integrity, we give

the full description of non-parametric kernel weight estimation in

multi-label learning scenario as below, though some part of which

Figure 1. Illustration of divergent homolog in terms of subcellular localization.
doi:10.1371/journal.pone.0037716.g001
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is identical to MK-TLM [26]. Similar to GO-TLM and MK-TLM,

the final kernel is defined as the following linear combination of

sub-kernels:

KMLMK{TLM~
X

t[fT ,Hg

X
s[fP,F ,Cg

wt
s
|Kt

s
ð5Þ

wv
u
~SEv

u
|MCCv

u

, X
t[fT ,Hg

X
s[fP,F ,Cg

SEt
s
|MCCt

s

u[fP,F ,Cg,v[fT ,Hg

ð6Þ

Where SE denotes recall rate or sensitivity and MCC denotes

Matthew’s correlation coefficient. The kernel weights

wv
u

u[fP,F ,Cg,v[fT ,Hg are derived by cross validation. Given

a training dataset, we divide the training set into k-fold disjoint

parts. For each fold cross validation, one part is used as validation

set and the other parts are merged as training set to train the

combined-kernel SVM. Thus, we can derive a confusion matrix M

by evaluating the trained SVM against the test set. From the

confusion matrix M, we can derive the kernel’s SE and MCC

measure as follows:

pl~Ml,l ,ql~
XL

i~1,i=l

XL

j~1,j=l

Mi,j ,rl~
XL

i~1,i=l

Mi,l ,sl~
XL

j~1,j=l

Ml,j

p~
XL

l~1

pl ,q~
XL

l~1

ql ,r~
XL

l~1

rl ,s~
XL

l~1

sl

SE~
XL

l~1
Ml,l

.XL

i~1

XL

j~1
Mi,j

MCC~(pq{rs)
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(pzr)(pzs)(qzr)(qzs)
p

ð7Þ

Where, Mi,j records the counts that class i are classified to classj;

superscript L denotes subcellular locations; and all the other

variables are intermediate variables that can be derived from the

confusion matrix M.

In single-label learning scenario, Mi,j(i=j) records the counts

that class i are misclassified to class j, which is not applicable to

multi-label learning scenario. Let’s borrow the notion of locative

protein [4,5] to describe the multi-label confusion matrix. Assume

that a protein p is located at two subcellular locations fC1,C2g,
i.e., p[SC1

^ p[SC2
(SC1

,SC2
denote the set of proteins that reside

in C1,C2, respectively), the notion of locative protein means that

protein p can be viewed as two different proteins

p1,p2(p1[SC1
^ p2[SC2

). Now take p1 protein as test protein and

the trained SVM labels p1 as follows:

C~maxargl(f (p1,l)Dl~1,:::,L) ð8Þ

Where, f (p1,l) denotes the probability that protein p1 is assigned

the label l (see Section 4 of Methods for how to derive probability

outputs). Thus, the multi-label confusion matrix can be defined as

follows:

M(C1,C1)~M(C1,C1)z1 C[fC1,C2g
M(C1,C)~M(C1,C)z1 C[=fC1,C2g

�
ð9Þ

Formula (9) shows that only if the predicted label of locative protein

p1 hits its true label C1 or C2, the prediction is deemed as correct;

otherwise, the prediction would be deemed as incorrect.

As regards with kernel Kt
s s[fP,F ,Cg,t[fT ,Hg, Gaussian

kernel is used here:

Kt
s (x,y)~exp(cDx{yD2) s[fP,F ,Cg,t[fT ,Hg ð10Þ

Table 1. Optimal performance on 3681 human locative protein dataset.

Subcellular location Size

MLMK-TLM-I (optimistic)

(H~1; c~2{1; C~28)

MLMK-TLM-II (moderate)

(H~1; c~2{1; C~28)

MLMK-TLM-III (pessimistic)

(H~1; c~2{1; C~28)

SP SE MCC SP SE MCC SP SE MCC

Centrosome 77 0.9063 0.7532 0.8229 0.8772 0.6494 0.7504 0.8235 0.7273 0.7694

Cytoplasm 817 0.7845 0.8556 0.7704 0.8061 0.8042 0.7552 0.7380 0.8446 0.7322

Cytoskeleton 79 0.9123 0.6582 0.7710 0.7910 0.6709 0.7231 0.8333 0.6329 0.7212

Endosome 24 0.9167 0.4583 0.6467 0.8000 0.5000 0.6306 0.9167 0.4583 0.6467

Endoplasmic reticulum 229 0.9302 0.8734 0.8951 0.9151 0.8472 0.8730 0.8818 0.8472 0.8557

Extracell 385 0.9525 0.8857 0.9096 0.9284 0.8753 0.8906 0.9413 0.8753 0.8977

Golgi apparatus 161 0.9214 0.8012 0.8534 0.9161 0.8137 0.8576 0.8705 0.7516 0.8010

Lysosome 77 1.0000 0.7143 0.8426 0.9828 0.7403 0.8504 0.9825 0.7273 0.8426

Microsome 24 0.9500 0.7917 0.8665 0.8947 0.7083 0.7949 0.8947 0.7083 0.7949

Mitochondrion 364 0.9620 0.9038 0.9255 0.9477 0.8956 0.9131 0.9339 0.8544 0.8825

Nucleus 1021 0.8479 0.9334 0.8486 0.8156 0.9314 0.8238 0.8287 0.8815 0.8028

Peroxisome 47 0.9750 0.8298 0.8983 0.9318 0.8723 0.9004 0.9762 0.8723 0.9219

Plasma membrane 354 0.8746 0.8672 0.8576 0.8169 0.8446 0.8130 0.8680 0.8362 0.8370

Synapse 22 1.0000 0.5455 0.7375 1.0000 0.5455 0.7375 1.0000 0.5000 0.7060

Overall Accuracy/MCC 87.04%/0.8606 85.22%/0.8411 83.97%/0.8277

doi:10.1371/journal.pone.0037716.t001
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4. Multi-label learning
In our work, we extend MK-TLM [26] to multi-learning scenario

based on one-against-all multi-class learning and binary SVM

probability outputs [38]. Probability outputs tell us the confidence

level that a query protein belong to each subcellular location, thus

more intuitive and reasonable than ensemble voting [4,5,39] and

label transfer of kNN nearest neighbour protein [27,28,30].

Assuming there are K subcellular locations, for each subcellular

location k, we view the proteins that belong to k as positive examples

and the proteins that belong to other subcellular locations except k

as negative examples, based on which to train one binary SVM.

Thus, we have K trained binary SVMs. If each binary SVM outputs

{21, +1} labels, multiple {+1} outputs can be viewed as multiple

protein subcellular locations [40]. Because the {21, +1} labels can

not tell us the confidence level that a query protein belongs to each

subcellular location, we don’t adopt the method. If each binary SVM

yields probability output, we can choose the label with the highest

probability as the protein subcellular location, which is s-called one-

against-all multi-class learning [38,41]; if we set some probability

threshold, the labels with probability over the threshold can be

viewed as multiple protein subcellular locations, thus intuitively

applicable to multi-label learning scenario. Platt J [41] proposed a

method to adapt binary SVM {21, +1} labels to posterior class

probability as defined below:

hy(x)~p(yDx)~1=(1zeAf (x)zB) ð11Þ

Where the coefficient A and B can be derived from data by cross

validation, and f(x) is uncalibrated decision value of binary SVM.

Actually, the one-against-all multi-class SVM with probability

output has been implemented into the LIBSVM tool (http://www.

csie.ntu.edu.tw/,cjlin/libsvm/), which can be easily used for

multi-label learning. Only if we set LIBSVM prediction option ‘‘-b

1’’ (LIBSVM command option –b 1 means probability rather than

{21, +1} output), we can obtain the probability vector that a

query protein is predicted to each subcellular location. By setting

optimal probability threshold, we can determine the optimal

multiple labelling for the query protein based on the predicted

probability vector.

5. Model evaluation and model selection
The existing GO-based models only reported the optimistic

performance by evaluating the proposed model against informa-

tion-rich (GO, PPI, image) test proteins, and seldom reported the

performance for novel proteins [4,5,14,15,16,17,18,19,20,21,22,

23,24,25,27,28,29,30]. Apparently, the optimistic performance is

not enough to be a comprehensive survey of the model’s true

predictive ability, especially for novel protein prediction. MK-TLM

[26] attempted to conduct a comprehensive survey of the model

performance in optimistic, moderate and pessimistic cases, and

demonstrated good performance for novel proteins and those

proteins that belong to the protein family we know little about. In

this paper, the proposed MLMK-TLM inherits all MK-TLM’s

advantages. The Optimistic case means the training set and the test

set both abound in GO information; the Moderate case means that

the test set contains no GO information at all, which can be

simulated by removing the test kernels fKT
P ,KT

F ,KT
C g; the

Pessimistic case means that both the training set and the test set

contains no GO information at all where the target GO information

is removed from both the training set and the test set, which can be

simulated by removing the training kernels fKT
P ,KT

F ,KT
C g and test

kernels fKT
P ,KT

F ,KT
C g.

The performance evaluation under multi-label learning scenario

seems more complicated as compared to single-label learning

scenario. Because the model performance estimation involves both

singlex protein (only one subcellular location) and multiplex protein

(multiple subcellular locations), we should conduct two perfor-

mance estimation experiments: one experiment is overall perfor-

mance estimation on locative dataset, where multiplex protein is

viewed as multiple singlex proteins as Hum-mPLoc 2.0 [4], Virus-

mPLoc [15], iLoc-Euk [27], iLoc-Virus [28] and Plant-mPLoc [30] did;

the other experiment is multi-labelling estimation for multiplex

proteins. The first experiment is similar to traditional supervised

learning estimation except that multi-label confusion matrix is

adopted instead (see formula 8 & 9); in the second experiment,

cross validation is conducted on multiplex proteins only and the

singlex proteins are always treated as training data. Thus, the whole

training set is composed of two parts: fixed part from the singlex

proteins and the variable part from the multiplex proteins. In

addition, the model performance estimation in the second

experiment is much more complicated. To simplify the formula-

tion, lets’ first give several symbol annotations: (1) Ltrue denotes the

true label set of a multiplex protein p; (2) Lpredicted denotes the

predicted label set of a multiplex protein p; (3) PfpDFg denotes the

protein set P whose protein p satisfies the condition F; (4) ½½.��
denotes set cardinal; (5) minus symbol { denotes set difference; (6)

^ denotes logic AND. Based on the symbols, we can formally define

Label Hit Rate (LHR), Perfect Label Match Rate (PLMR) and Non-target

Label Hit Rate (NT-LHR) as follows:

Figure 2. Performance on 3681 human protein dataset with varying homologs.
doi:10.1371/journal.pone.0037716.g002

Multi-Label Multi-Kernel Transfer Learning

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e37716



LHR(n)~½½Pfpj½½Ltrue\Lpredicted ��~ng��
�
½½Pfpj½½Ltrue��~Ng��

n~0,1:::,N; N~2,3,4

PLMR(N)~

½½Pfpj(Ltrue{Lpredicted~1)^
(Lpredicted{Ltrue~1)^
½½Ltrue��~Ng��

,
½½Pfpj½½Ltrue��
~Ng��

N~2,3,4

NT{LHR(n)~½½Pfpj½½Lpredicted{Ltrue��~ng��
� ½½Pfpj½½Ltrue��

~Ng��
n~1,2:::,14{N; N~2,3,4

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð12Þ

where N denotes the number of subcellular locations a protein may

reside in, with maximum value 4 here; n denotes the number of

correct HITs or wrong HITS, with maximum value 14{N here (we

assume the total number of subcellular locations is 14). The multiplex

proteins in Hum-mPLoc 2.0 [5] can be divided into 3 subsets that

possesses 2, 3 and 4 labels (subcellular locations), respectively. We

will report LHR, PLMR and NT-LHR on each subset. Take 2-label

subset as example, the prediction may hit 0, 1 or 2 true labels. Low 0-

label hit rate and high 1- and/or 2-label hit rate imply good model

performance. However, the prediction may also hit 1,12 non-target

labels (excluding 2 true labels from total 14 subcellular locations).

High NT-LHR implies high misleading tendency, which should be as

low as possible. The existing multi-label learning model for protein

subcellular localization [4,5,15,19,27,28,29,30] seldom reported NT-

LHR. If the prediction hits the true labels and yields no other

misleading labels, we call the case perfect label match; otherwise, we call

the case non-perfect label match. High Perfect Label Match Rate (PLMR)

implies good predictive ability and low misleading tendency.

MLMK-TLM is a relatively complex model that requires time-

consuming computation for model comparison and model

selection. Apart from SVM regularization parameter C and kernel

parameter c, MLMK-TLM introduces a hyper-parameter H that

denotes the number of homologs for knowledge transfer. Assume

there are N proteins in the dataset and the hyper-parameter sets

are C~f23,24,25,26,27,28,29,210,211g; c~f2{3,2{2,2{1g; ~f1,
2,3,4,5,6,7,8,9,10g, MLMK-TLM has to fix one hyper-parameter

to optimize the other hyper-parameters, and in each iteration has

to compute kernel matrices, thus the computational complexity is

½½K ��|½½C��|½½c��|½½H��|O(N2), where ½½.�� denotes set cardinal,

½½K �� denotes the number of kernel matrices and O(N2) denotes the

computational complexity for kernel computing. For large-scale

human protein dataset Hum-mPLoc 2.0 [5], the model selection is

rather time-consuming. Hence, we adopt 5-fold cross validation

instead of leave-one-out cross validation (LOOCV) (Jackknife) as GO-

TLM [25] and MK-TLM [26] did. For multi-labelling estimation,

the multiplex proteins are divided into 5 nearly-even parts, one part

as test set, and the other parts are merged with the singlex proteins

into training set, thus iterates for 5 times until all the multiplex

proteins participate in the performance estimation process (see

Section 6 of Results).

For performance estimation on locative proteins, we adopt the

performance measures: Sensitivity (SE), Specificity (SP), Matthew’s

correlation coefficient (MCC), Overall MCC, and Overall Accuracy. For

multi-labelling estimation, we adopt LHR, PLMR and NT-LHR.

Results

1. Dataset
Shen HB et al [5] constructed a large-scale human protein

dataset. The dataset covers 14 subcellular locations and contains

3106 distinct human proteins, where 2580 proteins belong to one

Table 2. Multi-labelling evaluation for optimistic case.

Multiplex
Locations Size Label Hit Rate PLMR Non-target Label Hit Rate

0 1 2 3 4 1 2 3 4

2 480 3.33% 38.12% 58.54% 0 0 42.92% 18.96% 8.54% 2.92% 0.42%

3 43 2.33% 25.58% 44.19% 27.91% 0 13.95% 25.58% 16.28% 2.33% 0

4 3 0 33.33% 0 33.33% 33.33% 33.33% 0 0 33.33% 0

doi:10.1371/journal.pone.0037716.t002

Figure 3. Kernel weight estimation on 3681 human locative protein dataset.
doi:10.1371/journal.pone.0037716.g003
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subcellular location, 480 to two locations, 43 to three locations,

and 3 to four locations. The protein with multiple subcellular

locations should be treated as one training example of each

subcellular location it belongs to, thus the same protein should be

viewed as different protein within different subcellular location,

referred to as locative protein in the literatures

[4,5,15,19,27,28,29,30]. Thus, there are 3681 locative proteins in

the dataset [5]. The dataset is a good benchmark for model

performance comparison, because none of the proteins has $25%

sequence identity to any other proteins in the same subcellular

location. Accordingly, we choose Hum-mPLoc 2.0 [5] as the

baseline models for performance comparison. Although the

dataset [40] collected much more multiplex human proteins, we

don’t use it to evaluate the multi-labelling, because the sequence

similarity reaches 80%, so high as to yield performance

overestimation.

2. Model performance evaluation
2.1 Optimistic case: both training set and test set abound

in target GO information. The optimistic case assumes that

both the training set and the test set abound in target GO

information, that’s, the training proteins and the test protein by

themselves contain rich GO information before incorporating the

homolog GO information. We call this case MLMK-TLM-I. As

shown in MLMK-TLM-I section of Table 1, MLMK-TLM achieves

87.04% accuracy and 0.8606 MCC on Hum-mPLoc 2.0 human

protein data, significantly outperforming the baseline Hum-mPLoc

2.0 62.7% [5]. Actually, Hum-mPLoc 2.0 aggregated the target

protein’s GO information together with the homolog GO informa-

tion to train classifier, thus the overall accuracy 62.7% is the

model’s optimistic performance. The optimal hyper-parameter

setting is (H~1; c~2{1; C~28), where H~1 means that only

one homolog GO information is transferred to the target protein.

The high MCC value (0.8606) implies that MLMK-TLM achieves

good predictive balance among the 14 human protein subcellular

locations. We can see from MLMK-TLM-I section of Table 1 that

MLMK-TLM achieves good model performance one most

subcellular locations, even the small Peroxisome (SP = 0.9750;

SE = 0.8298; MCC = 0.8983) and Microsome (SP = 0.9500;

SE = 0.7917; MCC = 0.8665). MLMK-TLM relatively underper-

forms on the small subcellular locations: Endosome (SP = 0.9167;

SE = 0.4583; MCC = 0.6467) and Synapse (SP = 1.0000;

SE = 0.5455; MCC = 0.7375). The poor performance may result

from the sources: (1) small number of training proteins; (2) the

target GO information is not as rich as the other subcellular

locations; (3) the homolog GO information may be more divergent.

2.2 Moderate case: training set abounds in target GO

information while test set contains no target GO

information. The most common scenario we encounter may

be that we have a plenty of well-annotated training proteins and

need to label some novel proteins at hand. We call the scenario as

moderate case, referred to as MLMK-TLM-II. Novel proteins

generally have no GO information at all. Most of the existing

GO-based models except the work [26] ignored performance

estimation in this case. Once the proposed models work in such a

scenario, the performance may not be as optimistic as reported.

Therefore, experiments should be expressly designed for the

moderate case to test MLMK-TLM’s applicability to novel proteins.

The test procedure for moderate case seems more complicated

than that for optimistic case, because the proteins in the test set have

no target GO information. Thus, the three target test kernels

KTest
Tc

~exp(cDX Test
Tc

(x){X Train
Tc

D2),c[fP,F ,Cg can not be derived,

because X Test
Tc

(x) is null (superscript Test denotes test set and Train

denotes training set). For the reason, we substitute the homolog GO

feature vector of test protein for its target GO feature vector to

calculate the test kernel as follows:

KTest
Tc

~exp(cjX Test
Hc

(x){X Train
Tc
j2); KTest

Hc

~exp(cjX Test
Hc

(x){X Train
Hc
j2),c[fP,F ,Cg

ð13Þ

As shown in MLMK-TLM-II section of Table 1, MLMK-TLM

achieves 85.22% accuracy and 0.8411 MCC on the benchmark

data, still significantly outperforming the baseline Hum-mPLoc 2.0

62.7% [5] and nearly 2% lower than the optimistic case (87.04%

Table 3. Multi-labelling evaluation for moderate case.

Multiplex
Locations Size Label Hit Rate PLMR Non-target Label Hit Rate

0 1 2 3 4 1 2 3 4

2 480 4.37% 38.75% 56.87% 0 0 38.75% 22.29% 9.38% 3.96% 0.63%

3 43 0 25.58% 48.84% 25.58% 0 9.30% 20.93% 25.58% 2.33% 0

4 3 0 33.33% 33.33% 33.33% 0 0 33.33% 33.33% 0 0

doi:10.1371/journal.pone.0037716.t003

Table 4. Multi-labelling evaluation for pessimistic case.

Multiplex
Locations Size Label Hit Rate PLMR Non-target Label Hit Rate

0 1 2 3 4 1 2 3 4

2 480 3.75% 38.12% 58.13% 0 0 34.58% 24.58% 11.67% 4.79% 2.50%

3 43 0 25.58% 41.86% 32.56% 0 9.30% 25.58% 18.60% 11.63% 0

4 3 0 33.33% 0 66.67% 33.33% 0 0 33.33% 0 33.33%

doi:10.1371/journal.pone.0037716.t004
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accuracy; 0.8606 MCC). Except for small performance decrease,

MLMK-TLM-II demonstrates similar behaviour to MLMK-TLM-I

(predictive balance and relative poor performance on Endosome &

Synapse, see the underscored SE measures). The results show that

MLMK-TLM is convincingly applicable to novel protein predic-

tion, and the performance decrease shows that it is necessary to

expressly report the model performance in moderate case.

2.3 Pessimistic case: both training set and test set contain

no target GO information. In this section, we study an

extreme case, called pessimistic case, where a protein subfamily or

species is not GO-annotated at all, that’s, we know nothing about

the protein subfamily or species but the protein sequence

information. The key point is whether the homolog GO

information is informative enough to train an effective prediction

model for the protein subfamily or species we know little about. To

validate the point, we assume that at least one GO-annotated

homolog can be queried for the target protein, which is not

restrictive with the rapid progress of GOA database [12]. If

experimental results support the idea, MLMK-TLM will gain much

wider application. Different from the optimistic case and the moderate

case, the pessimistic test procedure contains only three homolog GO

kernels with target GO kernels missing.

As shown in MLMK-TLM-III section of Table 1, MLMK-TLM

achieves 83.97% accuracy and 0.8277 MCC on the benchmark

data, significantly outperforming the baseline Hum-mPLoc 2.0

62.7% [5], nearly 3% lower than the optimistic case (87.04%

accuracy; 0.8606 MCC) and nearly 1.5% lower than the moderate

case (85.22% accuracy; 0.8411 MCC). Similarly, MLMK-TLM-II

demonstrates similar behaviour to MLMK-TLM-I & MLMK-TLM-

I (predictive balance and relative poor performance on Endosome &

Synapse, see the underscored SE measures). The results show that

MLMK-TLM is applicable to novel protein prediction for the

protein subfamily or species that we know little about.

3. Optimal number of homologs
Homolog is a good bridge for knowledge transfer between two

evolutionarily- related protein subfamilies, super-families or

species. However, biological evidences demonstrate that divergent

homologs are subjected to different subcellular localization

patterns from the target protein (see Figure 1), thus incorporating

divergent homologs would leads to negative transfer and do harm to

model performance. Thus, it is highly required to quantitatively

study how much homolog GO information should be transferred to

the target protein. Most of the existing Homolog-GO-based models

except the work [26] seldom conducted the quantitative analysis.

Because the homolog space is generally quite huge, the model

selection is unendurably long if the hyper-parameter H is large, so

we empirically define the homolog search space as 7 homologs

with the most significant E-value.

As shown in Figure 2, the optimal number of homologs is 1 for

optimistic case (MLMK-TLM-I), moderate case (MLMK-TLM-II), and

pessimistic case (MLMK-TLM-III). The model performance slightly

decreases for the optimistic case (MLMK-TLM-I) with the incorpo-

ration of more homologs, while the model performance decreases

Table 5. Multi-labelling evaluation—perfect label match.

Protein Accessions

Optimistic case
[. = 0.09]

Q9UHB9;Q9UBQ5;Q9BT78;Q6SJ96;Q86W56;Q14145;Q9GZM5;Q9ULJ6;Q96Q15;Q15025;P06734;Q9NTJ3;O95391;Q92973;Q9UNS2;Q53HL2;Q9BZ
Z5;O43592;Q13352;Q9UHD9;Q9UHB6;Q9UQ80;P61221;Q9C0E2;P61011;P35520;O43324;Q9UI26;Q14738;P04792;Q9NYL5;Q7L7V1;Q86VP3;Q153
92;Q7Z699;Q07954;Q13421;P11532;Q15004;Q12794;Q9P1T7;Q96QU8;Q9GZU1;Q9UKA2;O95070;P00488;O95153;Q12830;P16989;Q9Y6A2;Q929
34;O60869;Q8N2I9;Q8N488;P38936;P16442;Q14493;Q9Y282;Q9HAP2;Q92551;Q9Y3C4;Q9NS86;Q96DU7;Q14978;P07954;Q9NXE4;P37840;Q9NR
A8;P15907;Q08211;O76054;Q02880;O95997;Q8TEM1;P24071;Q969M3;Q9Y251;O95406;Q8NFM7;Q8WXI7;P14060;Q92820;P30519;Q96S99;Q7Z4
17;O95163;P23490;Q9BUP3;Q96Q89;Q96FX2;Q9Y6K9;O43157;O75533;Q49AN0;O75312;P56693;O60921;O95456;Q9Y6Q9;Q9BZG8;Q8N668;Q86X
55;P35052;Q86UB2;Q99436;P29728;Q96PL5;Q9NY26;O14492;O15360;O75419;Q15020;P31512;O95273;Q8TEQ6;Q96PM5;Q9UNY4;O14980;Q9BV
57;Q92681;Q6AZY7;O95479;Q9NZ42;O43174;Q93084;P20309;Q71F23;Q08J23;Q99519;Q86UW9;Q49MI3;P52630;P62826;Q00597;P61457;O0062
8;P60900;Q9H8E8;Q96C86;Q9BZJ0;Q9H8T0;Q9UKT4;Q12934;Q06787;Q13485;Q8IVL5;Q6RW13;Q8IWL8;Q13363;Q9Y314;P55060;Q9GZY1;O9545
3;Q07955;Q8WXG1;Q9C000;Q6IMN6;Q13765;O94829;Q9BRS8;O75365;P13987;O15354;Q9NSB8;Q14512;Q8TC92;Q96BI3;Q9NPH3;Q14703;P7832
9;Q04656;P58340;Q15276;O75884;Q7L5N1;Q969Q6;Q96KS0;Q86UA6;Q9NQW1;Q13098;Q7Z4G1;Q9BWU0;Q9BWS9;P21580;Q9UN88;Q13868;Q9
NPD3;O14929;O15304;P61960;Q15650;Q13231;Q9NXR7;Q86YF9;P08684;Q9NWZ8;Q9BPZ7;P50748;Q03933;Q9NYF8;Q9Y397;Q96FF9;Q14534;P5
0542;Q00978;Q9H9T3;Q11203;O75881;Q9Y6K0;Q9P212;P43681;O43493;Q9UM00;

Moderate case
[. = 0.08]

Q9UHB9;Q9UBQ5;Q9BT78;Q6SJ96;Q86W56;Q9GZM5;Q9ULJ6;O43663;Q96Q15;Q15025;Q9NTJ3;O95391;Q92973;Q9UNS2;Q53HL2;Q8IZY2;Q9BZZ
5;O43592;Q13352;Q9UHB6;Q9UQ80;Q9C0E2;P22059;P61011;P35520;O43324;Q9UI26;Q14738;P04792;Q9NYL5;Q7L7V1;Q86VP3;Q15392;Q9UHK6
;Q7Z699;P08962;Q15004;Q12794;Q9P1T7;Q96QU8;Q9GZU1;Q9UKA2;O95070;P00488;O95153;Q12830;P16989;Q13316;Q9Y6A2;Q92934;O60869;
Q8N2I9;Q8N488;P38936;P16442;Q14493;Q9Y282;Q9HAP2;Q92551;Q9Y3C4;Q9NS86;Q96DU7;Q14978;P07954;Q9NXE4;Q9Y5Z9;P37840;Q9NRA8;
P15907;Q08211;O76054;Q02880;O95997;Q8TEM1;Q969M3;Q9Y251;O95406;Q8WXI7;P14060;Q92820;P30519;Q96S99;Q7Z417;O95163;Q9BUP3;
Q96Q89;Q96FX2;Q9Y6K9;O75533;Q49AN0;O75312;P56693;O60921;O95456;Q9Y6Q9;Q9BZG8;Q8N668;Q86X55;P35052;Q86UB2;Q99436;Q96PL5;
O15360;O75419;Q15020;O95273;Q8TEQ6;Q96PM5;Q9UNY4;O14980;Q9BV57;Q92681;O95479;Q9NZ42;O43174;Q8ND25;P20309;Q71F23;Q08J23;
Q99519;Q86UW9;P52630;P62826;Q00597;P61457;O00628;Q9H8E8;Q96C86;Q9BZJ0;Q9UKT4;Q12934;Q06787;Q13485;Q6RW13;Q8IWL8;Q13363;
Q9Y314;P55060;Q9GZY1;O95453;Q07955;Q9C000;Q13765;O94829;Q9BRS8;O15354;Q9NSB8;Q14512;Q8TC92;Q96BI3;Q9NPH3;Q14703;P78329;P
58340;Q15276;O75884;Q7L5N1;Q969Q6;Q96KS0;Q86UA6;Q92624;Q13098;Q7Z4G1;Q9BWU0;Q9BWS9;P21580;Q13868;Q9NPD3;O14929;P61960;
Q15650;Q13231;Q9NXR7;Q86YF9;P08684;Q03135;Q9NWZ8;Q9BPZ7;P50748;Q03933;Q9NYF8;Q9Y397;Q96FF9;Q14534;P50542;Q00978;Q11203;
O75881;Q9Y6K0;Q9P212;

Pessimistic case
[. = 0.07]

Q9UBQ5;Q9BT78;Q6SJ96;Q86W56;Q9ULJ6;O43663;Q96Q15;Q15025;P06734;Q9NTJ3;O95391;Q92973;Q9UNS2;Q53HL2;Q9BZZ5;O43592;Q13352;
Q9UHB6;Q9UQ80;Q9C0E2;P61011;P35520;O43324;Q9UI26;Q14738;P04792;Q9NYL5;Q7L7V1;Q15392;Q9UHK6;Q7Z699;P11532;Q15004;Q12794;
Q9P1T7;Q96QU8;Q9UKA2;A5X5Y0;P00488;O95153;Q12830;P16989;Q9Y6A2;Q92934;O60869;Q8N488;P38936;P16442;Q14493;Q9HAP2;Q92551;
Q9Y3C4;Q9NS86;Q96DU7;Q14978;P07954;Q9NXE4;Q9Y5Z9;P37840;Q9NRA8;P15907;Q08211;O76054;Q02880;O95997;Q9UKL3;P24071;Q969M3;
Q9Y251;O95406;Q92820;P30519;Q96S99;Q7Z417;O95163;Q9BUP3;Q96Q89;Q96FX2;O75533;Q49AN0;P56693;O60921;O95456;Q9Y6Q9;Q9BZG8;
Q86X55;P35052;P58335;Q86UB2;Q99436;Q96PL5;O15360;O75419;Q15020;O95273;Q8TEQ6;Q96PM5;Q9UNY4;O14980;Q9BV57;Q92681;Q9NZ42;
O43174;P20309;Q71F23;Q08J23;Q86UW9;P52630;P62826;Q00597;P61457;Q9H8E8;Q96C86;Q9BZJ0;Q08378;Q9UKT4;Q06787;Q13485;Q8IWL8;Q
13363;Q9Y314;P55060;O95453;Q07955;Q9C000;Q6IMN6;Q13765;O94829;Q9BRS8;Q9UKT7;P49721;Q14512;Q8TC92;Q96BI3;Q9NPH3;Q14703;P8
329;Q04656;P58340;O75884;Q7L5N1;Q969Q6;Q96KS0;Q86UA6;Q92624;Q13439;Q13098;Q7Z4G1;Q9BWU0;Q9BWS9;P21580;Q13868;Q9NPD3;O
14929;P61960;Q13231;Q9NXR7;P08684;Q9NWZ8;P50748;Q03933;Q9NYF8;Q9Y397;Q96FF9;Q14534;Q00978;Q53QV2;Q9H9T3;Q11203;O75881;

doi:10.1371/journal.pone.0037716.t005
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sharply for the moderate (MLMK-TLM-II) & pessimistic case

(MLMK-TLM-III). When the number of homologs reaches 7,

the accuracy sharply drops about 15% for moderate & pessimistic

case. We can see that divergent homologs adversely contribute little

to the optimistic case, partly because the target protein’s own GO

information can counteract the unfavourable impact of the

divergent homolog GO information. For the moderate & pessimistic

case, the unfavourable divergent homolog GO information greatly

deteriorates the model performance. From the results, we can

safely conclude that it is highly necessary to quantitatively study

how much homolog GO information should be transferred to the

target protein.

It is worthy noting that the pessimistic case contains no target GO

information but slightly outperforms the moderate case beyond our

expectation (except at the first & second points of the curve in

Figure 2). The reason may be that the substitution of the homolog

GO feature vector for the target GO feature vector results in the

slight performance deterioration (see Formula 13).

Table 6. Multi-labelling evaluation—non-perfect label match.

True Subcellular Locations Predicted Subcellular Locations

Optimistic Case
[. = 0.09]

O43663 Cytoplasm; Nucleus Nucleus[0.471]; Cytoplasm[0.365]; Cytoskeleton[0.136]

Q92797 Cytoskeleton; Nucleus Nucleus[0.470]; Cytoplasm[0.257]; Plasma membrane[0.129]

Q92597 Cytoplasm; Nucleus; Plasma membrane Nucleus[0.588]; Cytoplasm[0.333]

P30533 Cytoplasm; Endoplasmic reticulum Endoplasmic reticulum[0.237]; Cytoplasm[0.229]
Nucleus[0.115]; Plasma membrane[0.181]

Q9HD36 Mitochondrion; Nucleus Nucleus[0.562];Mitochondrion[0.160];Cytoplasm[0.156]

P22059 Cytoplasm; Golgi apparatus Golgi apparatus[0.837]

Q86YR5 Endoplasmic reticulum; Golgi apparatus Golgi apparatus[0.454]; Endoplasmic reticulum[0.316];
Cytoplasm[0.091]

P41222 Endoplasmic reticulum; Golgi apparatus; Nucleus Endoplasmic reticulum[0.237]; Nucleus[0.207]
Extracell[0.146]; Cytoplasm[0.143]; Golgi apparatus[0.107];

Moderate Case
[. = 0.08]

P15941 Cytoplasm; Nucleus Plasma membrane[0.467]; Nucleus[0.178]; Cytoplasm[0.145]

Q14145 Cytoplasm; Nucleus Cytoplasm[0.520]; Nucleus[0.292]; Endoplasmic reticulum[0.089]

Q86YR5 Endoplasmic reticulum; Golgi apparatus Golgi apparatus[0.371]; Endoplasmic reticulum[0.272];
Cytoplasm[0.129];Plasma membrane[0.124]

P41222 Endoplasmic reticulum;Golgi apparatus
Nucleus

Nucleus[0.257];Endoplasmic reticulum[0.214]; Cytoplasm[0.166];
Extracell[0.103]; Golgi apparatus[0.098]

Q96JC1 Cytoplasm; Lysosome Lysosome[0.676]; Endosome[0.208]

Q96EY5 Cytoplasm; Nucleus Nucleus[0.223]; Endosome[0.202]; Golgi apparatus[0.121]
Cytoskeleton[0.092]

Q86WA9 Endoplasmic reticulum;Golgi apparatus
Plasma membrane

Lysosome[0.642]; Endoplasmic reticulum[0.136]
Plasma membrane[0.101]

Q9NWZ5 Cytoplasm; Nucleus Endoplasmic reticulum[0.459]; nucleus[0.320]; Cytoplasm[0.133]

Pessimistic Case
[. = 0.07]

Q9UHD9 Cytoplasm; Nucleus Endoplasmic reticulum[0.315]; Nucleus[0.284]; Cytoplasm[0.202]

P30533 Cytoplasm; Endoplasmic reticulum Endoplasmic reticulum[0.250]; Cytoplasm[0.237]
Nucleus[0.151]; Plasma membrane[0.139]

Q86YR5 Endoplasmic reticulum;Golgi apparatus Golgi apparatus[0.421]; Endoplasmic reticulum[0.202]
Cytoplasm[0.136]; Plasma membrane[0.106]

Q9NX74 Cytoplasm; Endoplasmic reticulum Endoplasmic reticulum[0.273]; Cytoplasm[0.271]
Mitochondrion[0.247]

P41222 Endoplasmic reticulum;Golgi apparatus
Nucleus

Nucleus[0.224]; Endoplasmic reticulum[0.197];
Cytoplasm[0.184]; Extracell[0.126];Golgi apparatus[0.077]

Q96EY5 Cytoplasm; Nucleus Nucleus[0.246]; Endosome[0.154]; Cytoskeleton[0.095]; Golgi
apparatus[0.119];Plasma membrane[0.094]; Endoplasmic
reticulum[0.075]

P42858 Cytoplasm; Nucleus Nucleus[0.285]; Cytoplasm[0.216]; Endoplasmic reticulum[0.071]
Golgi apparatus[0.074]; Plasma membrane[0.096]

Q9Y613 Cytoplasm; Cytoskeleton Cytoskeleton[0.530]; Cytoplasm[0.146]; Nucleus[0.111]

Illustrations:
[1] True Subcellular Locations : denotes the labels from Hum-mPLoc 2.0 dataset (GOA database version 70.0 released March 10 2008);
[2] Cytoskeleton[0.136]:the label NOT included in the original Hum-mPLoc 2.0 dataset, but validated TRUE by the latest Swiss-Prot database (http://www.uniprot.org/uniprot/
UniProt release 2011_11 Nov 16, 2011), where [0.136] denotes the probability that the protein is assigned to the label Cytoskeleton;
[3] Nucleus[0.115]: Non-target Label Hit (wrong prediction), NOT validated by the latest Swiss-Prot database (http://www.uniprot.org/uniprot/ UniProt release 2011_11 Nov
16, 2011), where [0.115] denotes the probability that the protein is assigned to the label Nucleus;
doi:10.1371/journal.pone.0037716.t006
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4. Kernel weight distribution
The GO kernel weights are evaluated using 3-fold cross

validation as described in Section 3 of Methods, rather than 5-

fold cross validation as GO-TLM [25] conducted, because the

additional hyper-parameter H makes the model selection more

time-consuming. Actually, to evaluate the model performance, we

conduct two-level cross validation: the outer 5-fold cross validation

uses the whole dataset to evaluate performance, and the inner 3-

fold cross validation uses the training set from the outer cross

validation to estimate the kernel weights. Similar to GO-TLM [25]

and MK-TLM [26], the kernel weight distributions yielded from

the outer 5-fold cross validation is quite similar, so we choose one

typical kernel weight distribution to illustrate the GO kernels’

contribution to the model performance.

As shown in Figure 3, the x axis denotes the six GO kernels,

where T denotes target, H denotes homolog, F, C and P denote the

three aspects of gene ontology (molecular function, cellular

compartment and biological process), respectively. We can see

that both the optimistic case and the moderate case have similar kernel

weight distributions on the benchmark dataset, while the pessimistic

case is similar to the homolog GO kernel weight distribution of the

optimistic case and the moderate case (see the latter part of curve in

Figure 3) (the pessimistic case contains only three homology GO

kernels in that the target protein’s GO information is missing). No

matter the target GO kernels or the homolog GO kernels, C

(cellular component) demonstrates much higher kernel weight. For

optimistic case and moderate case, both the target GO kernels and the

homolog GO kernels make equivalent contribution to the model

performance (compare the former half part and the latter half part

of the curve in Figure 3). From the results, we can conclude that

the homolog knowledge transfer is instrumental to novel target

protein research.

5. Multi-labelling estimation
As stated in Section 4 of Methods, MLMK-TLM can yield the

probability outputs from Formula 11. We can assign to the test

protein the subcellular locations whose predicted probability is

greater than the optimal probability threshold. The threshold

setting should achieve rational balance between higher LHR (Label

Hit Rate) & PLMR (Perfect Label Match Rate) and lower NT-LHR

(Non-target Label Hit Rate) defined by Formula 12 in Section 5 of

Methods. Generally, higher LHR & PLMR also implies higher NT-

LHR. In the work, the optimal probability threshold is selected

from f0:06,0:07,0:08,0:09,0:10,0:15,0:2g. Besides LHR, PLMR

and NT-LHR (Table 2 thru. Table 4), we also list some proteins of

perfect label match (Table 5) and non-perfect label match (Table 6) to

demonstrate MLMK-TLM’s multi-labelling ability. Interestingly,

some non-target label hits in terms of the original Hum-mPLoc 2.0

dataset (GOA database version 70.0 released March 10 2008) are

validated as TRUE LABEL (Correct Prediction) by the latest Swiss-Prot

database (UniProt release 2011_11 Nov 16, 2011, http://www.

uniprot.org/) (see Table 6).

As shown in Table 2 thru. Table 4, MLMK-TLM achieves

58.54%, 27.19% and 0 LHR (called complete label hit rate CLHR, in

bold font) for 2, 3 and 4 multiple subcellular locations (optimistic

case), respectively (see Table 2); 56.87%, 25.58%% and 0 LHR

(CLHR, in bold font) for moderate case (see Table 3); and 58.13%,

32.56% and 33.33% LHR (CLHR, in bold font) for pessimistic case

(see Table 4). The results seem much more promising than 24.3%

for 2-label hit rate, 3.6% for 3-label hit rate and 6.7% for 4-label

hit rate, reported in the work [40]. The complete label hit rate (CLHR)

for pessimistic case seems better than the optimistic& moderate case,

because of the probability thresholds: 0.09 for optimistic case, 0.08

for moderate case and 0.07 for pessimistic case. Relax probability

threshold would yields higher Label Hit Rate (LHR), but would

yields higher Non-target Label Hit Rate (NT-LHR) at the same time.

From Table 2 to Table 4, we can see that the pessimistic case shows

higher NT-LHR than the optimistic& moderate case. The complete label

hit means that all the true labels are correctly hit by the prediction,

but it can not measure the model’s misleading tendency, because

the prediction is still likely to hit non-target labels. Perfect Label

Match Rate (PLMR) is the perfect measure that demonstrates the

model’s multi-labelling ability with zero misleading tendency. As shown

thru. Table 2 to Table 4, we can see from PLMR measure that the

optimistic case is the best (42.92%, 13.95%, 33.33%), the moderate

case the second (38.75%, 9.30%, 0) and the pessimistic case the

third (34.58%, 9.30%, 0). We can see that even MLMK-TLM’s

Perfect Label Match Rate is much better than the Partial Label Match

Rate that was reported in the work [40]. Table 5 lists all the

proteins of perfect label match in optimistic, moderate and pessimistic case,

and the detailed probability outputs for the perfect label match

proteins see Supporting Information (File S1 for optimistic case, File

S2 for moderate case and File S3 for pessimistic case).

To further demonstrate MLMK-TLM’s multi-labelling ability,

we list some proteins of non-perfect label match in Table 6 to show

how the prediction varies from the true labels. Table 6 takes only 8

proteins for example and the full list of non-perfect label match

proteins see Supporting Information (File N S1 for optimistic case,

File N S2 for moderate case and File N S3 for pessimistic case). Take

protein O43663 in the optimistic case as an example, O43663 is

labelled Cytoplasm & Nucleus in the original Hum-mPLoc 2.0 dataset

[5] (GOA database version 70.0 released March 10 2008), and the

prediction not only hits the two true labels but also hit a non-target

label Cytoskeleton with probability 0.136. From the latest Swiss-Prot

database (UniProt release 2011_11 Nov 16, 2011, http://www.

uniprot.org/), we can see that Cytoskeleton is truly assigned to

protein O43663. The non-target labels validated as TRUE Label

are underlined in Table 6. We can see that there are many

underlined TRUE Labels in Table 6 for optimistic, moderate and

pessimistic case. For example, Cytoplasm [0.166] & Extracell [0.103]

for P41222 in the moderate case; Endoplasmic reticulum [0.071], Golgi

apparatus [0.074] & Plasma membrane [0.096] for P42858 in the

pessimistic case, etc., where the square bracketed number denotes

probability. The underlined TRUE Labels demonstrates MLMK-

TLM’s generalization ability rather than misleading tendency.

Actually, MLMK-TLM’s misleading tendency is lower than the

NT-LHR measures in Table 2 to Table 4 according to the latest

Swiss-Prot database. No training proteins in Hum-mPLoc 2.0 dataset

[5] are subjected to the subcellular localization pattern (Nucleus,

Cytoplasm, Endoplasmic reticulum, Golgi apparatus, Plasma membrane) as

P42858, whereas MLMK-TLM can correctly hit the five labels with

different confidence levels, which is hard to achieve by the nearest

neighbour based multi-label classifiers [19,28,29,30], because the

classifiers assigned to the query protein the labels that belong to

the nearest training protein(s). Hum-mPLoc 2.0 web server (http://

www.csbio.sjtu.edu.cn/bioinf/hum-multi-2/) labels O43663,

P41222 and P42858 as follows: (1) O43663: Nucleus, without hitting

Cytoplasm & Cytoskeleton; (2) P41222: Endoplasmic reticulum, Golgi

apparatus and Nucleus, without hitting Cytoplasm & Extracell; (3)

P42858: Cytoplasm, Golgi apparatus and Nucleus, without hitting

Endoplasmic reticulum & Plasma membrane.

For both the moderate and the pessimistic case, the test proteins’

own GO information is removed for the simulation of novel

proteins, whereas MLMK-TLM can correctly predicts the test

proteins’ true labels and underlined TRUE Labels as illustrated in

Table 2 to Table 6. The results show that MLMK-TLM has a

good multi-labelling ability for novel multiplex human proteins.

From Table 6, we also can see MLMK-TLM shows a certain

Multi-Label Multi-Kernel Transfer Learning
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misleading tendency, for example, Nucleus [0.115] & Plasma

membrane [0.181] for P30533 in the optimistic case; Endoplasmic

reticulum [0.089] for Q14145 in the moderate case; and Endoplasmic

reticulum [0.315] for Q9UHD9 in the pessimistic case, etc. Hum-

mPLoc 2.0 web server (http://www.csbio.sjtu.edu.cn/bioinf/hum-

multi-2/) labels P30533, Q14145 and Q9UHD9 as follows: (1)

P30533: Plasma membrane, Endoplasmic reticulum and Extracells,

hitting non-target labels Plasma membrane & Extracells; (2) Q14145:

Cytoplasm and Endoplasmic reticulum, hitting non-target label Endoplas-

mic reticulum; (3) Q9UHD9: Cytoplasm, Endoplasmic reticulum and

Nucleus, hitting non-target label Endoplasmic reticulum. Misleading

tendency is an important factor that should be given attention for

multi-label learning scenario. The advantage of probability

outputs is to inform the biologists of the confidence level of each

subcellular location, and thus help biologists make a rational

decision.

Discussion

In this paper, we propose a multi-label multi-kernel transfer

learning model for human protein subcellular localization

(MLMK-TLM), which o further extends our published work GO-

TLM and MK-TLM to multi-label learning scenario, such that

MLMK-TLM has the following advantages over the existing GO-

based models [2,4,5,14,15,16,17,18,19,20,21,22,23,24,25,26]: (1)

proper homolog knowledge transfer with rational control over

noise from divergent homologs; (2) comprehensive survey of

model performance for novel protein; (3) multi-labelling capabil-

ity with probability interpretation. As compared to single-label

learning, multi-label learning is more complicated. In our work,

we propose a multi-label confusion matrix and adapt one-against-

all multi-class probabilistic outputs to multi-label learning

scenario; meanwhile, we formally propose three multi-label

learning performance measures: LHR (Label Hit Rate), PLMR

(Perfect Label Match Rate) and NT-LHR (Non-target Label Hit Rate).

NT-LHR is formally formulated to measure the model’s

misleading tendency. The experiments show that MLMK-TLM

significantly outperforms the baseline model and demonstrates

good multi-labelling ability for novel human proteins. Some

findings (predictions) are validated by the latest Swiss-Prot

database.
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