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Abstract

Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-
protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of
proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI
sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the
interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we
simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-
covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known
structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps
specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432
proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation
coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677,
and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best
predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing
size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface
regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical
complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites
can be predicted correctly with the physicochemical complementarity features based on the non-covalent interaction data
derived from protein interiors.
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Introduction

Proteins perform essential functions in biological systems

through recognizing their protein partners and by forming

permanent or transient protein complexes. Computational

predictions of the protein-protein interaction (PPI) sites on protein

surfaces can provide insights into the biological functions of the

proteins at the proteomics level and into the sequence-function

relationships critical in identifying key targets for therapeutics

development. Works on PPI site prediction and analysis have been

summarized in many recent reviews [1,2,3,4,5,6,7].

Protein-protein interactions have been perceived as a process

driven in large part by hydrophobic interactions in the core

interfaces and by polar interactions in the interface rims. The core

interface regions are tightly packed as in protein interior with key

residues that are mostly hydrophobic in nature (except for Arg,

which is also frequently observed in PPI sites) [8,9,10,11].

Energetically, only a few buried hot-spot residues in the PPI sites

are responsible for the protein binding free energy (see review [12]

and references therein). The rim regions surrounding the PPI core

interfaces are integral parts of the PPI sites [8,13], but the interface

packing in these regions are loose with water molecules frequently

observed bridging the interfaces [14]. The hydrophilic nature of

the rim regions is largely indistinguishable from the hydrophilic

property of the overall protein surfaces [10]. Although the trends

in physicochemical and geometrical complementarity in the PPI

interfaces have been demonstrated in many analyses [10],

identifying clear determinants that correlate with the surface

regions mediating PPIs remains challenging [3,4]. This is

particularly true for the protein surfaces mediating non-obligated

protein-protein interactions [15].
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Computational algorithms have been developed for PPI site

predictions. A large portion of these methods are based on

information embedded in amino acid sequences and on evolu-

tionary information derived from multiple sequence alignments of

homologues in the sequence databases [16,17,18,19,20,21,22]. In

addition, prediction algorithms combining sequence and structure

information have also shown successes in identifying PPI sites

[3,23,24,25,26,27]. Structural features are taken into account for

better predictive capability as structure conservation is one of the

important factors among interfaces [28]. Moreover, Murakami

and Jones characterized surface patches with six physicochemical

properties and then linearly combined the six values for a final

score as PPI interface [29]. Negi and Braun used a clustering

method on surface residues based on amino acid interface

propensity scale for interface prediction [30]. Kufareva et al.

devised 12 physical descriptors for surface patches along with a

partial least square regression to predict PPI interfaces [31].

Overall, combining various sequence and structural features in

training machine learning models has been succeeded to an extent

in predicting PPI sites, but the PPI site predictions remain

challenging with considerable difficulties [3].

The three-dimensional arrangement of amino acid residues in

the PPI sites determines the affinity and specificity of the protein

interactions, and hence the complementarities of surface geometry

and physicochemical nature of the PPI interfaces are expected to

be critical determinants in PPIs. Following this rationale, Sacquin-

Mora et al. employed a rigid-body, coarse-grain docking method

to detect interfaces within a small dataset [32]. A large scale PPI

site prediction with docking algorithms has also been carried out

recently by Wass et al., [33]. While the three-dimensional protein-

protein complex model structures are likely to be predicted

incorrectly, it has been found that the location of the PPI sites can

be reasonably predicted with the docking algorithms [1]. The

downsides of the docking algorithms are that exploring the large

conformation space consumes huge computational resources and

that binding geometry evaluations based on various ranking

systems are not clearly effective in distinguishing the actual

structures from a large set of possibilities. Template-based

prediction approaches reduce the solution space of the docking

approaches [2] on the premise that PPI sites are relatively

conserved throughout proteins with similar sequence and struc-

tural features [28]. With the template-based approaches, high-

throughput modeling of PPI sites based on protein docking have

been shown with accuracy feasible for low to medium resolution

models [34].

The successes of the current prediction methods, albeit limited

in accuracy, have indicated that not only sequence and structural

features of the query proteins are critical determinants for PPI

sites, the physicochemical complementarities of the partner

surfaces are also important factors in predicting the interface

locations. But for most of the proteins, the complementarity

information is unavailable without knowing the binding partners

and the binding interfaces, which are the targets of the PPI site

predictions in the first place. In this work, we circumvent the

difficulty by simulating the binding surface physicochemical

complementarity with three-dimensional probability density maps

(PDMs), which were derived based on the distributions of non-

covalent interacting atoms in protein interiors. The PDMs provide

information of possible interacting atoms from the protein partners

in the PPI interfaces, because the PPI interface cores share similar

amino acid composition with protein interiors [10]. The PDMs

were encoded into numerical features to train machine learning

algorithms coupled with bootstrap aggregation (bagging) tech-

niques [35]. One machine learning model was trained for each of

the 30 protein atom types. The trained models were then used to

predict PPI sites by integrating the prediction results for all the

protein surface atoms on the query proteins. Five-fold cross

validation was carried out with the training set composed of 432

non-redundant proteins. The cross validation yielded overall

residue-based MCC (Matthews correlation coefficient) of 0.424.

An independent group of 142 proteins was used as the test set. The

residue-based MCC for the independent test set was 0.423, and

the residue-based accuracy, precision, sensitivity, specificity were

0.753, 0.519, 0.677, and 0.779 respectively. The results are among

the best predictions for PPI sites, indicating that the physico-

chemical complementarity derived from PDMs for protein

interaction interfaces is a critical determinant for protein-protein

interactions.

Results and Discussion

Statistical Analysis of Physicochemical
Complementarities in Known PPI Interfaces

It has been well-established that geometrical and physicochem-

ical complementarities are critical determinants in PPI interfaces

[11]. The amino acid preferences and packing density for PPI core

interfaces resemble those of protein interior [7,10]. The physico-

chemical complementarities among interface residues are charac-

terized by hydrophobic interactions in the core interface regions

and polar interactions in the rim regions of the interfaces

[8,9,10,13,36,37]. Based on the general description of typical

PPI interfaces, we hypothesized that the distribution patterns of

the non-covalent interacting atoms on a PPI surface should

provide abundant information in distinguishing PPI surface

regions from non-PPI surface regions.

Figure 1 demonstrates the validity of the hypothesis above. The

physicochemical complementarities around the protein surface

atom i were simulated with the PDMs of non-covalent interacting

atoms and were described with the 32 numerical features

calculated with Equation (2) (i.e., Ai,j for interacting atom type

j = 1,31 as shown in Table 1; j = 32 derived from protein surface

geometry). The matrix element (j,i) in Figure 1 shows the Mann-

Whitney U-test result for the two groups of Ai,j: one group of Ai,j

was calculated for the interacting atom type j around the surface

atom type i in the known PPI sites on proteins in the S432 dataset

and the other group was calculated for the same interacting atom

type around the non-PPI site atom type i in the same dataset. The

matrix elements showing decreasing p-value substantially less than

the statistical threshold of 0.025 are colored in red with increasing

depth. These U-test p-values reflect the significant statistical

differences in the attributes calculated from the PDMs or surface

geometry between the protein surface atoms in known PPI sites

and the atoms outside known PPI sites.

Consistency of the U-tests of the Physicochemical
Complementarity Features with Previous Statistical
Observations

The U-test results shown in Figure 1 are comparable with

general PPI site characteristics from previous statistical observa-

tions. Space around the main chain atoms (rows of y = 1,4) in PPI

sites are enriched with higher densities of interacting backbone

carbonyl group (x = 2,4) and are neighbored by higher densities of

interacting hydrophobic and aromatic carbons (x = 6,9), while

the interacting charged atoms (x = 11, 15,16, 25,28) are largely

depleted near the main chain atoms in the PPI sites. This is in

agreement with the observation that main chain atoms are

frequently used in polar interactions in PPI [9]. In particular, the

carbonyl oxygen (row of y = 4) is most frequently used in hydrogen

Protein-Protein Interaction Site Prediction
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bonding in PPI sites [9]. Aliphatic and aromatic carbons (rows of

y = 6,9) in PPI sites are surrounded with high density of

interacting aliphatic carbons, aromatic carbons, and atoms from

Met and His (x = 6,9,18,25, 27,30), while charged interacting

atoms (x = 11, in particular x = 26 for Lys Nz) are also depleted in

the PPI sites. But, interestingly, Arg (x = 15,16) remains favorable

in the PPI sites near the aromatic carbons (y = 9), in particularly

with atoms from Trp (y = 18,24,30). Arg also interacts with

carboxyl oxygen (y = 11) more in the PPI sites. This is largely in

consistent with the knowledge-based pairwise potentials devised

with protein-protein interaction datasets [11,37]. The sulfur atom

of Cys is highly enriched in the PPI sites as interacting atoms

(column x = 20), in good agreement with the high interface

propensity for Cys [38]. Interacting water molecules (column

x = 31) are more dense in PPI sites near polar atoms

(y = 1,4,10,13,16,17). This is in consistent with the statistical

survey by Rodier et al. [14], suggesting that water molecules in the

PPI interfaces play important roles in protein complex formation.

The results in the last column (column of x = 32) suggest that PPI

sites are more flat or convex than non-PPI surfaces, which is in

good agreement with the survey by Jones and Thornton [38].

Although the dataset did not provide enough statistical resolution

for rows of y = 18,30 (see the dataset distribution indicated by the

histogram next to the U-test matrix), the consistencies listed above

nevertheless suggest that the distribution patterns of the non-

covalent interacting atoms predicted with the PDMs on PPI

interfaces can provide statistical characteristics in distinguishing

the known PPI sites from the other protein surface regions that

have not been known to bind to proteins. Since the PDMs were

derived from known protein structures, the correlation between

Figure 1. Mann-Whitney U-tests for the distributions of numerical attributes around protein surface atoms. The y-axis of matrix shows
the atom type index (i = 30 protein atom types shown in Table 1) and the x-axis shows the j index for the 32 Ai,j features, where j = 1,31 represents the
31 interacting atom types shown in Table 1 and the 32nd feature reflects the local geometry of the protein surface. The matrix element (j,i) shows the
Mann-Whitney U-test p-value in color-code for the two groups of Ai,j : one group of Ai,j was calculated for the attribute type j around the surface atom
type i in the known PPI sites on proteins in the S432 dataset and the other group was calculated for the same attribute type around the non-PPI site
atom type i in the same dataset. The p-values were calculated with the Mann-Whitney U-test implemented as the function ranksum in MATLAB. Two
sets of data were input to the function and the output p-value is the probability for the two distributions of data to be statistically indistinguishable.
The plus(+) sign in the matrix element indicates that the averaged feature value for the PPI site atoms is larger than the averaged feature value for the
non-PPI site atoms and the negative(2) is the opposite. The panel on the right-hand-side of the matrix shows the distributions of protein surface
atoms in PPI sites (blue) and non-PPI protein surfaces (red) against protein atom type. The data were derived from proteins in S432.
doi:10.1371/journal.pone.0037706.g001
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the PPI interface features (Figure 1) predicted with the PDMs and

those derived from surveys of PPI interfaces also implies that both

protein folding and binding are governed by similar energetic

principles.

Atom-based PPI Site Predictions with Machine Learning
Models Based on Physicochemical Complementarity
Features

The results in Figure 1 indicate that the 31 features calculated

with PDMs (a set of example PDMs on a protein are shown in

Figure S1) and the 32nd feature based on the surface atom local

geometry for each of the 30 protein atom types can be used as

effective attributes in training machine learning models for PPI site

predictions. Machine learning algorithms ANN_BAGGING and

SVM_BAGGING were trained for each of the 30 protein surface

atom types with five-fold cross validation on the S432 dataset as

described in the Methods section. The atom-based MCCs for the

five-fold cross validation for each of the atom types are

summarized in Figure 2. The benchmarks for the prediction

models are shown in Table 2. The differences of the averaged

performance for the two machine learning algorithms are

essentially indistinguishable (Figure 2 and Table 2), and thus only

the ANN_BAGGING models with the best performance were

used to benchmark on the S142 dataset as an independent test.

The benchmark results on the independent test are compared with

the five-fold cross validation in Figure 2 and in Table 2. The

benchmark results for the independent test were comparable with

the five-fold cross validation results, indicating that the machine

learning predictors can be generalized to predict PPI sites on

protein surfaces of unknown interaction partners. Figure 2 shows

that the prediction models for the atom types from hydrophobic

residues with aliphatic and aromatic side chains (atom type

index = 8,9,18,24,30) were predicted with relatively higher

accuracies than the atom types from main chain and hydrophilic

side chains. This suggests that the core PPI interfaces composed of

hot-spot residues (except Arg) are more distinguishable as PPI sites

in comparison with the surrounding rim regions populated with

higher percentage of polar groups.

The PPI surface patches on protein surfaces were predicted by

combining the machine learning predictions for each of the surface

atoms. The activity (probability) outputs from the machine

learning models were first converted into prediction confidence

levels so that surface atoms with high confidence level predictions

can be clustered into surface patches as PPI sites (see Methods).

Figure 3 shows a few examples of protein surface PPI site

predictions, compared side-by-side with actual PPI sites, with

various prediction accuracies (residue-based MCC ranging from

0.7 to 0.1). The complete set of prediction results on the proteins

from the training and test sets can be viewed with interactive 3-D

structural presentation from the web server http://ismblab.

genomics.sinica.edu.tw/. benchmark .protein-protein.

Residue-based PPI Site Predictions with Machine
Learning Models Based on Physicochemical
Complementarity Features and the Comparison of the
Prediction Benchmarks Among Comparable Predictors

Residues in the predicted PPI surface patches were predicted

based on the atom-based PPI site predictions (see Methods) and

were benchmarked with the residues in actual PPI sites. The

example residue-based PPI site predictions are also compared side-

by-side with the atom-based predictions and the actual PPI sites in

Figure 3. The residue-based MCC for each of the amino acid

types are shown in Figure 4. The accuracy benchmarks are

summarized in Table 3. Again, the two machine learning

algorithms are comparable in terms of the prediction performance

(Table 3 and Figure 4). The generalized prediction capacity of the

ANN_BAGGING models was demonstrated with the results of the

independent test, for which the results were essentially indistin-

guishable from the results of the five-fold cross validation as shown

in Figure 4 and Table 3. Accuracy benchmarks for each protein

from the cross validation (with ANN_BAGGING and

SVM_BAGGING) and from the independent test (with AN-

N_BAGGING) are listed in Table S2, S3, and S4 respectively.

The prediction results can also be viewed in color-coded 3-D

protein structures from the web server http://ismblab.genomics.

sinica.edu.tw/. benchmark .protein-protein.

The distribution of prediction accuracy for proteins in the S432

and S142 dataset are shown in Figure 5, for which the overall

benchmark results are summarized in Table 3. The independent

Table 1. Atom types for 20 natural amino acids in proteins.

ID # Atom Type
Radius
(Å) Description

1 NH1 1.65 Backbone NH

2 C 1.76 Backbone C

3 CH1E 1.87 Backbone CA (exc. Gly)

4 O 1.40 Backbone O

5 CH0 1.76 Arg CZ, Asn CG, Asp CG, Gln CD, Glu CD

6 CH1S 1.87 Sidechain CH1: Ile CB, Leu CG, Thr CB, Val
CB

7 CH2E 1.87 Tetrahedral CH2 (except CH2P,CH2G) All CB

8 CH3E 1.87 Tetrahedral CH3

9 CR1E 1.76 Aromatic CH (except CR1W, CRHH, CR1H)

10 OH1 1.40 Alcohol OH (Ser OG, Thr OG1, Tyr OH)

11 OC 1.40 Carboxyl O (Asp OD1, OD2, Glu OE1, OE2)

12 OS 1.40 Sidechain O: Asn OD1, Gln OE1

13 CH2G 1.87 Gly CA

14 CH2P 1.87 Pro CB, CG, CD

15 NH1S 1.65 Sidechain NH: Arg NE, His ND1, NE1, Trp
NE1

16 NC2 1.65 Arg NH1, NH2

17 NH2 1.65 Asn ND2, Gln NE2

18 CR1W 1.76 Trp CZ2, CH2

19 CY2 1.76 Tyr CZ

20 SC 1.85 Cys S

21 CF 1.76 Phe CG

22 SM 1.85 Met S

23 CY 1.76 Tyr CG

24 CW 1.76 Trp CD2, CE2

25 CRHH 1.76 His CE1

26 NH3 1.50 Lys NZ

27 CR1H 1.76 His CD2

28 C5 1.76 His CG

29 N 1.65 Pro N

30 C5W 1.76 Trp CG

31 HOH 1.40 Water

The Table was derived from Laskowski et al [55] with modifications.
doi:10.1371/journal.pone.0037706.t001
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test (MCC = 0.423) for the residue-based PPI site predictions, as

shown in Table 3, can be compared with previous publications

based on the same training and test datasets. Porollo et al. [27]

developed SPPIDER predictor for PPI site residue predictions

with essential the same training and test datasets based on a

combination of structural and sequence features. Their residue-

based prediction MCC for the independent dataset is 0.42. In

another work, a detailed analysis of the sequence and structural

attributes on the same training and test datasets has concluded that

the best performance for independent PPI site residue-based

predictions yielded MCC of 0.37 on the same test set [3]. By

taking away the evolutionary information from the prediction

inputs, the MCC dropped to 0.34. Hence, the PPI site predictions

based on the physicochemical complementarities derived from the

PDMs on the protein surfaces are currently the best structure-

based predictors judging by the MCC of the residue-based

predictions. The performance of the predictors developed in this

work would be further improved if the evolutionary information of

the query proteins is to be integrated into the prediction

algorithms.

Table 4 compares the predictions results of a set of 17 test

proteins with both bound and unbound structures. As expected,

the predictions with the unbounded structures are less accurate

than the bound structures. The PPI site predictions with unbound

structures (MCC = 0.326) are about the same in prediction

accuracy as those by Porollo et al. (MCC = 0.32), while the

predictions with bound structures (MCC = 0.364) are also the

same as those by Porollo et al. (MCC = 0.36) [27]. Accuracy

benchmarks for each of the protein in S17a are shown in Table

S5. The prediction results can also be viewed in color-coded 3-D

protein structures from the web server http://ismblab.genomics.

sinica.edu.tw/. benchmark .protein-protein.

Furthermore, the prediction capacities of the predictors devised

in this work have been compared with public domain servers using

protein structures as input. The structures from the independent

test set S58 (non-redundant protein complex structures from

entries published in 2011, see Methods) were submitted to

comparable public domain servers to predict PPI sites. The

residue-based predictions were benchmarked. The overall MCC

of 0.40 of the ANN_BAGGING prediction is consistent with the

benchmark results shown in Tables 3 and 4. The detailed

prediction results are shown in Table S6. The prediction results

can also be viewed in color-coded 3-D protein structures from the

web server http://ismblab.genomics.sinica.edu.tw/. benchmark

.protein-protein. Table 5 shows the comparison of the prediction

accuracies of the method in this work with those from the PredUs

[28,39] server, which had the best performance, judging by the

prediction results of the test set S58, among the comparable

prediction servers accessible in the public domain. The prediction

accuracy benchmarks shown in Table 5 are comparable between

the two methods.

Contribution of the Attributes to the Machine Learning
Prediction Accuracy

Figure 6 shows that the protein surface atoms predicted with

high confidence level are more buried in the actual PPI sites and

are mostly from hydrophobic and aromatic residues. Figure 6A

shows the linear correlation between the prediction confidence

Figure 2. Atom-based prediction accuracies for each of the 30 protein atom types. The x-axis represents indexes for the 30 atom types
shown in Table 1. The y-axis shows averaged two-class prediction MCCs from the 5-fold cross validation of the ANN_BAGGING and SVM_BAGGING
predictors trained and tested for each of the specific protein atom type with the S432 dataset. The prediction MCCs for the independent test with
ANN_BAGGING on the S142 dataset are also shown for comparison.
doi:10.1371/journal.pone.0037706.g002

Table 2. Benchmarks for atom-based PPI site predictions.

Dataset/method Accuracy Precision Sensitivity Specificity MCC F-score

S432/ANN_BAGGING 0.741 0.418 0.569 0.787 0.321 0.481

S432/SVM_BAGGING 0.753 0.434 0.552 0.807 0.330 0.486

S142/ANN_BAGGING 0.732 0.420 0.594 0.771 0.326 0.492

Five-fold Cross validation was performed on the S432 dataset with ANN_BAGGING and SVM_BAGGING. Independent test was performed on the S142 dataset with the
best ANN_BAGGING predictors from the five-fold cross validation. The benchmark measurements are defined in Equations (6),(11).
doi:10.1371/journal.pone.0037706.t002
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level and the burial level – the higher the prediction confidence

level for a surface atom to be in a PPI site, the more buried for the

atom to be in an actual PPI interface. As expected, as shown in

Figure 6B, the residues for which the atoms were predicted with

confidence level $ 0.6 were mostly hydrophobic residues as Ile,

Leu, Met, Phe, Tyr, and Val. The residue atoms predicted with

modest confidence level between 0.2 and 0.6 are not as

hydrophobic as those predicted with high confidence level

(Figure 6B), and are not as hydrophilic as those predicted with

confidence level less than 0.2 (Figure 6B). These results imply that

the PPI sites with less prominent hydrophobic cores are less likely

to be predicted with high accuracy. Indeed, this implication is

validated in Figures 7, 8, and 9.

Figure 7 shows that the prediction accuracy deteriorates as the

actual PPI sites become smaller in size (Figure 7A) and less

hydrophobic in amino acid composition (Figure 7B). Figure 7C

shows that the false positive ratios (FP/(TP+TN+FP+FN))

increases with greater rate than the false negative ratios (FN/

(TP+TN+FP+FN)) as the MCC decreasing. This suggests that the

decreasing accuracies of the PPI site predictions were resulted

more from increasing false positive predictions. It is questionable

as to whether the false positive predictions are truly false positives

– these false positive PPI sites could be perceived as potential PPI

sites that have not been validated experimentally. By comparing

Figure 7D with Figure 7A,7C, it is evident that homo-oligomers,

each of which is formed with a single polypeptide chain, have

larger PPI interfaces (Figure 7A) and with more hydrophobic

residues in the PPI sites (Figure 7B), and thus were predicted with

less false positives and false negatives (Figure 7C) and higher

accuracy (Figure 7D). In contrast, interfaces in hetero-oligomers

are relatively smaller and more hydrophilic and are more difficult

to be predicted accurately than the interfaces in homo-oligomers.

The blue histogram in Figure 8 shows the Pearson’s correlation

coefficients between the prediction confidence level and the

attribute types (j = 1,32) calculated in Equation (3). The

prediction confidence-attribute correlations are strongly depen-

dent on the attribute type. As shown in the histogram, increasing

prediction confidence levels are linearly and positively correlated

with increasing values of the attributes derived from the aliphatic

and aromatic carbons, suggesting that the PDM concentrations of

these interacting atoms are greater around the protein surface

atoms that are predicted to be in the PPI sites with high prediction

confidence level. This is in good agreement with the notion that

PPI interface cores are similar to protein interiors in hydrophobic

amino acid composition, and thus are predicted with higher

accuracy and confidence level. Attributes of hydrophilic atoms

(NH3, NH1, NC2, OH1, NH1S, OC, NH2, OS, see Table 1) are

not correlated with prediction confidence level (blue histogram in

Figure 8), suggesting that the patterns of the PDMs derived from

these hydrophilic atoms are indistinguishable between the PPI sites

and the non-PPI sites, and thus contribute little to the PPI

prediction accuracy. This is in agreement with the notion that

Figure 3. Visualization of prediction results for example protein targets with different prediction accuracy. Panels (A) to (D)
demonstrate four proteins with two-class prediction MCC of 0.650, 0.454, 0.262, and 0.107, respectively. The target proteins were selected from the
S142 dataset. The predictions were carried out with the best ANN_BAGGING model from the 5-fold cross validation on the S432 dataset. In each
panel, the left structure shows the atom-based positive prediction confidence level from blue (confidence level of 0) to red (confidence level 1) for
each of the surface atoms. The middle structure shows the residue-based predictions. The atoms colored in red were predicted with confidence level
greater than 0.6; atoms in orange are the atoms belonging to the residues in the residue-based PPI site prediction but the prediction confidence
levels are less than 0.6. The right-hand-side structure shows the actual PPI sites: the PPI surface atoms are colored according to dSASA (see Equation
(4)) from blue (dSASA of 0 for atoms not involving in PPI) to red (dSASA of 1 for atoms completely buried in the protein complex). The color-codes are
shown at the top of the figure. Atoms not used in prediction (colored in yellow) belong to residues with incomplete phi and psi angles, as in the N-
termini or C-termini of proteins. The non-surface atoms are colored in gray. The complete prediction results can also be viewed in color-coded 3-D
protein structures from the web server http://ismblab.genomics.sinica.edu.tw/. benchmark .protein-protein.
doi:10.1371/journal.pone.0037706.g003

Figure 4. Residue-based two-class prediction MCCs for each of the 20 natural amino acid types. The MCCs were calculated as the
average value from the 5-fold cross validation with the ANN_BAGGING and SVM_BAGGING predictors on the S432 dataset. The independent test
MCCs with the best ANN_BAGGING predictors from the 5-fold cross validation on the S142 dataset are also shown for comparison.
doi:10.1371/journal.pone.0037706.g004
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some regions of the PPI sites are as hydrophilic as the protein

surface in general.

The red histogram in Figure 8 shows the Pearson’s correlation

coefficients between the positive (1 for PPI site atoms) or negative

(0 for non-PPI site atoms) assignments for protein surface atoms

and the attribute values for the atoms on the protein surface. In

theory, attributes (x-axis) correlated to the positive or negative

assignments with higher correlation coefficients (y-axis) should

contribute statistically more weight in prediction accuracy. This

expectation has been validated by the almost identical trends in

comparing the red histogram with the blue histogram shown in

Figure 8, indicating that indeed the contributions of the attributes

to the prediction accuracy as indicated in the blue histogram are in

good agreement with the statistical expectations shown in the red

histogram.

Moreover, comparison of Figure 1 and Figure 8 shows clearly

the extent of contribution of the attributes to the prediction

accuracy. As shown in Figure 1, the attributes (shown in the x-axis)

with larger p-values from the U-tests (i.e., the columns for which

the colors approach the blue end), such as attributes 1, 5, 10, 11,

12, 15, 16, 17, 27, 28, 31 (these attributes are denoted as NH1,

CH0, OH1, OC, OS, NH1S, NC2, NH2, CR1H, C5, HOH

respectively as defined in Table 1 and shown in Figure 8), are all

correlated poorly with prediction confidence level (blue histogram

in Figure 8) and PPI site assignment (red histogram in Figure 8).

This result suggests that the U-tests shown in Figure 1 are strong

predictors for the ranking of the contributions of the attributes to

the machine learning prediction capability.

Training of the Machine Learning Models with Subsets of
Protein-protein Interaction Interfaces

The results above suggested a possibility that the prediction of

PPI sites with more hydrophilic residues might be improved with a

training set containing only the hydrophilic interfaces. This

possibility was tested by clustering the PPI sites of the proteins

in the training set into two groups with distinguishingly different

residue compositions. Type 1 PPI sites are centered on a

representative surface patch with equal distribution of the

hydrophobic and hydrophilic residues (44% hydrophobic, 47%

hydrophilic, and 9% aromatic residues) and type 2 PPI sites are

centered on a representative surface patch with more hydrophilic

residues (25% hydrophobic, 66% hydrophilic, and 9% aromatic

residues). Hydrophobic residues are Ala, Pro, Leu, Ile, Met, Cys,

and Val; aromatic residues are Phe, Tyr, and Trp. The rest of the

amino acid types are hydrophilic. Two datasets derived from

Table 3. Benchmarks for residue-based PPI site predictions.

Dataset/method Accuracy Precision Sensitivity Specificity MCC F-score TP/TN FP/FN

S432/ANN_BAGGING 0.759 0.512 0.662 0.791 0.420 0.578 13970/50458 13300/7118

S432/SVM_BAGGING 0.748 0.495 0.709 0.761 0.424 0.583 14953/48528 15230/6135

S142/ANN_BAGGING 0.753 0.519 0.677 0.779 0.423 0.588 4060/13298 3763/1934

Five-fold Cross validation was performed on the S432 dataset with ANN_BAGGING and SVM_BAGGING. Independent test was performed on the S142 dataset with the
best ANN_BAGGING predictors from the five-fold cross validation. The benchmark measurements are defined in Equations (6),(11).
doi:10.1371/journal.pone.0037706.t003

Figure 5. The distributions of the prediction accuracies on the 5-fold cross validations and on the independent test. The y-axis on the
left-hand-side of the panel is associated with the histograms, showing the distributions of the number of proteins in the 5-fold cross validations or in
the independent test that were predicted with the MCC within the MCC range shown in x-axis. The y-axis on the right-hand-side of the panel is
associated with the curves connecting the dots representing the cumulative percentage of the proteins predicted with the residue-based MCC
shown in the x-axis. The 5-fold cross validations were carried out with the ANN_BAGGING and SVM_BAGGING predictors on the S432 dataset; the
independent test was carried out with the best ANN_BAGGING predictors from the 5-fold cross validation on the S142 dataset.
doi:10.1371/journal.pone.0037706.g005
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S432, named DS_Type1 and DS_Type2, were generated with

atoms labeled as positive for only type 1 PPI sites and type 2 PPI

sites, respectively. Cross validation benchmark procedures as

described above were applied to the two datasets. Figure 9 shows

that prediction models trained and tested with type 1 PPI sites

were more accurate than those trained and tested with type 2 PPI

sites, suggesting that PPI sites with hydrophobic or aromatic cores

are predicted with substantially higher accuracy than the PPI sites

composed of mostly hydrophilic residues. Figure 9 also suggests

that training two sets of prediction models with two sets of PPI sites

did not improve prediction accuracy. As shown in the Figure, the

prediction models trained with the overall data set are not inferior

to the predictions models trained by either of the datasets.

Evidently, few rules can be learned statistically on the polar

interactions in PPI sites to improve the PPI site prediction

accuracy.

Taken together, the PPI sites in homo-oligomers are usually

formed with large interface area with hydrophobic interface cores

and hydrophilic peripheral areas. These PPI sites can be predicted

with reasonable accuracy with the methodology developed in this

work. As the PPI sites become smaller and more hydrophilic, as in

the interfaces of some hetero-oligomers where hydrophobic cores

become less prominent, the accuracy of the PPI site prediction

deteriorates. In some of these interfaces, the rim regions make the

dominant parts of the PPI sites and the interface cores become

increasingly insignificant as the interface size decreases

[10,11,15,38]. The PPI sites in these complexes are increasingly

indistinguishable from the non-PPI protein surfaces, and as a

result, the machine learning algorithms are less effective in

identifying these PPI sites. It seems that the polar interfaces in

some transient PPIs emphasize a different set of energetic terms

distinguishable from those for the homo-oligomers, and that the

PDMs derived from protein interiors fall short to account for the

polar interactions in the transient PPI sites. Increasing under-

standing of the polar interactions involving perhaps water-

mediated terms [40] on protein surfaces could contribute in

establishing a better prediction method for polar PPI sites

predictions.

Summary
In summary, PPI sites on proteins of known structures can be

predicted with accuracy to an extent based on the physicochemical

complementarity derived from PDMs on protein surfaces.

Although the PDMs, which describe the three-dimensional

distributions of non-covalent interacting atoms on protein surface,

were derived from protein structures, the physicochemical

complementarity in PPI interfaces can be faithfully reproduced

with the numerical features derived from the PDMs, indicating

that protein folding and binding are governed by similar energetic

principles. The predictions based on these PDM-recreated

physiochemical complementarity features on protein surfaces are

among the best in PPI site predictions with known protein

structures. In particular, the hydrophobic cores of the PPI sites are

more likely to be correctly predicted. As the PPI sites become

smaller in size and less hydrophobic in amino acid composition,

the prediction of these PPI sites became increasingly difficult. The

difficulties could not be overcome by training the predictors with

the subset of PPI sites characterized with more hydrophilic

residues in the PPI sites. The PPI site predictions are nevertheless

likely to be further improved with additional understanding of

polar and water-mediated interactions in protein-protein recogni-

tions.

Methods

Constructing Three-dimensional Probability Density
Maps (PDMs) for Non-covalent Interacting Atoms on
Protein Surfaces

Probability density maps (PDM) constructed with protein non-

covalent interacting atoms from known protein structures have

been described previously [41]. The detailed method for the PDM

construction is described in Text S1. The 31 atom types from

proteins and crystal water are listed in Table 1. In order to keep

PDM high in information content and low in noise from irrelevant

interactions, non-interacting atomic pairs were eliminated with a

filter system based on the work by McConkey et al. [42] (Table

S1). A set of 31 PDMs on a protein as examples are shown in

Figure S1. Interactive 3-D graphic presentation of the PDMs can

Table 4. Residue-based benchmark comparison between the bound state and unbound state of the proteins in the S17a dataset.

Protein structure Accuracy Precision Sensitivity Specificity MCC F-score TP/TN FP/FN

Unbound state 0.767 0.327 0.626 0.790 0.326 0.430 275/2133 566/164

Bound state 0.777 0.402 0.613 0.811 0.364 0.486 322/2049 479/203

Unbound state performances are based on the prediction results with the best ANN_BAGGING predictors from the 5-fold cross validation. Bound state performances are
based on corresponding protein structures from the S142 dataset. The benchmark measurements are defined in Equations (6),(11).
doi:10.1371/journal.pone.0037706.t004

Table 5. Benchmarks for residue-based PPI site prediction for proteins in the S58 dataset.

Method Accuracy Precision Sensitivity Specificity MCC F-score TP/TN FP/FN

PredUs 0.785 0.455 0.576 0.835 0.377 0.508 1321/8025 1584/974

ANN_BAGGING 0.777 0.446 0.654 0.806 0.403 0.530 1500/7744 1865/795

PredUs [28,39] (http://bhapp.c2b2.columbia.edu/PredUs/) was unable to predict chain A of PDB ID 3myo and chain A of PDB ID 3ulc due to lack of ‘‘structural
neighbors’’. For the rest of the queries in PredUs predictions, the structural neighbor with PDB ID identical to the query protein was removed and the remaining
structural neighbors were used for prediction. The PredUs predictions were compared with ANN_BAGGING prediction results as shown in the Table (detailed results are
shown in Table S6). Only the prediction results for the protein surface residues (defined in Methods) were used for benchmarking. The benchmark measurements are
defined in Equations (6),(11).
doi:10.1371/journal.pone.0037706.t005
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be viewed from the web-server http://ismblab.genomics.sinica.

edu.tw/. gallery.

PDM-based Attributes as Inputs for Machine Learning
Algorithms

One machine learning model was trained for each of the 30

protein atom types (atom types 1,30 in Table 1). The input

attributes for each of the machine learning models were calculated

from the PDMs on the protein surface. For each protein atom i,

the PDM values for interacting atom type j associated with the

grids within 5 Å radius centered at the atom i were summed and

associated with the center of the atom as Si,j:

Si,j~
Pri,kƒ5A

k
gk,j

ð1Þ

where ri,k is the distance between atom i to a grid point k; gk,j is the

PDM value of atom type j at grid point k.

The distance-weighted sum (Ai,j; j = 1,31 for the 31 interacting

atom types 1,31 in Table 1) over Sk,j for atoms k within 10Å from

atom i was calculated with Equation (2).

Ai,j~Si,jz

Pdi,kƒ10A

k Sk,j|d{2
i,k

Pdi,nƒ10A
n d{2

i,n

ð2Þ

where Si,j is defined in Equation (1); di,k is the distance between

atom i and atom k; di,n is the distance between atom i and atom n.

Ai,j encodes complementarity information on interacting atom type

j over a circular protein surface patch centered at atom i on the

protein. The 32nd attribute for the atom i was the fraction of the

space not occupied by the van der Waals volume of the protein in

the 10 Å sphere centered at the atom i.

The attributes ai,j (j = 1,31 for the 31 interacting atom types in

Table 1, and j = 32 for the geometry attribute) associated with

protein atom i as inputs for the machine learning algorithms were

Figure 6. Correlations of PPI site prediction confidence level to atomic burial in protein complexes and to amino acid type. (A) Atom-
based prediction confidence level range (shown in the x-axis of the panel) is correlated to the averaged burial level (measured by dSASA (Equation
(4)) of the sub-group of atoms in the protein complexes predicted within the confidence level range. The correlation is shown by the diamond
symbols, corresponding to the y-axis on the left-hand-side of the panel. The distribution of the atom-based predictions as shown by the curve,
corresponding to the y-axis on the right-hand-side, is plotted against the prediction confidence level range in the x-axis. The data were derived from
the independent test with the ANN_BAGGING predictors on the S142 dataset. (B) The histograms in this panel show the distributions of amino acid
types in three groups of protein surface residues with various atom-based prediction confidence level ranges. The first group of residues contained
atom-based prediction confidence level $ 0.6 for at least one atom in each of the residues. The second group of residues contained atom-based
prediction confidence level between 0.6 and 0.2 for at least one atom in each of the residues. The third group of residues contained atom-based
prediction confidence level less than 0.2 for at least one atom in each of the residues. The distribution of the percentage of the amino acid types in
each of the three groups is shown by a histogram in the panel. The data were derived from the independent test of the best ANN_BAGGING
predictors on the S142 dataset.
doi:10.1371/journal.pone.0037706.g006
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scaled between 0 and 1. Equation (3) shows the calculation of ai,j

from Ai,j (j = 1,32):

if Ai,j . Mmax,j then ai,j = 1; otherwise,

if Ai,j , Mmin,j then ai,j = 0; otherwise,

ai,j~
Ai,j{Mmin ,j

Mmax ,j{Mmin ,j

ð3Þ

where Mmax,j is the median of the distribution of the maximal Ai,j

from each of the proteins in the S432 non-redundant protein data

set (see below) and Mmin,j is the median of the distribution of the

minimal Ai,j of the same dataset. Figure S2 shows the plots of

Mmin,j and Mmax,j against the 32 attribute types.

Datasets
Three datasets were downloaded from the SPPIDER website

[27]. These data sets include a training set, S435, a test set, S149,

and an unbound dataset, S21a. We made several modifications to

the datasets as the following: Chain A of PDB ID 1GY9 was

removed because the complex described in Elkins et al. [43] could

not be found in the current PDB. Chain A and C of PDB ID 1DF9

were removed since the records were obsolete. By removing the

three proteins from S435, we obtained a dataset named S432. For

the independent test set, seven proteins were removed for the

following reasons: Chain A and B of PDB ID 1NRJ were removed

because they already existed in the training set. Chain K and L of

PDB ID 1N13, chain D of PDB ID 1NF3, and chain D of PDB ID

1L9W were removed because they were identical to chain A and B

of PDB ID 1N13, chain C of PDB ID 1NF3, and chain A of PDB

ID 1L93 in the training set, respectively. Chain A of PDB ID

1PUG was removed because it was a hypothetical protein. By

Figure 7. Correlations of PPI site prediction accuracy to PPI features. The data were derived from the independent test of the best
ANN_BAGGING predictors on the S142 dataset. (A) PPI patch size averaged over the proteins predicted within the residue-based MCC range shown in
the x-axis is plotted against the MCC range. Patch size is defined as the number of residues in the actual PPI-site. (B) PPI patch hydrophobicity ratio
averaged over the proteins predicted within the residue-based MCC range shown in the x-axis is plotted against the MCC range. Hydrophobic
residues include Ala, Cys, Ile, Leu, Met, Phe, Pro, Tyr, Trp, and Val. Ratio of hydrophobic residues was computed as the number of hydrophobic
residues in the PPI-site divided by the total number of residues in the site. (C) False negative ratio (FNR) and false positive ratio (FPR) averaged over
the proteins predicted within the reisude-based MCC range shown in the x-axis is plotted against the MCC range. FNR was calculated as (FN/
(TP+TN+FP+FN))6100%, and FPR was calculated as (FP/(TP+TN+FP+FN))6100%. The TP (true positive), TN (true negative), FP (false positive), and FN
(false negative) were derived from residue-based predictions. (D) Distributions of homo-oligomers and hetero-oligomers are plotted against the
residue-based MCC range. The detailed assignments of the PPI type for the proteins in the S142 dataset are shown in Table S4. MCC was calculated
based on residue-based predictions.
doi:10.1371/journal.pone.0037706.g007
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removing seven proteins from S149, we obtained the independent

test set S142. For the unbound dataset, chain A of PDB ID 1GQN

and chain A of PDB ID 1RZX were removed because they were

identical to chain A of PDB ID 1L93 and chain C of PDB ID

1NF3 in the training set, respectively. Chain A of PDB ID 1J8B

was removed because it was a hypothetical protein. Chain A of

PDB ID 1NX6 was removed because its interface was engineered

with two insertions compared to its bound state protein, chain A of

PDB ID 1T4B. By removing the four proteins from S21a, we

obtained the unbound dataset S17a.

In order to test the performance of the predictors devised in

this work with other comparable predictors in the public domain,

we downloaded protein complex structures released in 2011 from

PDB website with the following criteria: 1) resolution is less than

3.0 Å, 2) chain length is greater than 100 amino acids, 3) entry

has two subunits in biological ensemble, 4) entry does not have

Figure 8. Ranking of the attributes derived from PDMs. Each of the surface atoms i in the S142 dataset has a confidence level on the
prediction of the atom to be in a PPI site. This prediction confidence level is correlated to various extents with the 32 attributes (ai,j (j = 1,32) as
shown in Equation (3)), which were used as inputs for the machine learning predictors in making the predictions. The blue histogram shows the
correlations between prediction confidence levels and attributes derived from concentrations of PDMs. The Pearson’s correlation coefficients, which
are the measurements for the linear correlations between the prediction confidence level and the attributes, are shown in the y-axis. The x-axis shows
the feature types (Table 1), each of which corresponds to one of the ai,j. The red histogram shows the Pearson’s correlation coefficients between the
positive (1 for PPI site atoms) or negative (0 for non-PPI site atoms) assignments for protein surface atoms and the attribute values for the protein
surface atoms.
doi:10.1371/journal.pone.0037706.g008

Figure 9. Atom-based MCC comparison among machine learning models trained with the DS_Overall, DS_Type1, and DS_Type2
dataset. DS_Type1 and DS_Type2 are variants of S432 dataset. The former has all type 1 PPI sites (44% hydrophobic, 47% hydrophilic, and 9%
aromatic residues) labeled as positive and the rest labeled as negative; the latter has all type 2 PPI sites (25% hydrophobic, 66% hydrophilic, and 9%
aromatic residues) labeled as positive and the rest labeled as negative. DS_Overall is the original version of S432 with all PPI sites (type 1 and type 2
PPI sites) labeled as positive. Five-fold cross validation was performed with DS_Type1 and DS_Type2 based on the same procedures described in
Methods section. The parameters used for training remained the same, except for the increased bag number of 20 in an attempt to alleviate the class
imbalanced problem since fewer positive cases were labeled in DS_Type1 and DS_Type2.
doi:10.1371/journal.pone.0037706.g009
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DNA, RNA, ligands, or modified residues, 5) there is no missing

atom in the PDB files, and 6) pairwise sequence identity between

any two proteins is less than 30%. The protein chains were

further filtered to ensure none of them share greater than 30%

sequence identity to proteins in S432, the training set used in this

work as described in the previous paragraph. This set of 58

protein chains, denoted S58, was used as the test set for the

comparison of prediction capabilities among different PPI site

prediction servers.

Determining Biologically Relevant PPI Sites
All PDB chain records in the three datasets above were

checked with PQS (protein quaternary structure) server [44] to

determine the biologically relevant PPI sites, so that crystal

packing interfaces were removed and biological units were

reassembled from asymmetric units. PPI sites at atomistic level

were defined with the difference of solvent accessible surface area

(dSASA) upon complex formation by NACCESS software [45] as

below.

dSASAi~
SASAu,i{SASAc,i

SASAu,i
, ð4Þ

where SASAu,i and SASAc,i are the SASA of atom i in the

uncomplexed and complexed state, respectively. An atom i was

defined as a PPI site atom when dSASAi is greater than 0.

Artificial Neural Network (ANN)
The standard feed-forward back-propagation neural network

[46] was used to learn the weight of the network by employing

gradient descent to minimize the sum of squared error between the

network output values and the target values. The input layer

consisted of 32 nodes for the input attributes described in Equation

(3). The only hidden layer contained 15 nodes. The output layer

had a single node with the activity value between 0 and 1,

matching the negative and positive cases respectively for the atoms

in PPI sites as defined in Equation (4). Sigmoid function, denoted

as sf, was used as the transfer function for the hidden and output

layers of of the ANN network.

sf (x)~½1z�e�x�p({x)�{1 ð5Þ

As an alternative to the more common Levenberg-Marquardt

back-propagation training algorithm [47], the very high speed

resilient back-propagation (RPROP) training technique was used

[48,49]. Resilient propagation is capable of automatic adjustment

for learning rate and momentum. It has the advantage of faster

convergence while requiring less manual determination of network

parameters. Each of the ANN models was trained for 1000

iterations. During training, the model was tested on validation set

after every ten training iterations. The number of training iteration

which yielded the best MCC (see below for MCC definition) on

the validation set was used to determine the predictors. The open

source java-based neural network library ENCOG was used for

the implementation.

Support Vector Machines (SVM)
The details of the standard SVM methodology implemented

with LIBSVM package has been described previously [35]. In

brief, the SVM is a two-class classification approach with a

maximized-margin hyperplane, where margin is the distance from

the separating hyperplane to the closest data point [50,51]. The

cost (c) and gamma (c) parameters of the SVM were optimized

with grid searching for the optimal MCC using only the training

dataset.

Bootstrap Aggregation (BAGGING)
Since non-binding atoms in the training set greatly outnum-

bered binding atoms, ordinary machine learning algorithms would

produce learning biases without suitable treatment. The method-

ology included multiple predictors to produce an ensemble of

prediction results [52]. Each individual classifier in the predictor

ensemble was trained with a different sampling (bag) of the

training set, and the final prediction was calculated by averaging

with equal weight the output values from the predictors [53]. In

each bag, all of the positive cases were included, along with

randomly sampled negative cases that were 1.5 times as many as

positive cases. The bag number was set to ten, which balanced the

need for effectiveness and training efficiency. All the ten bags were

used to train either a set of ANN models (named ANN_BAG-

GING) or a set of SVM models (named SVM_BAGGING).

The machine learning parameters can be downloaded from the

web-server http://ismblab.genomics.sinica.edu.tw/.Download.

The attributes ai,j (j = 1,31 for the 31 interacting atom types in

Table 1, and j = 32 for the geometry attribute) associated with

protein atom i for all proteins in the data sets S432, S142, S17a,

S58 can be downloaded from the same web-server.

Prediction Capacity Benchmarking
The prediction capabilities of the machine learning models were

benchmarked by accuracy (Acc), precision (Pre), sensitivity (Sen),

specificity (Spe), F-score, and Matthews correlation coefficient

(MCC) [54].

Acc~
TPzTN

TPzTNzFPzFN
ð6Þ

Pre~
TP

TPzFP
ð7Þ

Sen~
TP

TPzFN
ð8Þ

Spe~
TN

TNzFP
ð9Þ

F-score~
2|Pre|Sen

PrezSen
ð10Þ

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

p ð11Þ

where TP is the number of true positives; TN the number of true

negatives; FP the number of false positives; and FN the number of

false negatives. Sensitivity (also known as recall) can be viewed as a

measurement of completeness, whereas precision is a measure-

ment of exactness or fidelity. MCC, as a measurement of the

quality of two class classifications (positive and negative), is

generally regarded as a balanced measurement which can be used

even if the classes are of very different sizes. Its value ranges
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between 21 and 1; random correlation gives MCC of zero while

perfect correlation yields MCC of one.

Prediction Confidence Level
Prediction activity (ANN_BAGGING) or probability

(SVM_BAGGING) with value ranging from 0 to 1 from the

output of the machine learning algorithm was normalized to

prediction confidence level so that the prediction results from

different machine learning models can be compared on a level

ground. For each of the 30 protein atom types, the machine

learning outputs from the validation sets were sorted into bins of

interval 0.1. The prediction confidence level for each of the bins

was calculated as the fraction of the true positives over the total

number of predictions in the bin. In the end, lookup-tables for

output-confidence relationships were constructed; the machine

learning outputs can be converted to prediction confidence levels

with these lookup tables. Figure S3 shows the relationships

between machine learning outputs and the prediction confidence

levels for each of the trained machine learning models.

Five-fold Cross Validation and Independent Test
Five-fold cross validation was performed for each of the 30

protein atom types in the S432 dataset. Each dataset was

randomly divided into 5 equal portions with similar distributions

of positive and negative cases. One portion of the dataset was

selected as test set, another one portion as validation set, and the

rest as training set. The training set was used to train the models,

and the validation set was used to optimize the prediction

parameters so as to achieve the best predictive capability without

over-fitting. The optimized models were then benchmarked by the

test set. The process took turns to benchmark prediction accuracy

on the 5 non-overlapping test sets with the predictors optimized

with the corresponding training and validation set. The accuracy

benchmarks were the averaged results from the 5-fold cross

validation.

For each of the predictors, an optimal threshold for the output

activity value was determined with the validation set. Positive

predictions have the output activity values greater than or equal to

the threshold; the negative predictions have the output activity

values smaller than the threshold. With these thresholds, the TP,

TN, FP, and FN in Equations (6),(11) were determined and the

accuracy benchmarks were calculated. The thresholds for the

predictors of all 30 atom types were determined to optimize the

MCC for the predictions with the validation set.

Five predictors for each protein atom type were optimized after

performing the 5-fold cross validation on the S432 dataset. The

predictors which yielded the best testing performance were

assessed in the independent test with S142, S17a, and S58 dataset.

Prediction of Patches of Atoms as Protein-protein
Binding Sites

A protein-protein binding site was predicted by a cluster of

surface atoms predicted as positive cases with high prediction

confidence level. Protein surface atoms in PPI sites with prediction

confidence level greater than 60% were used as cluster centers to

include neighboring surface atoms within radius of 11 Å. Within

each of the surface patches, all the surface atoms with the

confidence level for positive prediction greater than 20% were

included in the tentative patch of atoms as a PPI site. If the

pairwise distance of any two seeds was within 10 Å, the two

corresponding patches were merged as one patch. The parameters

were optimized for residue-based prediction accuracy with the

validation set.

Residue-based Predictions for the PPI Sites
To facilitate comparison of this work with previous methods

predicting binding sites at the residue level, a heuristic procedure

was used to transform the atom-based binding site predictions as

described in the previous paragraph into binding site predictions at

the residue level: only the residues with more than 30% of the

surface atoms (SASAu.0) included in the atom-based binding

patch were considered as positive residues of the residue-based

patch. Similarly, actual PPI sites at the residue level were defined

by patches of positive residues, each of which has more than 30%

of the surface atoms (SASAu.0 in the uncomplexed structure) on

the residue defined as PPI atoms (dSASA.0, as shown in Equation

(4)). This definition enabled the comparison of prediction results

with actual binding sites at the residue level. The percentage

parameter was optimized for residue-based prediction accuracy

with the validation set.

Computational Efficiency for Predicting PPI Sites in a
Typical Protein

The building of PDMs for a typical protein of 200 residues with

Intel Xeon X5650 (2.67GHz) CPU is around 50 minutes with

single thread and around 23 minutes with two threads. The

following procedures for generating input attributes and for

predicting with machine learning models take less than 20 seconds.

Mann-Whitney U-test
Mann-Whitney U-test is a non-parametric statistical method to

test whether two groups of numerical values come from identical

continuous distributions of equal medians – increasing p-value

indicates decreasing difference of the two distributions and p-value

of 1 indicates that the two distributions are statistically indistin-

guishable. The Mann-Whitney U-tests were carried out with the

statistic tool ranksum in MATLAB (http://www.mathworks.com/

help/toolbox/stats/ranksum.html).

Web Site
Predictions can be submitted to the webserver http://ismblab.

genomics.sinica.edu.tw/. All the benchmark results can also be

accessed in interactive graphic presentations from the same web

address above.

Supporting Information

Figure S1 Probability density maps and encoded fea-
tures of human vascular endothelial growth factor A
(VEGF). Structure of VEGF is extracted from PDB ID 2FJG

chain V and W. Number 1 to 31 in each cell of the table

corresponds to each of the interacting atom types defined in

Table 1 of the main text. The PDMs are shown in contours

colored according to the interacting atom type: cyan for nitrogen,

black for carbon, and magenta for oxygen. The contour level is set

to 0.0005. Color spectrum of protein atoms in each cell are based

on the corresponding ai,j values (Equation (3) in the main text).

Solvent inaccessible atoms are colored in gray. Interactive 3-D

graphic presentation of the PDMs can be viewed from the web

server http://ismblab.genomics.sinica.edu.tw/. gallery.

(DOCX)

Figure S2 Mmin,j (in square symbols) and Mmax,j (in
diamond symbols) against the 32 attribute types. The

maximum and minimum Ai,j values were derived from each

protein in S432 and the medians of the maximum (Mmax,j

j = 1,32, shown in diamond symbols) and the minimum (Mmin,j

j = 1,32, shown in square symbols) are plotted against the
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attribute index. These values were used for normalization of Ai,j

(Equation (3) in the main text).

(DOCX)

Figure S3 Lookup charts converting output activity
(probability) from the corresponding machine learning
predictor to prediction confidence level. For each of the 30

protein atom types, the machine learning outputs from the

validation sets were sorted into bins of interval 0.1. The confidence

level of each of the bins was calculated as the fraction of true

positive over the total number of predictions in the bin. The panels

(a) and (b) are derived from ANN_BAGGING and SVM_BAG-

GING predictions respectively. In each of the panel, two sets of

curves are shown; one set for the prediction confidence level

described as above (i.e., the positive prediction confidence); the

other set for the negative prediction confidence. The sum of the

positive prediction confidence level and the negative prediction

confidence level equals to one.

(DOCX)

Table S1 A filter system used to eliminate non-inter-
acting atomic pairs based on the work by McConkey
et al. with modifications. During the construction of the

PDMs, only the atom pairs with the matrix value less than 20.1

were included in the probability density maps. The atom pairs for

which the matrix value colored in red were not included for PDM

constructions.

(DOCX)

Table S2 Five-fold cross validation of ANN_BAGGING
prediction accuracy benchmarks on the S432 dataset.
The dataset, the 5-fold cross validation, and the benchmark

measurements have been described in the main text. Matthews

correlation coefficient (MCC), F-score(Fsc), Accuracy(Acc), Pre-

cision(Pre), Sensitivity(Sen) and Specificity(Spe) are shown in

Equations (6),(11) in the main text. TP, FP, TN, and FN are true

positive, false positive, true negative, and false negative respec-

tively. The ratio of the number of predicted positive atoms against

actual number of binding atoms for each protein is also listed.

C1,C4 represent PPI sites in each of the test proteins; different

protein has different number of PPI sites. In these columns, the

number of the predicted true positive atoms is shown over the

actual number of atoms involving in the PPI site. Interactive

examination of the prediction results for each of the proteins in the

S432 dataset can be accessed from the web server: http://ismblab.

genomics.sinica.edu.tw/. benchmark .protein-protein.

(DOCX)

Table S3 Five-fold cross validation of SVM_BAGGING
prediction accuracy benchmarks on the S432 dataset.
The dataset, the 5-fold cross validation, and the benchmark

measurements have been described in the main text. Matthews

correlation coefficient (MCC), F-score(Fsc), Accuracy(Acc), Pre-

cision(Pre), Sensitivity(Sen) and Specificity(Spe) are shown in

Equations (6),(11) in the main text. TP, FP, TN, and FN are true

positive, false positive, true negative, and false negative respec-

tively. The ratio of the number of predicted positive atoms against

actual number of binding atoms for each protein is also listed.

C1,C4 represent PPI sites in each of the test proteins; different

protein has different number of PPI sites. In these columns, the

number of the predicted true positive atoms is shown over the

actual number of atoms involving in the PPI site. Interactive

examination of the prediction results for each of the proteins in the

S432 dataset can be accessed from the web server: http://ismblab.

genomics.sinica.edu.tw/. benchmark .protein-protein.

(DOCX)

Table S4 Independent test of ANN_BAGGING predic-
tion accuracy benchmarks on the S142 dataset. The

dataset and the benchmark measurements have been described in

the main text. Matthews correlation coefficient (MCC), F-

score(Fsc), Accuracy(Acc), Precision(Pre), Sensitivity(Sen) and

Specificity(Spe) are shown in Equations (6),(11) in the main text.

TP, FP, TN, and FN are true positive, false positive, true negative,

and false negative respectively. The ratio of the number of

predicted positive atoms against actual number of binding atoms

for each protein is also listed. C1,C2 represent PPI sites in each

of the test proteins. In these columns, the number of the predicted

true positive atoms is shown over the actual number of atoms

involving in the PPI site. In the annotation column, complex type

(homo or hetero-oligomer) and the secondary structure element

(SSE) in the PPI sites are listed for each protein. Interactive

examination of the prediction results for each of the proteins in the

S142 dataset can be accessed from the web server: http://ismblab.

genomics.sinica.edu.tw/. benchmark .protein-protein.

(DOCX)

Table S5 Independent test of ANN_BAGGING predic-
tion accuracy benchmarks on the S17a dataset. The

dataset and the benchmark measurements have been described in

the main text. Matthews correlation coefficient (MCC), F-

score(Fsc), Accuracy(Acc), Precision(Pre), Sensitivity(Sen) and

Specificity(Spe) are shown in Equations (6),(11) in the main text.

TP, FP, TN, and FN are true positive, false positive, true negative,

and false negative respectively. The ratio of the number of

predicted positive atoms against actual number of binding atoms

for each protein is also listed. C1,C2 represent PPI sites in each

of the test proteins. In these columns, the number of the predicted

true positive atoms is shown over the actual number of atoms

involving in the PPI site. Interactive examination of the prediction

results for each of the proteins in the S17a dataset can be accessed

from the web server: http://ismblab.genomics.sinica.edu.tw/.

benchmark .protein-protein.

(DOCX)

Table S6 Independent test of ANN_BAGGING predic-
tion accuracy benchmarks on the S58 dataset. The dataset

and the benchmark measurements have been described in the

main text. Matthews correlation coefficient (MCC), F-score(Fsc),

Accuracy(Acc), Precision(Pre), Sensitivity(Sen) and Specificity(Spe)

are shown in Equations (6),(11) in the main text. TP, FP, TN,

and FN are true positive, false positive, true negative, and false

negative respectively. The ratio of the number of predicted

positive atoms against actual number of binding atoms for each

protein is also listed. C1,C2 represent PPI sites in each of the test

proteins. In these columns, the number of the predicted true

positive atoms is shown over the actual number of atoms involving

in the PPI site. Interactive examination of the prediction results for

each of the proteins in the S58 dataset can be accessed from the

web server: http://ismblab.genomics.sinica.edu.tw/. benchmark

.protein-protein.

(DOCX)

Text S1 Supplemental methods.

(DOCX)
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