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Abstract

Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes
B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of
Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel
phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages
of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced
small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA
genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three
modules: the ‘‘late’’ region, the ‘‘lysogeny-lysis’’ region and the ‘‘early’’ region. BtCS33 exhibited high similarity with several
phages, B. cereus phage Wb and some variants of Wb, in genome organization and the amino acid sequences of structural
proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B.
cereus phage Wb and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of
phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wb may have a common distant
ancestor.
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Introduction

Bacillus thuringiensis (Bt) is a Gram-positive entomopathogenic

bacterium belonging to the B. cereus group. This group includes six

very closely related species: B. cereus, B. anthracis, B. thuringiensis, B.

mycoides, B. pseudomycoides, and B. weihenstephanensis [1,2]. Based on

multilocus enzyme electrophoresis (MEE) data [3] and DNA

sequence variations of the 16S–23S internal transcribed spacers

[4], B. thuringiensis, B. anthracis and B. cereus sensu stricto are

considered as members of a single species, B. cereus sensu lato.

As an important biological pesticide, B. thuringiensis (Bt) has been

widely used for biocontrol of insect pests for several decades.

During their sporulation, Bt strains produce insecticidal crystal

proteins (ICPs), which are highly toxic to larvae of numerous

Lepidoptera, Diptera and Coleoptera species, but are harmless to

human and vertebrates [5,6]. About 83% of Bt strains contain

lysogenic phage. During Bt fermentation, lysogenic phages can

caused failures in 15%–30% of the batches, resulting in severe

losses [7]. Studies to resolve this problem found that chitosan

oligomer and derivatives can inactivate Bt phage 1–97A partices of

and inhibit its infection [8,9]. However, the exact mechanism

involved in this process is still unclear. To figure out the lysogeny

control mechanism and reduce losses during Bt fermentation,

more genetic information from Bt phages is needed.

At present, five genomes of phages originating from B.

thuringiensis, have been completely sequenced, namely Bam35c

[10], GIL01 [11], GIL16c [12], 0305phi8-36 [13] and MZTP-02

[7]. Phage Bam35c, GIL01 and GIL16c are all Tectiviral phages

with high sequence identity and genomes about 15 kb in size.

Bam35c is different from GIL01 by only 11 bp, while GIL16c has

83.6% of sequence identity with GIL01 [12,14]. Phage MZTP02,

isolated from a Bt subsp. kurstaki strain, is a tailed phage with

15,717 bp genome with 40 bp inverted terminal repeats [7].

Phage 0305phi8-36, which has 218,948 bp genome with low

homology to other sequenced phages, is a atypical Myovirus phage

[13,15]. Based on genome analysis, Hardies et al classified

0305phi8-36 as a novel ancient phage lineage [15].

Besides the five Bt phages, one B. anthracis (Ba) phages and five

B. cereus (Bc) phages have been sequence. Thus far, comparisons of

phages have focused primarily on isolates that share the same host

species. For example, five Bc phages were compared with each

other, and four of them (Wb, Gamma, Cherry and Fah) were

closely related [16,17]. Comparison of phages from different but

closely related hosts can provide more information. Ba phage

AP50 was found to be closely related to Bt phages GIL16c and

Bam35c [19]. These discoveries provide insight into the evolution

of the phages as well as the hosts.

In the present study, a novel lysogenic phage named BtCS33,

was isolated from Bt strain CS33, which has high toxicity to
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Lepidopteran and Diptera larvae. This is the first report of

a Siphoviridae family isolate among the sequenced B. thuringiensis

phages. The complete genome of phage BtCS33 was sequenced,

characterized and compared with other phages that infect the

same or closely related species hosts. This is also the first report of

a phage isolated from B. thuringiensis exhibiting high sequence

similarity to B. cereus phage Wb and some of its variants. But, the

host range is quite different, for phage Wb and it’s variants can

infect Ba and BtCS33 can’t infect Ba. This study may provide

more information about evolutionary relationship among these

Bacillus species.

Results

Isolation and morphology of the bacteriophage
A bacteriophage designated BtCS33 was isolated from B.

thuringiensis subsp. kurstaki strain CS33, which has high toxicity to

Lepidoptera larvae. Transmission electron microscopy showed

that BtCS33 had an icosahedral head (61 nm667 nm) and a long

tail (204 nm65.7 nm) (Figure 1). The phage BtCS33 was similar

in shape to B. cereus phage Wb [18] and its variant, Gamma [20],

and was considered to be Siphoviridae.

Host range of phage BtCS33
To investigate the sensitivity of Bacillus strains to BtCS33, 78 B.

thuringiensis strains, 4 B. sphaericus strains, 2 B. anthracis strains, and 1

B.cereus strain were tested. The tests showed that only two B.

thuringiensis strains, CS33 (H-serotype 3) and C-3 (H-serotype 3),

were sensitive to phage BtCS33, indicating that BtCS33 had

a narrow host range.

Overview of phage BtCS33 genome
The complete genome of phage BtCS33 was 41,992 bp in

length with an overall G+C content of 35.22%, about the same as

the 35.29% G+C% content of the geome of B. thuringiensis subsp.

kurstaki strain BMB171 (Genebank accession number

NC_014171). Exonuclease III treatment (data not show) indicated

the physical structure of the genome DNA was linear. Sequence

analysis revealed 57 putative ORFs (Table S1). The combined

length of all ORFs covered 35,432 bp, about 84.4% of the whole

genome. The average length of each ORF was 737 bp with ATG

as the main start codon, except for ORF1 which had a GTG start

codon. Among the 57 ORFs, 51 were transcribed forward,

whereas 6 were transcribed in the opposite direction (Figure 2).

The genes transcribed rearward were ORF19, ORF20, ORF24,

ORF25, ORF28 and ORF41. Furthermore, the start codons of 13

ORFs (22.8% of the total) overlapped with the stop codon of the

previous gene. Several promoters of the s70 family were identified

by using Bprom (data not show). No ORFs encoding tRNA were

found by analysis with tRNAscan-SE 1.21.

On the basis of homology comparisons, 26 ORFs were assigned

putative functions. As in other sequenced phages, the major

functions were organized in gene clusters (Figure 2). The BtCS33

genome contained three main clusters: the ‘‘late’’ region (encoding

structural, assembly, DNA packaging and lysis proteins), the

‘‘lysogeny-lysis control’’ region (encoding proteins for controlling

the lysogeny-lysis process) and the ‘‘early’’ region (encoding

proteins for phage DNA replication, recombination and modifi-

cation).

The structural and lysis module
This module corresponded to the ‘‘late’’ region, encoding

proteins for phage structure, assembly and DNA packaging. The

module could be divided into five submodules, representing DNA

packaging, head morphogenesis, head-tail joining and tail

morphogenesis functions (Figure 2). The module included proteins

GP1 and GP2 encoded by ORF1 and ORF2 that homologous

with (or that had domains typical of) the small and large subunits

of terminase. The module also included ORFs encoding portal

protein (GP3, gene product of ORF3), major capsid protein (GP5),

major tail protein (GP9), tail tape measure protein (GP12) and tail

fiber protein (GP13). Comparing the amino acid sequence of

GP18 with the CDD database revealed similarity to the GH25-

PlyB-like protein, which is a bacteriophage endolysin with

potential lytic activity toward B.anthracis [21]. Endolysins are

produced by phages at the end of their life cycle and participate in

lysing the bacterial cell wall to release the newly formed virions

[22].

The lysogeny control module
This module controls the lysogeny-lysis process of the phage.

Phage BtCS33 is a lysogenic phage that begins the lysis cycle

spontaneously. At least seven putative ORFs were involved in the

lysogeny control module. Besides ORF49, six other ORFs were

physically related to each other but were transcribed in different

directions (Figure 2). ORF49 was predicted to encode integrase,

a DNA breaking-joining enzyme that catalyzes site-specific

integration of the DNA [23,24]. Other genes of this module

associated with the lysis/lysogeny switch function are are

commonly present in temperate Siphoviridae phages. GP28 dis-

played homology to the Cro/CI family proteins, which contain

a classical helix-turn-helix domain and can be assigned to the

XRE family of transcriptional regulators. GP30 showed identity to

many DNA binding proteins and might represent a Cro analogue.

The closest BLASTP match for GP32 was an antirepressor that

can inactivate the CI repressor [25,26].

The DNA replication and recombinant module
This module corresponded to the ‘‘early’’ region, encoding

proteins for phage DNA replication, recombination and modifi-

cation processes. At least three gene products (GP36, GP37, and

GP57) of phage BtCS33 were involved in the replication and

recombinant process. The amino acid sequence of GP36 was

exactly matched with the replication protein O from Bacillus phage

lambda Ba01. ORF37 was predicted to encode a DNA replication

protein (GP37) with an ATP/GTP binding P-loop motif. GP57

Figure 1. Morphology of phage BtCS33 particles under TEM.
The virion was negatively stained with 2% potassium phosphotung-
state. The white arrows indicate the putative tail fiber structure.
doi:10.1371/journal.pone.0037557.g001

Genome of a Novel Bacillus thuringiensis Phage

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e37557



demonstrated similarity with various HNH endonucleases from

phage and bacteria. HNH endonuclesases belongs to the homing

endonuclease family and confers the mobility or duplication of

their coding and flanking sequences by a recombination-based

process [27,28]. Genes encoding for HNH endonucleases in phage

genomes are considered to be analogous to insertion or transposon

elements in bacterial genomes [29].

The genes associated with host cell sporulation
The genome of BtCS33 contained two genes of particular

interest, ORF35 and ORF22. The genes encode proteins with

83% and 100% amino acid sequence similarity, respectively, to

proteins from Bacillus thuringiensis subsp. kurstaki strain T03a001.

ORF35 was predicted to encode an RNA polymerase sigma factor

(s70) with about 23% similarity to sigmaF from Bacillus thuringiensis

97-27. SigmaF can direct expression of sporulation genes in

Bacillus strains. Many phage RNA polymerase s factors have been

analyzed that can drive phenotypic alteration of the host bacteria

[30]. Therefore, we inferred that ORF35 has the ability to regulate

the host gene transcription during the sporulation phase

[16,18,31]. ORF22 encoded a FtsK/SpoIIIE ATPase, an enzyme

that plays important roles in intercellular chromosomal DNA

translocation and asymmetric division during sporulation [32,33].

In B. subtilis, FtsK/SpoIIIE ATPase was also involved in

transferring missegregated DNA during vegetative growth [34].

The cross talk between the phage BtCS33 and the host cell may

influence the division of the host cell as well as the lytic life cycle of

the phage. Confirming the exact functions of the ORF35 and

ORF22 proteins in the phage requires further investigation.

Comparison of phage BtCS33 and B. cereus phage Wb
genomes
BLASTN analysis of the genome ofphage BtCS33 revealed the

closest matches to be the genomes of B. cereus phage Wb
(NC_007734), and some variants of phage Wb, such as phage

Gamma (NC_007458), Cherry (NC_007457), and Fah

(NC_007814). A dot plot of the BtCS33 and Wb genomes

(Figure 3) showed high co-linearity mainly in the ‘‘late’’ regions of

each genome encoding the head-tail joining proteins and tail

morphogenesis proteins. The five most similar fragments in their

‘‘late’’ regions were shown in Table 1. Raymond Schuch et al.

reported high sequence similarity between phage Gamma and Wb
[17,18]. BtCS33 and Gamma also have co-linearity in the ‘‘late’’

region of both genomes (data not shown). Pairwise alignment of

the proteomes of phage BtCS33 and phage Wb also revealed

similar genome organization and high homology of ORFs in the

‘‘late’’ region (Figure 4). The similarity between proteins encoded

by ORFs 6 to 12 in BtCS33 and ORFs 7to 13 in Wb was more

than 80%, while proteins encoded by ORFs 13 and 14 in BtCS33

and ORFs 14 and 15 in Wb was more than 50% similar.

Phylogenetic tree analysis of phage BtCS33
To analyze the evolutionary relationship between phage

BtCS33 and other phages originating from Bacillus species,

a phylogenetic tree based on the complete genome sequences

from 13 Bacillus Siphoviridae phages was constructed (Figure 5A).

BtCS33 together with B. cereus phages Wb, Fah, Cherry, Gamma

clustered together, while some other phages from Bacillus were

clustered into different subgroups. Another phylogenetic tree was

constructed based on amino acid sequences of the major capsid

proteins, which are relatively conserved in phage genome of the

Siphoviridae family (Figure 5B). Notably, these two phylogenetic

trees were in perfect accord showing the same cluster of phage Wb
and BtCS33. The collective results above indicated that, among

the sequenced phages from B. thuringiensis, BtCS33 was the first

reported member of the Siphoviridae family and was closely releat to

the sequenced phages from Bc.

The tail fiber proteins of phages were reported to be essential for

cell wall receptor recognition and binding, which can determine

the host specificity of the phages [18]. Because of the extremely

narrow host range of phage BtCS33, a phylogenetic tree based on

amino acid sequences of the tail fiber proteins was constructed. In

total, sequences from 5 Bacillus Siphoviridae phages and 13 B.

thuringiensis prophages were used. The tree showed that the tail

fiber protein of BtCS33 was closely related to the tail fiber proteins

from many B. thuringiensis prophages, but was distantly releated to

the tail fiber protein of Wb (Figure 5C).

Discussion

In this study, a novel phage BtCS33 isolated from B. thuringiensis

kurstaki strain CS33 was sequenced and characterized. The

complete genome of BtCS33 exhibited some interesting features.

First, phage BtCS33 is different from other sequenced B.

thuringiensis phages. Until now, five phages originating from B.

thuringiensis had been sequenced. Three of them (GIL16c, GIL01

and Bam35c) belonged to the Tectiviral family and were clustered

in the same lineage; Phage 0305-phi8-36, an atypical Myovirus,

possibly represented a novel, ancient phage lineage, and MZTP02,

a Podoviridae phage belonging to the phi29 family, was clustered

with other lineages. So BtCS33 was the first reported member of

the Siphoviridae family from B. thuringiensis. It clustered with phages

from Bc and should be considered a Wb-group phage (Figure 5).

Second, it was reported that the recognition between phage and

host is mainly determined by the phage tail fiber; mutations in the

tail fiber gene change the infective activity [18,36]. Although

BtCS33 and Wb had similar genome organizations and high

sequence identify in the structural proteins, they only shared 65%

amino acid sequence identity in the tail fiber proteins and the host

ranges were different. The low identity of the tail fiber proteins

between BtCS33 and Wb might be the reason for their different

Figure 2. Genome organization of phage BtCS33. The schematic represents the whole genome with the ORFs numbered from left to right.
Different colors indicate three regions: the ‘‘late’’ region (red color), the ‘‘lysogeny-lysis control’’ region (green color) and the ‘‘early’’ region (blue
color). Gray indicates the genes involved in host cell sporulation. Genes with unknown functions are indicated by white. The orientations of the
arrows indicate the direction of transcription.
doi:10.1371/journal.pone.0037557.g002
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host ranges. The tail fiber protein of BtCS33 had high homology

with proteins from several B. thuringiensis prophages (Figure 5C),

but BtCS33 had an extremely narrow host range and did not

infect 77 tested B. thuringiensis strains except of its host (CS33) and

C-3. Therefore, the cause of the narrow host specificity of BtCS33

among Bt strains is still unclear. The tail fiber proteins may not be

the key or single factor determining the host specificity of BtCS33.

Efforts to understand the cause of the narrow host range of

BtCS33 are ongoing.

Third, new evidence for the evolution of Bacillus phage was

found. Two genes, named ORF22 and ORF35 encoding FtsK/

SpoIIIE ATPase and RNA polymerase factor, respectively, were

found in the genome of BtCS33, and had high similarty to the

correspondence genes in the geneome of B. thuringiensis subsp.

kurstaki strain T03a001, which belongs to the same subspecies as

the host of BtCS33. Furthermore, genes with similar functions

were also found in B. cereus phage Wb, phage Gamma and some

other Gamma isolates [16–18]. The phage-encoded RNA poly-

merase sigma factor regulates vegetative growth as well as

sporulation of the host bacteria. This represents a kind of cross-

talk between the phage and host, and has been reported previously

[31]. Obtaining genes involved in sporulation may be a common

phenomenon for phages from sporulating bacteria. The exact

function of the putative sporulation genes in the genome of

BtCS33 will be further studied. From the combined evidences of

host-related genes and the phylogenetic trees, it can be inferred

that these phages may have a common distant ancestor and

BtCS33 should be considered as a Wb-group phage.

Fouth, from a different perspective, the similarity of these

phages was evidence of the evolution of the host bacterial species.

Classifying of B. anthracis, B. thuringiensis and B. cereus as a single

species, Bacillus cereus sensu lato, remains a matter of debate [37,38].

The genome similarity of these phages provides more evidence for

classifying the three Bacillus species as a single species.

Figure 3. Dot plot alignment of genomes from B. thuringiensis phage BtCS33 and B. cereus phage Wbeta (Wb). Arrows indicate the start
and the end positions of the most similar fragments on both genomes, corresponding to the dot plot. Both genomes were ranked in the orders of
‘‘late’’ region, the ‘‘lysogeney control’’ region and the ‘‘early’’ region.
doi:10.1371/journal.pone.0037557.g003

Figure 4. Alignment of the proteomes of B. cereus phage Wbeta (Wb) and B. thuringiensis phage BtCS33. The putative proteins are
numbered and different color arrows show the levels of amino acid identity: green indicates 20%–50%; blue, 50%–80%; and red, 80%–100%.
doi:10.1371/journal.pone.0037557.g004
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Materials and Methods

Culture media and bacterial strains
Bacillus thuringiensis subsp. kurstaki CS33 was isolated in our lab

and is highly toxic to insects larvae of Lepidopteran and Dipteran

species.

Isolation and propagation of the phage
Bacteriophage was isolated from B. thuringiensis strain CS33

according to the modified method described by Carey-Smith et al

[39]. Bt strain CS33 was incubated on a nutrient plate to form

plaques. One plaque was picked and suspended in 1 ml SM buffer

[0.58% (w/v) NaCl, 0.2% (w/v) MgSO4, 50 mM Tris-HCl,

pH 7.5] as a bacteriophage suspension. To get pure phage, 100 ml
of phage suspension was mixed with 300 ml of CS33 culture

during exponential phase growth (OD600 about 1.0), and the

mixture was added into 5 ml of molten semisolid medium (at

about 45uC). After thoroughly mixing, the semisolid medium

containing bacteria and phages was poured onto a solid medium

plate as an overlay and incubated at 30uC overnight (12–

16 hours). After plaques formed on the upper medium, one

plaque was picked, and the process above was repeated at least five

times until homogeneous plaques formed. Finally, the pure

bacteriophage was harvested and designated BtCS33.

Propagation of the bacteriophage was performed by using the

method as described above, except a bacteriophage suspension at

a titer of about 106 PFU/ml was used. After incubating the

suspension at 30uC overnight, 5 ml of SM buffer was added onto

each plate and left at 4uC at least 4 h with morderate rotation.

Then the suspension was recovered and centrifuged at 8,000 g at

4uC for 10 minutes. After the supernatant was filtrated through

a 0.22 mm sterile filter, the concentrated phage preparation was

stored at 4uC for use.

Observation of bacteriophages by electron microscopy
A 5 ml aliquot of SM buffer containing 0.01% of gelatin was

added onto the bacterium-phage plate, the plate was morderately

rotated at 4uC for 2 h, and then the suspension was collected.

After centrifugation for 10 min at 8,000 g at 4uC, the supernatant
was immediately deposited on cuprum grids with carbon-coated

Formvar films, and stained with 2% potassium phosphotungstate

(PT, pH 7.2) [7,40]. After the film was dried in air, it was observed

by TEM (HITACHI H-7000FA transmission electron microscope)

at an acceleration voltage of 100 kV.

Investigation of host range
The host range of BtCS33 was investigated using the method

described above for the isolation of the phage. A suspension of

bacteriophage at about 106 PFU/mL was used to infect the tested

Bacillus spp. strains. After incubation overnight, plaques on the

bacterial plates were observed. These experiments were repeated

for three times. In total, 79 B. thuringiensis strains including 21 Bt

reference strains and 58 isolates belonging to 17 of H-serotypes, 4

B. sphaericus (Bs) strains (2 reference strains and 2 isolates), 1 B.

cereus strain and 2 B. anthracis (Ba) strains were tested. B. anthracis

strains were provided by Dr. Yuan in Wuhan Institute of Virology,

Chinese Academy of Sciences, and pXO1 and pXO2 were

eliminated in the two B. anthracis strains, respectively. Bt and Bs

strains tested were kept by our lab.

Extraction of phage DNA
DNA extraction from phage particles was performed according

to the method described by Santos with modifications [41]. Each

milliliter of phage suspension was treated with 6 units/ml of

DNase and 20 mg/ml of RNase at 37uC for 30 min, 20 ml of a 2 M

solution of ZnCl2 was added and the phage suspension was

incubated at 37uC for 5 min. After centrifugation for 1 min at

10,000 g, the supernatant was removed and the pellet was

suspended in 500 ml TES buffer (0.1 M Tris/HCl, pH 8.0;

0.1 M EDTA; 0.3% SDS) and incubated at 60uC for 15 min.

After incubation with 20 ml proteinase K (20 mg/ml) at 37uC for

90 min, 60 ml of 3 M potassium acetate solution (pH 5.2) was

added to the suspension and completely mixed; then, the mixture

was kept on ice for 15 min. The mixture treated with phenol/

chloroform/isoamyl alcohol (25:24:1, v/v) twice, and then with

chloroform/isoamyl alcohol (24:1, v/v) once. Phage DNA was

precipitated with an equal volume of isopropanol washed with

70% ethanol twice, and dissolved in 10 ml distilled water. The

DNA was checked by 0.6% agarose-gel electrophoresis.

Proteinase K and exonuclease III treatment of the BtCS33
genome
DNA preparations of BtCS33, which were prepared proteinase

K pretreatment, were incubated with variable amounts of

proteinase K (0.01 and 0.1 mg/ml) for 4 h at 37uC [11]. BtCS33

DNA preparations were also treatment with exonuclease III

according to the manufacturers’ instructions. The effect of the

treatment was analyzed by running the BtCS33 DNA preparation

on a 0.6% agarose gel

Genomic DNA sequence and bioinformatics analysis
Genomic DNA sequencing was performed by BGI Co. (Beijing,

China) with a shotgun sequencing method and the genome was

assembled with phrap version 1.080812. Each base had at least

five-fold coverage. Open reading frames (ORFs) were predicted

with FGENE SV software (http://linux1.softberry.com/berry.

Table 1. The five most similar nucleotide sequence fragments between genomes of phage BtCS33 and phage Gamma.

BtCS33 Gamma Length(bp) (BtCS33/Gamma) Similarity (%)

Position (From..to) Position (From..to)

5900..10207 5662..9980 4308/4319 84

10566..12713 10266..12413 2148/2148 82

13433..15447 13143..15160 2015/2018 83

16078..16470 15917..16309 393/393 87

40456..40491 39957..39992 36/36 100

20013..20050 18487..18524 38/38 97

doi:10.1371/journal.pone.0037557.t001

Genome of a Novel Bacillus thuringiensis Phage

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e37557



Figure 5. Phylogenetic tree constructed based on the complete geneome and the structural proteins. (A) Phylogenetic tree constructed
from the complete genome sequences of Bacillus spp. phages using a ClustalW alignment and the UPGMA (unweighted pair group method with
arithmetic mean) with bootstrap analysis (1,000 replicates). (B) and (C) Phylogenetic trees constructed by using the neighbor-joining method and

Genome of a Novel Bacillus thuringiensis Phage
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phtml?topic = virus&group= programs&subgroup= gfindv) and

by visual inspection. ATG, GTG and TTG were used as possible

start codons, and 30 codons were taken as a threshold for the

ORFs. The BLAST (http://www.ncbi.nlm.nih.gov/blast/Blast.

cgi) was used to search for homologous proteins, and the function

of each ORF was compared in the CDD database at NCBI

(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). To

search for putative tRNA-encoding genes, tRNAscan-SE 1.21

(http://selab.janelia.org/tRNAscan-SE/) was used. Promoter

sequences in the s70 family were identified by using Bprom

(http://linux1.softberry.com/berry.phtml). Dot plot analysis was

performed using Nucleic Acid Dot Plots (http://www.vivo.

colostate.edu/molkit/dnadot/index.html) with a window size of

13 and a mismatch limit of 0.

Nucleotide sequence accession number
The complete nucleotide sequence of BtCS33 was submitted to

GenBank under accession number is JN191664.

Supporting Information

Table S1 General features of the predicted proteins from

BtCS33 genome.

(DOC)
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