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Abstract

Gene expression data can provide a very rich source of information for elucidating the biological function on the pathway
level if the experimental design considers the needs of the statistical analysis methods. The purpose of this paper is to
provide a comparative analysis of statistical methods for detecting the differentially expression of pathways (DEP). In
contrast to many other studies conducted so far, we use three novel simulation types, producing a more realistic correlation
structure than previous simulation methods. This includes also the generation of surrogate data from two large-scale
microarray experiments from prostate cancer and ALL. As a result from our comprehensive analysis of 41,004 parameter
configurations, we find that each method should only be applied if certain conditions of the data from a pathway are met.
Further, we provide method-specific estimates for the optimal sample size for microarray experiments aiming to identify
DEP in order to avoid an underpowered design. Our study highlights the sensitivity of the studied methods on the
parameters of the system.
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Introduction

The functional analysis of high-throughput data is a challenging

but promising direction in the post-genomics era. It is challenging

because genome-wide data are high-dimensional and noisy, but

promising due to its potential to reveal knowledge about the

systemic working mechanisms of biological information processing

within cells, which we are currently lacking [1–4].

In the context of expression data the interest shifted in recent

years from approaches focusing on the analysis of individual genes,

detecting their differentially expression [5–7], toward the analysis

of gene sets in order to identify differentially expressed sets of genes

[8–11]. The rational behind this is that genes and their products

do not work in isolation but interact with each other in a concerted

manner in order for a phenotype to emerge [12]. Many univariate,

multivariate and nonparametric statistical methods have been

either newly developed or existing methodological techniques have

been adapted for this problem [13–16]. One important property

that allows to distinguish different types of such hypotheses tests

was discussed in [17]. There, tests have been distinguished based

on the data used for the comparison. A hypothesis test comparing

a gene set to all other gene sets available is called competitive,

whereas a test comparing the same gene set for two different

phenotypes is called self-contained.

The name ‘gene set’ associated with the above methods implies

that the choice for defining gene sets by populating them with

specific genes is not constraint. However, in the present study, we

are considering only gene sets that have been defined by using

biological information regarding their association with specific

pathways extracted, e.g., from the gene ontology database [18] or

KEGG [19]. For this reason we refer to them in the following as

pathway-based methods [20] to indicate this explicitly.

The major goal of this paper is to compare two self-contained

(sum of t-square and Hotelling’s T2 [21,22]) and one competitive test

(GSEA [23]) with each other, for a variety of simulated and

biological expression data, in order to gain insights into the

dependence of the power of these methods on the correlation

structure among genes. The reason for selecting these tests is their

complementary nature, representing univariate (sum of t-square),

multivariate (Hotelling’s T2) as well as competitive and self-

contained tests. In [24] it has been shown that there are currently

only about three different null hypotheses effectively tested among

all self-contained tests, which include the null hypothesis of the sum

of t-square test and Hotelling’s T2. Because GSEA is a competitive

test, its null hypothesis is conceptually different to the above ones

making the three selected methods complementary to each other

with respect to the tested null hypotheses. The reason for choosing

GSEA over other competitive methods, which are based on

methodological extensions [25,26], is the popularity of this method

especially among biologists [27], and the vast number of studies it

has been already used for.

In contrast to the many studies that have been conducted so far

investigating the power of methods for identifying differentially

expressed pathways, we are focusing on the correlation structure in

gene expression data. Other studies conducted in this context

either did not consider the correlation among genes [25,28],

assumed a constant [13,29], a random [30], an autoregressive [31]
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or a compound symmetry correlation structure among genes

[14,32,33] or studied real microarray data only [34–36], which do

not allow to study different configurations by adjusting model

parameters. The main problem with the above simulation studies

is that they do not provide a realistic correlation structure among

genes. The reason for this is that the made assumptions do not lead

to a gene network-like correlation structure as observed for gene

expression data. Technically, this means that the inverse of the

covariance matrix does not reflect the independence relations that

can be found in such network structures, as we will discuss in detail

in section ‘Simulation of network-like correlation structure’.

However, due to the fact that we are only considering gene sets

that correspond to biological pathways, the strength of the

correlation and its structure are important parameters that need

to be controlled properly in order to make the transition from gene

sets to pathways. In order to overcome this severe limitation, two

algorithms have been developed, in a different context, for

generating a covariance matrix for a multivariate normal

distribution whose inverse is consistent with the independence

relations of a network [37,38]. In order to generate such a

covariance matrix, both methods need a network as an input for

their algorithm. For our simulation study, we employ both

algorithms for generating simulated expression data with a gene

network-like correlation structure by using a protein interaction

network and a transcriptional regulatory network from yeast as

input network. This provides a biologically realistic constraint on

the resulting correlation structure. In the following we call these

simulation types III and IV. Here by ‘biologically realistic’ we mean

that an experimentally determined protein interaction network

and a transcriptional regulatory network are more realistic than

artificially generated network structures using a statistical method.

In order to conduct a comprehensive analysis of important system

parameters, we include in our study also the influence of the

sample size, detection call, i.e., the percentage of genes that is

differentially expressed within a pathway, and the pathway size on

the identification of differentially expressed pathways.

In addition to simulated expression data, we use also two large-

scale cancer data sets from DNA microarray experiments [39,40].

By applying a bootstrap approach [41,42], we use these data sets

to generate surrogate data of smaller sample sizes. This allows us

to study the robustness of the statistical methods over a wide range

of realistic sample sizes without the need for making assumptions

about the underlying pathology of the pathways in order to

declare, e.g., pathways as true positives. Further, we compare the

correlation structure of simulated and biological pathways as

defined via the gene ontology database [18].

Methods

Pathway-based method
GSEA. This method was introduced by [11,23] in order to

identify the differential expression of predefined gene sets. GSEA

is considered a competitive test [17] because it compares a test set

to a background data set. Let W be the set of genes to be tested

and W c its complement in a way that the union of both sets gives

all genes, i.e., V~W|W c. Briefly, GSEA consists of the

following steps, applied to each pathway:

(1) Estimation of gene-wise test statistics.

(2) Rank ordering of the test statistics.

(3) Calculation of an enrichment score (ES) for a pathway.

(4) Permutation of the gene-labels to estimate the significance of

the enrichment score (p-value) for the pathway.

The hypotheses tested by GSEA are:

H0 : ES~0 - vanishing test score

H1 : ES=0 - non-vanishing test score

Hotelling’s T2. The Hotelling T2 test is a self-contained test

that is a multivariate generalization of the univariate t-test. Its null

and alternative hypothesis can be formulated as:

H0 : mT~mC - equality of the p-dimensional population

mean vectors

H1 : mT
=mC - difference of the p-dimensional popula-

tion mean vectors

Suppose we have two groups with nC samples from the control

group and nT samples for the treatment group, each consisting of

p genes. Let the expression level of the ith sample of the control

group and treatment group be given by X C
i ~(X C

i1 ,X C
i2 , . . . X C

ip )t

and X T
i ~(X T

i1 ,X T
i2 , . . . X T

ip )t, respectively. The pooled covariance

matrix S is then defined by

S~
(nT{1)STz(nC{1)SC

(nTznC{2)
ð1Þ

where SC and ST are the covariance matrices for the control and

treatment group. Hotelling’s T2 is defined as

T2~
nT|nC

nTznC

(mT{mC)S{1(mT{mC)t: ð2Þ

The inverse of the covariance matrix is estimated via the shrinkage

estimator [43–46]. The statistical significance of the test statistic

T2 is estimated from sample-label permuted data.

Sum of t-square. The sum of t-square test is an univariate test

based on t-scores, ftig, obtained for each of the p genes

individually for a given set [22]. The test statistic for each

pathway is given by

X
t,2

~
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiXp

i

t2
i

s
: ð3Þ

Its null and alternative hypothesis can be formulated as:

H0 :
P

t,2 ~0 - vanishing test score

H1 :
P

t,2 =0 - non-vanishing test score

Again, the significance of
P

t,2 is assessed from sample-label

permuted data.

Simulation algorithms
In order to assess the performance of the statistical methods we

use three principally different algorithms to simulate expression

data.

Simulation of uncorrelated data. For this method we, first,

define different non-overlapping pathways of varying sizes

including a total of p genes. Then we draw iid (Independent and

identically distributed) samples from a standard normal distribu-

tion, i.e., X G
ij *N(0,1), for each gene i[f1, . . . ,pg and sample

j[f1, . . . ,ng, for the control (G~c) and treatment (G~t) group. In

order to make a difference between the control and treatment

group we add a constant factor of one to a certain percent of genes

of all pathways for the treatment group.

Power Analysis for Pathways
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Simulation of correlated data. First, we generate a matrix

X with p rows and 2n columns with a sample size of n for the

control and treatment group, i.e., Xij with j[f1, . . . ,ng corre-

sponds to the control and j[fnz1, . . . ,2ng to the treatment

group. Each component of X is independently sampled from a

standard normal distribution, i.e., Xij*N(0,1). Then we generate

a 2n-dimensional random vector a whose components are also iid

drawn from the standard normal distribution. Define

Yij~
ffiffiffi
r
p

ajz
ffiffiffiffiffiffiffiffiffiffi
1{r

p
Xij ð4Þ

where i[f1, . . . ,pg and j[f1, . . . ,2ng, so that the average

correlation between the genes (rows of Y ) is r [29]. To model

differential expressed pathways we add a constant factor of one to

a certain percent of genes for the treatment group.

Simulation of a network-like correlation structure. For

random variables that are from a p-dimensional multivariate

normal distribution, i.e., Xp*N(m,S), a simple relation between

the components of the inverse covariance matrix V~S{1 (also

called precision or concentration matrix) and the conditional

partial correlation holds [47]

rijDV \fijg~{
vijffiffiffiffiffiffiffiffiffiffiffiffi
viivjj
p : ð5Þ

Here rijDV \fijg is the partial correlation coefficient between gene i

and j conditioned on all remaining genes and vij are the

components of V. That means if rijDV \fijg~0 then gene i and j are

independent from each other,

Xi\Xj Dfall remaining genesg, ð6Þ

if and only if vij~0. A multivariate normal distribution that is

Markov with respect to an undirected network G is called a Gaussian

graphical model. This means that all conditional independence

relations that can be found in S{1 hold also in G [47]. Hence,

such a S{1 can be considered as consistent with all conditional

independence relations in G.

We use the following two algorithms to obtain a covariance

matrix for a given network structure G.

(1) The algorithm of [38] is based on successive orthogonal

projections constraint by the network structure G, resulting in

a consistent covariance matrix S.

(2) The algorithm of [37,48] is based on proportional iterative

fitting [47] to enforce an average correlation in the data

resulting in a covariance matrix S consistent with the

conditional independence relations in G.

As input network G for these algorithms we use two yeast

networks. The first is a protein-protein interaction network

provided by the Biogrid database [49] and the second is a

transcriptional regulatory network [50]. From both networks, we

extract the giant connected component. The reason for selecting

these networks is that a protein and a transcriptional regulatory

network represent observed interaction structures among genes and

gene product and, hence, provide a more realistic structure than

artificially generated networks, e.g., by using the preferential

attachment model to generate scale-free networks [51]. Once a

covariance matrix S from one of the above algorithms is obtained,

we use S to generate iid samples from a multivariate normal

distribution, i.e., X*N(m,S). In order to simulate the differen-

tially expression of pathways, we use a p-dimensional mean vector

of zero, m~0p, for the control group, and a mean vector m
consisting of DC genes with an expression of 1 and (1{DC) genes

with an expression of 0 for the treatment group. For both groups,

we use the same covariance matrix.

We would like to note that due to the properties of the Gaussian

graphical model, as discussed above, this model has been used to

infer gene regulatory networks from expression data [46,52–54].

This indicates that the relation between the components of the

inverse of the covariance matrix and the independence relations

found in a network structure are generally considered to be

biologically connected with each other for expression data. Hence,

this provides a justification to consider the correlation structure

generated from a Gaussian graphical model as biologically

plausible.

Simulation types
For our analysis we are using four different simulation types

(ST) based on the algorithms described above. Because GSEA is a

competitive test [17] it requires a background data set against which a

pathway is compared. For ST I we simulate such a background

data set explicitly. This background data consists of 10000 genes

with expression values sampled from a normal distribution N(0,1),
for both conditions, and a global correlation structure is imposed

by Eqn. 4. For ST II–IV we use, instead, the remaining data

excluding the pathway under investigation, as background data.

Simulation type I. For this type of simulation we generate

simulated expressed data for all p~10000 genes simultaneously, as

described in methods section ‘Simulation of uncorrelated data’

and ‘Simulation of correlated data’, for which we define non-

overlapping pathways of sizes ranging from 5 to 195 (step size 10),

P~f5,15, . . . ,195g. For each of these DPD~20 different pathway

sizes we generate 5 pathways, resulting in a total of 100 different

non-overlapping pathways that contain in total p~10000 genes.

Parameters studied: We study the influence of the sample size

(n[N~f5,10,15, . . . ,45g, DN D~9), detection call

(DC[DC~f0%,10%,30%,60%g, Dj j~4) and of the correlation

(r[R~f0:0,0:2,0:4,0:6g, DRD~4). Here, the detection call (DC)

[24] refers to the percent of differentially expressed genes in a

pathway and r refers to the correlation between all genes in the

overall set. This gives 2880(~DPD:DN D:DDD:DRD) different parameter

configurations. For GSEA, we generate a background data set

without expression difference between the treatment and control group,

i.e., X t
ij ,X

c
ij*N(0,1).

Simulation type II. Here we generate simulated data

separately for each pathway, as described in methods section

‘Simulation of correlated data’. In contrast to ST I, ST II

generates a correlation among the genes within a pathway. We use

an overall set of p~10000 genes to define non-overlapping

pathways, as for ST I. Parameters studied: We study the influence

of the sample size (n[N~f5,10,15, . . . ,45g, DN D~9), detection

call (DC[DC~f0%,10%,30%,60%g, Dj j~4) and of the correla-

tion (r[R~f0:2,0:4,0:6g, DRD~3). Here, r refers to the correla-

tion for the genes within a pathway, whereas the average

correlation among all genes is about zero. This gives

2160(~DPD:DN D:DDD:DRD) parameter configurations.

Simulation type III and IV. For this ST we generate

simulated expressed data by sampling from a p-dimensional

Gaussian graphical model. In order to obtain a more realistic

correlation structure we use two different algorithms, as described

in methods section ‘Simulation of network-like correlation

structure’ in combination with a protein interaction network and

a transcriptional regulatory network. We used the gene ontology

database [18] to map the proteins to their corresponding biological

process for level 4. From this information we selected 76 different

Power Analysis for Pathways
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but overlapping pathways that consist in total of p~1588 genes for

algorithm (1) and 41 pathways for 612 genes for algorithm (2). For

the transcriptional regulatory network we select 200 different but

overlapping pathways that consist in total of p~1199 gene for

algorithm (1) and (2). Parameters studied for both algorithms: We

study the influence of the sample size (n[N~f5,10,15, . . . ,45g,
DN D~9) and the detection call (DC[DC~f0%,10%,30%,60%g,
DDCD~4). The overall average correlation between all genes is

approximately zero. In addition, for algorithm (2) we study also

different values of the correlation, (r[R~f0:2,0:4,0:6g, DRD~3).

This gives 2736(~N :D:76) (ST III) and 4428(~N :D:R:41) (ST

IV) different parameter configurations for the protein interaction

network and 7200(~N :D:200) (ST III) and

21600(~N :D:R:200) (ST IV) different parameter configurations

for the transcription regulatory network.

We would like to note that in the results section, the estimates

for the false positive rate (FPR) have been obtained by setting

DC~0%, which corresponds to the case of no differentially

expressed pathways [15,24,25].

Surrogate data: ALL and prostate cancer
To assess the power of the three pathway-based methods for

microarray data we use two different large-scale data sets based on

Affymetrix chips. The first is a prostate cancer data set consisting

of 50 control samples and 52 tumor samples [40]. The second data

set is from B-cells derived from Acute lymphoblastic leukemia

(ALL) [39]. From the entire data set we select 37 samples from the

BCR/ABL group and 37 from the NEG group. For the

preprocessing and normalization of these data sets we followed

[39,40]. After the normalization, we map the genes to the category

biological process of level four in the gene ontology database [18] in

order to obtain information about their association to biological

pathways. For prostate cancer we obtain 213 different pathways

and for ALL 533.

Our analysis of these data consists of two steps. In the first step,

we generate a reference list by testing the significance of pathways

for the total number of samples s (prostate: s = 102, ALL: s = 74).

For the following analysis we use the results from this analysis as

reference, because we consider the significant pathways as true

positives and the nonsignificant pathways as true negatives. In the

second step, we construct b(si) bootstrap data sets for various

sample sizes, s1ws2w � � �wsk{1wsk, each data set drawn from

the total of s available samples. For each bootstrap data set, each

method is applied and a p-value obtained for each pathway. From

this, a result is assessed as true positive, true negative, false positive

or false negative with respect to the reference list obtained for

sample size s (step one). Due to the fact that our reference list may

contain false declarations, our results assess the statistical

robustness of the methods providing estimates for, e.g., their

power, rather than their true value. Further, because we generate

bootstrap data sets for each sample size si, we consider these as

surrogate data for newly generated data from independent

experiments, which are not available.

Results

For the following simulations, we use a significance level of

a~0:05.

Simulation type I and II
In Fig. 1 A-C we show the power for GSEA (red curves),

Hotelling’s T2 (green curves) and sum of t-square (blue curves) for

simulation type I and II and different parameter settings. Here by

the power we mean the probability that the statistical hypothesis

test is rejected when the null hypothesis is truly false [55].

Practically, we estimate this probability by the population mean

over repeated simulations [24]. The different color shadings code

for different DC values; DC = 10% (light color), 30% (medium

color), 60% (dark color). In these figures, a ‘dot’ corresponds to a

mean value, and the error bars refer to its standard deviation

obtained from 50 bootstrap samples. Each figure is indexed by the

strength of the mean correlation.

For ST I (Fig. 1 A) the correlation has a much stronger influence

on the power of sum of t-square and GSEA than on Hotelling’s T2,

although Hotelling’s T2 has generally a lower power. Also, the

influence of the detection call is for the sum of t-square and GSEA

strongest resulting in a considerable loss in power for DCv30%.

Hotelling’s T2 appears to be relative insensitive against different

values of DC. For high correlations and DC~10% the sum of t-

square test has by far the worst power. For ST II (Fig. 1 C) GSEA

performs significantly worse for all values of DC, compared to

simulation type I, showing an almost complete break down. The

power of sum of t-square and Hotelling’s T2 are comparable to the

results for ST I. Regarding the number of significant pathways

detected by the three methods, one can see that the sum of t-square

test declares consistently more pathways as significant than any

other method, for all conditions, except for very small sample sizes

(ƒ10) for ST I. In this case GSEA declares more pathways as

significant. In general, the lower the DC value the lower the

number of pathways declared as significant, whereas lower values

having a stronger influence. Further, it is interesting to note that

for r~0:0 (Fig. 1 B) the sum of t-square and Hotelling’s T2 are

different from each other despite that fact that in this case both

tests should provide similar result, because the pooled covariance

matrix S (see Eqn. 1) becomes diagonal. This indicates a poor

behavior of the shrinkage estimator.

For ST II GSEA declares considerably less pathways as

significant compared to the other methods, for all conditions.

Regarding the false positive rate (FPR), GSEA and sum of t-square

show a good control of the FPR at a significance level of a~0:05.

This is in contrast to Hotelling’s T2 which has even for large

sample sizes a FPR larger than 0:20. In order to find the cause for

this behavior we split the pathways into two categories. In the first

category we put all pathways having less than 35 genes, in the

second category we place all larger pathways (results not shown).

From this analysis we find that also Hotelling’s T2 controls the

FPR, but only for pathway sizes less than 35. The reason for this

behavior is related to the estimation of the inverse of the

covariance matrix, S{1, on which Hotelling’s T2 is based. For

smaller pathways, their number of genes, p, is closer to the number

of samples, nC and nT , and, hence, the estimates for S{1 are more

accurate than for larger pathways. Hence, for larger pathways one

would need to improve the shrinkage estimator. Figure 1 B shows

the result for uncorrelated data (r~0:0). In this case ST I and II

coincide with each other. In general, for the uncorrelated case the

power is slightly higher for all methods and also the number of

pathways declared significant increases.

Simulation type III and IV
Fig. 2 (A and B) shows the results for simulation type III and IV.

Here the sum of t-square and Hotelling’s T2 perform much better

than GSEA. Interestingly, for ST IV and high correlations (r~0:6)

and small sample sizes (ƒ25) the power of Hotelling’s T2 is even

slightly higher than for the sum of t-square test and, more

importantly, it is more robust with respect to DC values less than

60%. For the number of significant pathways we find again that

GSEA declares less pathways as significant. Hotelling’s T2 does

not control well the false positive rate for small sample sizes (ƒ20)

Power Analysis for Pathways
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and has more problems in controlling the FPR with high

correlations. For the sum of t-square the FPR is in general

controlled, except for ST IV and r~0:6. It is of interest to note

that GSEA is the only method that controls the FPR for all

conditions well.

The significant reduction of the power for GSEA for simulation

type I compared to simulation type II to IV can be explained by

the background data that have been generated for simulation type

I, but not for the other simulation types. Due to the fact that

GSEA is a competitive hypothesis test which estimates a test

statistics w.r.t the background, the background data have a

prominent influence on the power of GSEA whereas a large

background dataset without expression changes in the conditions

increases the sensitivity of this test.

In Fig. 3, we show similar results as in Fig. 2, however, for the

transcriptional regulatory network of yeast [50] instead of the

protein network, to generate simulated data. Overall, these results

have a large resemblance to the results in Fig. 2. This demonstrates

that structural properties of both networks on the pathway level

are sufficiently similar to each other to result in similar results for

the pathway methods. This corresponds, e.g., to the known

similarity of the scale-free degree distribution of these networks

[56].

Surrogate data: ALL and prostate cancer
The results for prostate cancer (left) and ALL (right) are shown

in Fig. 4. We want to re-emphasize that we used the pathways

declared as significant for the total number of samples (prostate:

s = 102, ALL: s = 74) as a reference list. Hence, the power is

related to these pathways and not to the truely expressed pathways.

Similarly, the interpretation for the FPR and the number of

significant pathways. On the first sight, all methods seem to

perform similarly, although, GSEA has for high sample sizes the

lowest power. However, Hotelling’s T2 and sum of t-square declare

for all studied sample sizes many more pathways as significant

than GSEA. Similar to the simulation studies, GSEA controls the

FPR well whereas the other two methods assume larger values.

An interesting observation of the power is its rapid decay for an

even slightly reduced sample size. More precisely, for prostate

cancer the total sample size is s~102 for which we identified the

set of significant pathways we consider as ‘true positives’.

However, when using only 90 bootstrap samples (45 samples per

condition) then the power of all three methods is already smaller

than 1, see Fig. 4. Even more severe effects are observed for ALL,

where the total sample size is s~74, and results for 64 bootstrap

samples (32 samples per condition) show a clearly reduced power.

This lack of robustness for the initial sample sizes (45 for prostate

cancer and 32 for ALL) suggests that the available total sample sizes

are too small for the employed test statistics, because otherwise we

would observe a stable plateau as in Fig. 1, 2 and 3, where a slight

reduction of the sample size does not influence the power at all.

Hence, from this decay, one can conclude that the total number of

samples (prostate: s = 102, ALL: s = 74) of both cancer data sets

(ALL and prostate cancer) is not sufficiently large for the point

estimator of the power to converge. This hints to a refinement of

the experimental design of studies aiming to detect the DEP to

avoid a study that is underpowered.

In order to quantify this observation, we performed a linear

regression analysis. For this analysis we use the size of the

microarray experiments as predictor variable and the initial step

size of the power curves (Fig. 4) as outcome variable, measured by

its distance to convergence, as found from the comparison with our

simulation results in Fig. 2 and 3. That means from Fig. 2 and 3

we obtain the minimal sample sizes for which the power reaches

‘1’, and the initial step size of the power corresponds to the power

for 45 (prostate cancer) and 32 (ALL) samples from Fig. 4. We are

only using the results from ST III and IV for this comparison,

because they resemble more closely the correlation structure of

real microarray data. We conduct a separate analysis to predict the

optimal sample size for each method, see Fig. 5. Here optimal refers

to the minimal sample size for a method to become invariant

against the removal of a small number of samples.

For the regression, we obtain F-statistics (18:83, 7:93 and 25:6)

for the three linear regressions, in the order of the figures in 5,

which are all significant with p-values of 0:0006, 0:0145 and

0:0071. As a result of this analysis, we predict a sample size of 59
for Hotelling’s T2 and 57 for the sum of t-square test (red crosses in

Fig. 5). Due to the fact that for GSEA, its power does not converge

in our simulation study for ST III and IV, we cannot make a

prediction for this method. If we use the results form ST I instead,

we obtain an estimated sample size of 83 for GSEA. We would like

to emphasize that we consider these estimates as optimistic and,

hence, as lower bounds for optimal sample sizes since the

simulations constitute only approximations of real data.

A central topic of this paper is the investigation of the influence

of the correlation strength and its structure on the identification of

differentially expressed pathways. In the introduction we presented

arguments supporting the need for such an analysis. Now we add

quantitative evidence, directly extracted from the used expression

data from prostate cancer and ALL. As discussed in the methods

section ‘Surrogate data: ALL and prostate cancer’, both micro-

array data sets were normalized. Estimating the average correla-

tion among all genes from the normalized data results in 0:0618
and 0:0138 for ALL and prostate cancer, which are quite small

correlation values. However, if we estimate the average correlation

among all genes within each pathway, we obtain an entirely different

result. In Fig. 6 we show these results by ordering the pathways

according to their average correlation coefficient. The different

number of the pathways results from the fact the we consider 213
pathways for prostate cancer and 533 pathways for ALL, as

explained in section ‘Surrogate data: ALL and prostate cancer’.

Despite the fact that the average correlation among all genes is

0:0618 for ALL (blue) and 0:0138 for prostate cancer (violet),

shown as dashed lines in Fig. 6, one can clearly see that within the

pathways there is a non-neglectable correlation, which spans a

very wide range of different values, as summarized by the two

vertical intervals on the left-hand side (violet: prostate cancer; blue:

ALL). From these results, we can draw the following conclusions.

First, even in normalized expression data there exist quite large

correlations within particular pathways, which exhibit much larger

values than the average correlation between all genes in the data

set. The reason for this is that the purpose of any normalization

method is to reduce reduce correlations due to technical artifacts

and batch effects in the data but not real biological correlations

between genes. These results justify also the selected correlation

values for our simulations, which assume correlations up to 0:6.

Second, there is a wide dynamic range of observed correlation

coefficients that points toward a heterogeneity among the

pathways. That means not all pathways possess the same

characteristics but they can be quite different from each other.

Figure 1. Simulation type I (A, B) and II (C): Power, FPR and number of significant pathways for GSEA (red), sum of t-square (blue)
and Hotelling’s T2 (green). DC = 10% (light color), 30% (medium color), 60% (dark color).
doi:10.1371/journal.pone.0037510.g001
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Figure 2. Simulation type III (A) and IV (B): Power, FPR and number of significant pathways for GSEA (red), sum of t-square (blue) and
Hotelling’s T2 (green). DC = 10% (light color), 30% (medium color), 60% (dark color). Simulated data are from the protein network of yeast [49].
doi:10.1371/journal.pone.0037510.g002
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Figure 3. Simulation type III (A) and IV (B) : Power, FPR and number of significant pathways for GSEA (red), sum of t-square (blue) and
Hotelling’s T2 test (green). DC = 10% (light color), 30% (medium color), 60% (dark color). Simulated data are from the transcriptional regulatory
network of yeast [50].
doi:10.1371/journal.pone.0037510.g003
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For comparison with the simulated data, we include in Fig. 6 the

correlation values for ST I to IV for different parameters. The

vertical intervals on the right-hand side correspond to the

projected correlation range of these four simulation types. Ordered

from left to right: ST I (green: r~f0:0,0:2,0:4,0:6g), ST II

(orange: r~f0:2,0:4,0:6g), ST III (purple: r~f0:0g) and ST IV

(brown: r~f0:2,0:4,0:6g). Here, we represent only the projected

correlation range to simplify the presentation in Fig. 6. However,

we would like to note that for each of these individual results the

ordering of the correlation values assumes a similar shape as

observed for prostate cancer and ALL. From these intervals, two

observations are important to emphasize. First, ST I and II result

in a shorter range for individual simulations, compared to ST III

and IV. Second, the intervals for I and II are non-overlapping.

Overall, we observe that if ST III and IV are employed together,

the whole range of experimentally observed correlations found

within normalized microarray data can be covered without gaps.

Further, in comparison to the correlation structures used in

previous studies, as discussed in the introduction, we find that ST

III and IV provide a more realistic correlation structure compared

to studies using a constant [13,29], random [30], autoregressive

[31], compound symmetry [14,32,33] or no correlations at all

[25,28].

We would like to point out that results about the range of the

correlation values is only one indicator that should be met by

simulated data. In addition, the structure among the genes is

another important characteristics. Due to the fact that the data for

ST III and ST IV are generated in a way that the inverse of the

covariance matrix does reflect the independence relations that can

be found in a protein network, this is another crucial difference to

previous studies equipping our approach with a more realistic

correlation structure.

Finally, we present results about the biological distribution of

DC values in prostate cancer and ALL. Using SAM [57] and a

multiple hypotheses correction [58] we identify differentially

expressed genes in prostate cancer and ALL for FDR~0:05.

From this, we estimate a mean DC value of 18% for prostate

cancer and 4:5% for ALL; see Fig. 7 for the distributions. Further,

we find that only very few pathways have a DC value larger than

30%, namely, 30 out of 213 pathways (corresponding to 14%) in

prostate cancer and 2 out of 533 pathways (corresponding to 0:3%)

in ALL. This provides evidence that the selected DC values for our

simulations correspond to biologically relevant values.

Discussion

For our power analysis of simulated data, we assumed a

maximum sample size of 50 because this corresponds well to the

number of samples available for the experimental microarray data

we used. Further, most other microarray experiments conducted

provide usually less than 50 samples per condition making our

choice from a biological point of view reasonable. Our results

reveal the following. The sum of t-square test has for almost all

studied cases the highest power if DC§30%, except for ST IV

and r~0:6. However, if DCv30% and rw0:2 Hotelling’s T2 has

a higher power. Due to the fact that this reflects the characteristics

of the microarray data better, Hotelling’s T2 seems to be the

favorable test. The sum of t-square test controls in general the FPR

well, except for ST IV and r~0:6. The control of the FPR of

Hotelling’s T2 depends strongly on the pathway size, and a control

is only working for pathway sizes less than 35. GSEA is for almost

all studied cases underpowered, except for ST I and DC~60%
which is a condition that has not been found in one pathway in

both microarray data sets. In our experience, this problem cannot

be solved by increasing the sample size but is caused by inappropriate

background data, which is out of the control of the experimenter.

On the other hand, GSEA has a good control of the FPR for all

conditions.

Taking all this into account our findings do not suggest to apply

a method unconditionally to all pathways in a given data set, but

to filter them in order to eliminate conditions for which a method is

more likely to cause problems. We suggest to filter the pathways

according to the following easy to check criteria: Hotelling’s T2

should only be applied to pathways with less than 35 genes and a

sample size larger than 30. The sum of t-square test should only be

used for pathways with DCw10% and a sample size of 25 or

larger. GSEA should only be used for pathways with DCw10%
and a sample size larger than 25. We want to emphasize that these

sample sizes are different to the minimal sample sizes discussed in

section ‘Surrogate data: ALL and prostate cancer’, which consider

only the control of the FPR, whereas the optimal sample sizes

avoid in addition that a study is underpowered. It is interesting to

Figure 4. Left column: prostate cancer. Right column: ALL. Power, false positive rate and number of significant pathways for GSEA
(red), sum of t-square (blue) and Hotelling’s T2 (green).
doi:10.1371/journal.pone.0037510.g004

Figure 5. Left: Hotelling’s T2, Middle: sum of t-square, Right: GSEA. The regression line is used to predict the optimal sample size (red cross)
found from the intersection of the regression line with the horizontal dashed line corresponding to a ‘zero distance to convergence’.
doi:10.1371/journal.pone.0037510.g005
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note that in [59] a similar sample size recommendation has been

given, however, for the stability of clusters obtained from

clustering algorithms. Despite the methodological differences

among these studies, this correspondence is interesting because it

emphasizes that there is a considerable difference between studies

for detecting the differentially expression of (single) genes and

studies for identifying differentially expressed pathways. For the

former it would be plausible to expect lower sample size

recommendations than for a clustering analysis trying to estimate

the correlation strength among genes. However, due to the fact

that our sample size recommendations for DEP methods coincide

with clustering methods, hints, that DEP analysis methods are not

just the sum of individual gene test statistics. If one perceives this

problem from a biological perspective, this correspondence

becomes more plausible because the clustering of genes is

frequently used to reveal functional relations between genes

corresponding to biological pathways [60–62]. Hence, clustering

algorithms and pathway methods respond to similar molecular

functional units.

The underlying rationale for our power analysis, which provides

statistical estimates of the true positive rates of tests, is to study the

unbiased performance of the methods. In contrast, by conducting

multiple hypotheses tests one would be obligated to apply a

multiple testing procedure to control a selected error measure

[58,63]. However, this would introduce a bias in the obtained

results because both, the selected error measure and the control

procedure, effect the results. In order to minimize this influence (it

is probably not possible to completely eliminate this influence) one

would need to study which pathway-based method works best

  
 

Figure 6. Average correlations for individual pathways for ALL (blue) and prostate cancer (violet) are shown by horizontally dashed
lines. The two curves correspond to the rank ordered correlation values for ALL (blue) and prostate cancer (violet). For ST I (green -
r[f0:0,0:2,0:40:6g), ST II (orange - r[f0:2,0:4,0:6g), ST III (purple, r~0:0) and ST IV (brown - r[f0:2,0:4,0:6g) the projections of the range of
correlation values is shown on the right-hand side.
doi:10.1371/journal.pone.0037510.g006

Figure 7. Distribution of the detection call (DC) values for gene
expression data from prostate cancer (left) and ALL (right).
doi:10.1371/journal.pone.0037510.g007
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together with which error measure and control procedure.

However, these technical adjustments would not contribute to a

better understanding of the power of a pathway-based method

itself.

The optimal experimental design for microarray experiments

with respect to the identification of the DEP is an important topic

that is currently still under debate. From our comprehensive

analysis of simulated and experimental gene expression data of

over 3 million pathways, we obtain three major results. First, we

find that the heterogeneity of different biological conditions and

the sensitivity of the statistical methods suggest a selective

application to definite pathways. That means, it is not advisable

to apply a method to all accessible pathways but only to selected

ones. Second, future gene expression experiments aiming to detect

the DEP should be conducted with an increased number of

samples in order to avoid non-robust and underpowered studies.

From our study, we find method-specific recommendations

constituting lower bounds for minimal sample sizes. Specifically,

we suggest sample sizes between 60 and 85 to avoid (1) an

underpowered study and (2) to allow the control of the FPR.

Third, as a more theoretical finding we gained insight into the

correlation structure of biological and simulated microarray data.

From these results, we suggest the combined usage of ST III and

ST IV for simulating gene expression data. Because these

simulation types lead to a more realistic correlation structure

compared to studies employing a constant, a random or no

correlation structure at all. On a side note, we would like to

remark that by using simulation methods like GeneNetWeaver [64] or

SynTReN [65], which are aiming to mimic the mechanistic

behavior of the transcription regulation of genes, it is also possible

to obtain simulated expression data with a realistic correlation

structure. However, the generation of data from sampling is

simpler and usually less time consuming. Further, the controlled,

concerted modification of expression levels of genes in particular

pathways may be very challenging for such methods.

For future studies of DEP methods, simulations based on our

approach using ST III and ST IV can be very useful to investigate,

e.g., the influence of different gene network structures, the effect of

overlapping pathways or the influence of heterogeneous effect

sizes. For example, one could compare protein networks and

transcriptional regulatory networks for different organisms or

compare them with gene regulatory networks. Here by gene

regulatory networks we mean networks inferred from gene

expression data [66]. Also different gene regulatory networks

inferred from different inference methods [67–70] could be

studied to investigate distinctions on the pathway level. Regarding

overlapping pathways and their potential importance for pathway

methods, such simulation settings provide ample opportunity to

control parameters for testing hypotheses about their influence.

Lastly, for our study we used a constant effect size for the

differentially expression of genes. That means, we sampled

differentially expressed genes for the control group from N(m,1)
with m~const. This is similar to all previous studies we are aware

of, e.g., [13,25]. However, it could be intricate to identify a

distribution from which the mean m should be sampled.

The studied methods in this paper are expected to be also useful

for the analysis of RNA-seq data [71,72]. For this reason, once a

sufficiently large data set is available, it would be interesting to

repeat the above investigations for this new data type in order to

gain a deeper insight into their experimental design in the context

of DEP. Another important future direction to explore would be

an investigation of the influence that alterations in regulation

mechanisms in pathways have on the biological function [8].
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