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Abstract

Background: Several models have been designed to predict survival of patients with heart failure. These, while available and
widely used for both stratifying and deciding upon different treatment options on the individual level, have several
limitations. Specifically, some clinical variables that may influence prognosis may have an influence that change over time.
Statistical models that include such characteristic may help in evaluating prognosis. The aim of the present study was to
analyze and quantify the impact of modeling heart failure survival allowing for covariates with time-varying effects known
to be independent predictors of overall mortality in this clinical setting.

Methodology: Survival data from an inception cohort of five hundred patients diagnosed with heart failure functional class
III and IV between 2002 and 2004 and followed-up to 2006 were analyzed by using the proportional hazards Cox model and
variations of the Cox’s model and also of the Aalen’s additive model.

Principal Findings: One-hundred and eighty eight (188) patients died during follow-up. For patients under study, age,
serum sodium, hemoglobin, serum creatinine, and left ventricular ejection fraction were significantly associated with
mortality. Evidence of time-varying effect was suggested for the last three. Both high hemoglobin and high LV ejection
fraction were associated with a reduced risk of dying with a stronger initial effect. High creatinine, associated with an
increased risk of dying, also presented an initial stronger effect. The impact of age and sodium were constant over time.

Conclusions: The current study points to the importance of evaluating covariates with time-varying effects in heart failure
models. The analysis performed suggests that variations of Cox and Aalen models constitute a valuable tool for identifying
these variables. The implementation of covariates with time-varying effects into heart failure prognostication models may
reduce bias and increase the specificity of such models.
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Introduction

Patients with heart failure usually experience a progressive

clinical deterioration over time. Factors that influence the

unfavorable outcome are less predictable over time as they may

be dependent on several, and distinct, factors such as pump failure,

autonomic nervous system influence, cardiac arrhythmias, meta-

bolic derangements (such as renal failure, hyperkalemia, hypoka-

lemia), and complications that many times may be subclinical or

undiagnosed, such as pulmonary embolism. This myriad of

potential complications that may ensue in spite of current therapy

are less predictable over time. Some of them, like progressive

pump failure may be expected to have a more linear downhill

course; others may not.

The incidence and prevalence of heart failure (HF) are rising

worldwide [1]. And although decline trends in HF hospitalization

rates have been shown in Europe [2] and in the USA [3], current

advances in the treatment of both myocardial infarction and heart

failure itself bring the forecast of even higher heart failure

numbers. At the same time, new indications and care for the

transplanted patient is continuously emerging and new ventricular

assist-devices are yearly being introduced into clinical practice

[4,5]. This scenario has brought increasing interest in the

development of new and more sensitive and specific tools for

heart failure prognostication [6].

In fact, a number of different tools for heart failure prognos-

tication already exist and are increasingly being incorporated into

clinical practice [7,8]. These include the Heart Failure Survival

Score [9], the Seattle Heart Failure Model [10], the Organized

Program to Initiate Lifesaving Treatment in Hospitalized Patients

With Heart Failure predictive schemes [11], the Acute Decom-

pensated Heart Failure National Registry regression tree discrim-
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ination [10], among others. Interestingly, they were built using

rather different patient populations and analytical tools for model

construction. Some were specifically designed for acute decom-

pensated HF and were not built to be used with out-patient

populations [11,12]. These scores do not rely on survival analysis

for their construction and use different data supposition for their

validity, being specifically tailored for the hospitalized patient with

HF. On the other hand, there are well-established tools for the

out-patient scenario, all of them built in the outline, and

constrains, of survival analysis [9,10]. Although well-designed

and validated, these models do not consider time-varying effects of

their covariates and relied upon the framework of proportional

hazards Cox regression, which assumes proportionality of the

hazards and also that the risk factors act multiplicatively on the

baseline hazard risk function. These assumptions, however, may

not be proper in some applications and there is therefore the need

for alternative models.

Risk factors may also have additive effects instead of multipli-

cative effects in the baseline hazard function. Another typical

deviation from the proportional hazards Cox model is when the

effects of some covariates change with time. For instance, some

risk factors may impose a strong effect right after being recorded,

but gradually lose predictive power (e.g. a treatment effect that is

weakened with time). Models flexible enough to deal with

covariates in which their effects are time-varying are therefore of

great interest in these situations. One of these models is a direct

extension of the proportional hazards Cox model where all or

some effects of the covariates are allowed to change over time [13].

Another is the additive hazards model proposed by Aalen [14–16]

that allows all regression coefficients to vary with time. As,

however, the effect of some of the covariates may change with time

while others not, McKeague and Sasieni [17] suggested a variation

of the Aalen model allowing for this possibility.

Here we have used these models to analyze the survival of

patients diagnosed with heart failure. Our main aim was to explore

the time-varying effect of the different covariates known to be

predictive of mortality in such clinical scenario and highlight the

importance of considering such details in the modeling of heart

failure mortality.

Materials and Methods

Ethics Statement
All patients signed an informed consent form and the study has

been approved by the Ethics Committee of the Heart Institute of

the University of Sao Paulo, Brazil.

Study Sample
Five hundred (500) patients with heart failure in functional class

III or IV of the New York Heart Association were studied. Patients

were included as part of a secondary-cohort of HF individuals

attended at a cardiology tertiary care center in Sao Paulo, Brazil

(Heart Institute of the Sao Paulo University Medical School).

Ascertainment period was from August, 2002 to March, 2004.

The diagnosis of heart failure was made according to previously

published criteria [18,19]. The classification of the etiologies of

heart failure followed previous recommendations [19]. As such,

the diagnosis of chronic heart failure was made through both

clinical and imaging procedures when necessary. Ischemic

cardiomyopathy diagnosis was made when a clear history of

previous myocardial infarction and no other probable cause of

heart dysfunction was present or, alternatively, through coronary

angiography. All patients with the final diagnosis of idiopathic

dilated cardiomyopathy were studied through coronary angiogra-

phy to exclude the diagnosis of ischemic cardiomyopathy. Therapy

was titrated according to the patient’s needs and tolerance by the

physician in charge and included angiotensin-converting enzyme

blockers, angiotensin receptor blockers, diuretics, and beta-blocker

(carvedilol). Carvedilol is the standard beta-blocker prescribed at

the Heart Institute of the Sao Paulo University. Spironolactone

was used only in a very small fraction of patients (probably

reflecting the enrollment period of the cohort).

Beginning of follow-up was defined as enrollment in the

protocol. Follow-up was assessed in the last outpatient medical

visit or by telephone contact. In addition, the mortality database of

Sao Paulo City Authority was also scrutinized to discover patient

deaths (ProAim 2 Programa de Aprimoramento de Informações

de Mortalidade do Municı́pio de São Paulo). For the current

analysis, last follow-up was evaluated in April, 2006. Primary end-

Table 1. Clinical characteristics of the study sample.

Variables Descriptive information

Age 18 to 93 yrs (mean = 58.08, sd = 14.38)

Gender 59% male (297) and 41% female (203)

Race 73.4% white (367) and 26.6% others (126)

Diabetes mellitus 25.8% (129)

Hypertension 63% (315)

Current smoking 9% (46)

BMI (body mass index) 14.33 to 46.13 kg/m2 (mean = 25.57, sd = 5.39)

Left ventricular ejection fraction 0.09 to 0.88 (mean = 0.4538, sd = 0.1866)

Left ventricular mass 73.88 to 835.50 g (mean = 252.1, sd = 94.16)

Serum sodium 117 to 147 mEq/L (mean = 136.7, sd = 4.52)

Hemoglobin (Hb) 6.6 to 14.6 g/dL (mean = 13.06, sd = 2.135)

Creatinine 0.6 to 10 mg/dL (mean = 1.35, sd = 0.74)

Etiology 12% Chagas (60), 28.6% Ischemic (143) and 59.4% other (297)

Other etiologies: idiopathic (n = 50), hypertensive (n = 143), valvular (n = 76) and other (n = 28); sd = standard deviation.
doi:10.1371/journal.pone.0037392.t001
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point studied was overall mortality. Table 1 summarizes the

descriptive information available.

Statistical Methodology
To describe the data, descriptive statistics were calculated

(mean, median, standard deviation and frequencies) based on

information available for the 500 patients in the study. Next, the

covariates most probably associated with the survival time in days

were investigated by using the Kaplan-Meier (KM) estimator [20].

Continuous covariates were, in general, considered in two

categories based on their respective median values. The null

hypothesis of no differences between the two survival curves for

each covariate, i.e. H0: S1(t) = S2(t), was tested by logrank test [21].

Although the KM estimator is a useful descriptive tool, it has

not been designed to incorporate several covariates simultaneous-

ly. Hence, to evaluate the effect of a risk factor on the survival

adjusted for a set of other risk factors, we started by fitting the

proportional hazards Cox model [22], in which the hazard

function is modeled as

l(t)~l0(t) exp (X1b1z � � �zXpbp)~l0(t) exp (X0b), ð1Þ

where l0(t) is an arbitrary baseline hazard rate, X = (X1, …, Xp)

are the p covariates or risk factors of interest, and b = (b1, …, bp)’

is a p-dimensional vector of regression coefficients which is

estimated by considering the partial likelihood. Under this model,

the hazard ratio is assumed constant over time (proportional

hazards).

Covariates that change their values over time (time-dependent

covariates), such as a dynamic treatment dose, can be included in

model (1). For our data, however, covariates are not time-

dependent since they were only measured at the beginning of the

study. As the assumption of proportionality failed for some

covariates, suggesting that the risk of a patient may change over

time, even if their risk factors do not change, we next fitted an

extension of model (1) to taken into account that may exist

covariates with time-varying effects (i.e. non-proportional effects).

Under this model the hazard function is expressed on the form

l(t)~l0(t) exp (X0b(t)), ð2Þ

where the vector of regression coefficients b has been replaced by

b(t) = (b1(t), …, bp(t))’, which are functions representing the time-

varying effects of covariates over time. Parameters estimates for

this model can be obtained by considering the partial likelihood

and by the choice of smoothing parameters [23]. As estimation of

b(t) depends on smoothing methods, it is obtained by mathematical

Table 2. Logrank test performed for each covariate.

Logrank test

Covariates Statistic p-value

Age (#60 and .60 yrs) 13.00 ,0.001

Gender (male and female) 2.64 0.104

Race (white and others) 0.56 0.453

Diabetes mellitus (yes and no) 1.04 0.307

Hypertension (yes and no) 1.54 0.215

Current smoking (yes and no) 1.96 0.165

BMI (#25 and .25 kg/m2) 6.16 0.013

LV ejection fraction (,0.35 and $0.35) 10.70 0.001

LV mass (#243 and .243 g) 0.11 0.742

Serum sodium (#137 and .137 mEq/L) 27.9 ,0.001

Hemoglobin (Hb) (#13 and .13 g/dL) 15.6 ,0.001

Creatinine (#1.2 and .1.2 mg/dL) 23.4 ,0.001

Etiology (Chagas and others) 13.13 ,0.001

doi:10.1371/journal.pone.0037392.t002

Figure 1. Graphical checks of the proportional hazards assumption. A. Scaled Schoenfeld residuals against time plotted for each covariate in
the proportional hazards Cox model. B. Observed test process plotted along with 50 processes simulated for each covariate in the proportional
hazards Cox model under the hypothesis of time-invariant effects.
doi:10.1371/journal.pone.0037392.g001
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convenience the estimates of the cumulative time-varying effects,

i.e. Bq(t) =
Ð t

0
bq(s)ds for q = 1,…, p. The estimates of b(t) are thus

the slopes of the cumulative estimates. Tests for whether the

separate components of B(t) = (B1(t), …., Bp(t))’are constant (i.e.

H0: Bq(t) = c t), as well as tests for non-significant effects (H0: Bq(t)

= 0), were then performed. Model (2) with some time-varying

effects and others not is termed semi-parametric multiplicative

hazards model and can be expressed as

l(t)~l0(t) exp (X0aba(t)zX0bbb), ð3Þ

where Xa and Xb represent the covariates with time-varying and

constant effects, respectively. From the final model, estimates of the

effects are provided and discussed. For those covariates with significant

time-varying effects, their corresponding components of Ba(t) are

shown graphically in terms of their cumulative regression estimates.

Even though model (2) or (3) appears very appealing, there are

some drawbacks related to this model as, for instance, that it is

hard to assess the uncertainty of the estimates bq(t) and also that it

is not easy to estimate the corresponding survival function

expressed as S(t)~ exp ({
Ð t

0
l0(s) exp (X0aba(s)zX0bbb)ds) not

only because we need to estimate ba(t) and bb by means of

smoothing methods, but also because it is complicated to work

with the above integral [23]. To circumvent these difficulties, the

Aalen’s additive hazards model [13–16] which allows covariates

with time-varying effects was used. Under this model, the additive

hazards are expressed as

l(t)~b0(t)zX1b1(t)z � � �zXp{1bp{1(t)zXpbp(t)~X0b(t) ð4Þ

where b0(t) represents the baseline hazard denoted by l0(t) in the

proportional hazards Cox model, X = (1, X1, …, Xp) is a matrix

containing a vector of ones and the p covariates (risk factors) of

interest, and b(t) = (b0(t), b1(t),…,bp(t))’is a vector of time-varying

regression coefficients. Covariates that change their values over

time (time-dependent covariates) can also be considered in model

(4). Similar to models (2) or (3), estimation and tests are based on

the cumulative effects Bq(t) =
Ð t

0
bq(s)ds (q = 1,…, p). For model

(4), however, there are simple direct least squares estimators. Thus,

it can be fitted without any use of smoothing parameters. To test if

a covariate effect is time-varying or constant over time, we fitted a

variation of model (4), termed semi-parametric additive hazards

model, expressed as

l(t)~b0(t)zX1b1(t)z � � �zXp{1bp{1(t)zXpbp

~X0aba(t)zX0bbb

ð5Þ

where the effect of p 21 covariates change over time while the

effect of one of them is assumed to be constant. The matrices Xa

and Xb include the covariates with time-varying and constant

effects, respectively. To test the null hypothesis of constant effect

associated with the p-th covariate (H0: bp(t) = c or equivalently

H0: Bp(t) = c t), models (4) and (5) were compared [13].

Successive tests were performed in this stage of the analysis until

covariates with time-varying and constant effects were all

characterized. For all covariates (q = 1,…, p), tests for non-

significant effects (H0: bq(t) = 0 or equivalently H0: Bq(t) = 0)

were also performed. Procedures for these statistical tests are

explained in details in Martinussen and Scheike [13]. From the

final model, estimates of the constant and time-varying effects were

then provided and discussed. Time-varying effects were shown

graphically in terms of their cumulative regression functions

estimates B̂Bq(t),in which the slopes of their estimated functions

represent the coefficients bq(t). Survival function expressed for this

model as S(t)~ expfX0aBa(t){X0bt bbg is much easier to obtain

than under model (3) since it depends directly on B(t). Survival

estimated curves were shown graphically for some patients in our

study. The package survival available in the R software [24] was used

to obtain the results for model (1). Results for models (2) and (3) were

obtained in this same software using the packages timereg and coxvc

[25], as well as for models (4) and (5) using the package timereg.

Goodness-of-fit Procedures
To evaluate if the proportionality holds for each covariate in

model (1), graphics and tests based on the scaled Schoenfeld

residuals [26] were examined. No serious violation of the

proportionality assumption is observed when these residuals

plotted versus time for each covariate in the Cox model are

randomly distributed around the zero-slope line. Graphics of the

observed test-processes together with fifty simulated processes

under proportionality were also investigated. The departure

(deviation from the linear form) of the observed processes from

the simulated curves under the model indicates those covariates

having time-varying effects. Martinussen and Scheike [13] provide

further details on these procedures. The Cox-Snell residuals [27]

were also used as a way to check the overall fit of model (1). These

residuals are defined as ei~L̂L(ti)~
Ð ti

0
l̂l(s)ds for i = 1, …, n, and

should look like a censored sample from a unit exponential

distribution. For a model providing a satisfactory fit to the data, a

plot of the survival probabilities of the residuals ei’s obtained by

considering the unit exponential distribution (ŜS(ei)exp) against

those obtained by the Kaplan-Meier estimator (ŜS(ei)KM ), should

be roughly a straight line through the origin with slope 1. Once a

clear lack-of-fit of the proportional hazards Cox model was

observed due to the effects of some covariates being strongly time-

varying, violating the proportionality assumption, flexible alterna-

tives to Cox model like models (2) and (4), or their semi-parametric

versions (3) and (5), were used. Although additional studies are

needed to investigate more appropriate methods to assess the

goodness-of-fit of these models, here we have used procedures

based on the cumulative martingale residuals [13] as a way to

validate the fit of the models with time-varying effects to the data.

Under these procedures, cumulative martingale residuals process-

es, that will carry information about the fit of the models as a

function of each covariate, are plotted together with 50 simulated

processes under the model for evaluating if their behavior is

consistent with what should be expected under the model (zero-

mean processes). A supremum test-statistic [13] was then

computed to help summarize how serious can be a departure

from the null processes.

Table 3. Test for the proportionality in the Cox model.

Covariates Statistic p-value

Age 1.39 0.24

Serum sodium 0.47 0.49

Hemoglobin 1.08 0.30

Creatinine 3.88 0.05a

LV ejection 2.99 0.08a

aDepartures from the proportionality suggested for these covariates.
Tests based on the scaled Schoenfeld residuals.
doi:10.1371/journal.pone.0037392.t003
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Results

Descriptive Statistics
Table 1 summarizes the information available for patients that

have been included in the study. Thirty-seven percent (37.6%) of

the patients have died at the end of the follow-up period. From

them, 62.8% were men and 37.2% women. Men accounted for

59.4 percent of the patients. The mean age observed was 58 years,

with the range of 18 to 93 years. About 74% were white and

90.8% were non-smoking. The prevalence of diabetes and

hypertension observed for all patients were 25.8% and 63%,

respectively. The ischemic etiology was prevalent in relation to

Chagas etiology (28.6% vs 12%) and overweight was predominant

among women (50.3% vs 47%). For left ventricular ejection

fraction the mean value was higher among women (0.51 for

females against 0.41 for males). In opposite, the mean values for

left ventricular mass, hemoglobin (Hb), and creatinine were higher

among men; 277.5 vs 216.10 g, 13.47 vs 12.47 g/dL, and 1.44 vs

1.22 mg/dL, respectively. For serum sodium, the mean values

were similar in both genders (136.6 mEq/L for males against

136.9 mEq/L for females).

In order to explore the variables usually recognized as

influencing prognosis, survival curves for each covariate were

estimated by using the Kaplan-Meier estimator. Differences

between the curves were tested by logrank test. Categorization

of continuous risk factors was done, in general, by considering two

categories of the risk factor based on its median value. Table 2

displays the results of the tests performed. At a significance level of

5%, evidence of association with the time to death was suggested

for seven of the thirteen covariates: age, body mass index (BMI),

left ventricular ejection fraction, serum sodium, hemoglobin (Hb),

creatinine, and etiology. It can also be noted that gender showed a

marginally significant association.

Although the Kaplan-Meier estimator can always be used as a

useful preliminary exploratory analysis, it is not proper to evaluate

a risk factor effect adjusted for a set of other risk factors. Thus, to

investigate the effect of each risk factor on time to death in the

presence of a set of other risk factors, as well as the possibility of

time-varying covariates effects, we next considered: (a) the

proportional hazards Cox model, (b) an extension of the Cox’s

model and (c) the additive hazards model to analyze the patients’

survival in our study. Before fitting these models, continuous

covariates were centered on their respective mean values. For each

of these models a selection strategy based on a forward stepwise

approach with the use of a probability value of #0.05 for inclusion

or deletion was used.

Proportional Hazards Cox Model
For the proportional hazards Cox model, covariates (factors)

showing significant effects were: age, serum sodium, hemoglobin

Figure 2. Cumulative coefficients obtained from the extended Cox’s model. Estimates from 1 to 750 days are for the covariates considered
in the model as having time-varying effects. Curves along with the estimates are 95% confidence limits.
doi:10.1371/journal.pone.0037392.g002

Figure 3. Cumulative coefficients obtained from the additive hazards model. Estimates from 1 to 750 days are for the covariates
considered in the model as having time-varying effects. Curves along with the estimates are 95% confidence limits.
doi:10.1371/journal.pone.0037392.g003
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(Hb), creatinine, and left ventricular ejection fraction. BMI,

etiology and gender, suggested by the preliminary analysis as

significant or marginally significant, were not significant in the

presence of other factors in the model.

For each covariate in the Cox model, Figure 1A displays the

scaled Schoenfeld residuals versus time, together with a smooth

scatter plot. The figure demonstrates evidence of deviation from

the proportionality assumption since the plotted curves are not

roughly constant over time for some covariates. Tests based on the

scaled Schoenfeld residuals shown in Table 3 also suggest

departures from the proportionality. Moreover, the observed

test-process displayed in Figure 1B for each covariate along with

50 simulated processes under the null hypothesis of time-invariant

effects, also suggest some covariates with no constant effects over

time (hemoglobin, creatinine, and left ventricular ejection

fraction). Hence, we may conclude that there is evidence of a

lack-of-fit of the proportional hazards Cox model due to the effects

of some covariates being time-varying.

Variation of Cox Model Allowing Time-varying Covariates
Effects

Under this model, significant effects were found for the same

covariates as in the proportional hazards Cox model, i.e. age,

serum sodium, Hb, creatinine, and left ventricular ejection

fraction. Evidence of time-varying effects was indicated for

hemoglobin (Hb), creatinine, and left ventricular ejection fraction

as can be seen from Figure 1B. From such figure it is relatively easy

to see departure from the zero line during the time-period for these

covariates. Creatinine, for instance, has an effect which increases

with time. From this same figure we can also see that the age and

serum sodium covariates are characterized by their time-invariant

effect since no pronounced departure from the zero line is

observed (p-values of 0.72 and 0.43, respectively). Estimates of the

effects of age and serum sodium were 0.027 (s.e. = 0.00036) and

20.062 (s.e. = 0.0018), respectively. Time-varying effects for

hemoglobin, creatinine, and left ventricular ejection fraction

covariates are shown in terms of their cumulative regression

estimates in Figure 2.

Table 4. Tests associated with the additive hazards model.

Test for non-significant effect Test for time-invariant effects

Covariates Statistics p-value Statistics p-value

Intercept 10.70 ,0.001 0.162 0.001

Age 2.85 0.048 0.004 0.291a

Serum sodium 3.33 0.018 0.017 0.199a

Hemoglobin 3.27 0.026 0.044 0.013

Creatinine 3.43 0.013 0.221 0.003

LV ejection fraction 3.88 0.001 0.502 0.007

aTime-invariant effects suggested for age and serum sodium (p.0.05).
All covariates were centered in their respective mean values.
doi:10.1371/journal.pone.0037392.t004

Figure 4. Graphical checks of the overall fit of the Cox model. A. Survival probabilities obtained from the Cox-Snell residuals by considering
the unit exponential distribution and the Kaplan-Meier estimator. B. Survival curves obtained from the Cox-Snell residuals by considering the Kaplan-
Meier estimator and the unit exponential distribution.
doi:10.1371/journal.pone.0037392.g004
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Additive Hazards Model
The covariates (factors) showing significant effects in the final

additive hazards model were also: age, serum sodium, Hb,

creatinine, and left ventricular ejection fraction. Evidence of time-

varying effects was indicated for three of the selected factors (Hb,

creatinine, and left ventricular ejection fraction). In agreement

with the Cox model with time-varying effects, the impact of age

and serum sodium was characterized by their constant effects over

time. Note from Figure 3 that the cumulative regression

coefficients associated with factors that were identified as having

time-varying effects seem to change with time given that the

cumulative does not seem to be a straight line as should be

expected in case of time-invariant effects. The intercept curve

corresponds to the cumulative hazard function for a patient with

mean values of Hb, creatinine and LV ejection fraction. Table 4

displays the results of some tests related to the effects remaining in

the final model. From them, it is possible to see that the covariates

age and serum sodium showed time-invariant effects (p-values

.0.15). Estimates of their effects were 1.6e25 (s.e. = 6.1e26) and

28.5e25 (s.e. = 2.7e25), respectively.

Checking the Goodness-of-fit of the Models
In order to assess if the fitted models provide an adequate fit to

the data, one can use the Cox-Snell residuals for the proportional

hazards Cox model and procedures based on martingale residuals

[13] for the two time-varying regression models. From graphical

analysis of the Cox-Snell residuals displayed in Figures 4A and 4B

a moderate deviation from the unit exponential distribution can be

observed, indicating that the Cox model presents a not too

adequate fit to the data. On the other hand, the cumulative

martingale residuals displayed in Figure 5A together with 50

simulated processes under the extended Cox model, suggest that

all covariates have a behavior consistent with this model (zero-

mean martingales). This is supported by the p-values of the

supremum test-statistic shown in Table 5. Similar plots displayed

in Figure 5B for the semi-parametric additive model indicate that

the behavior of the residuals for the covariate sodium is not too

consistent with this model (also supported by the supremum test-

statistic shown in Table 5). In Figure 6 one can directly compare

the different survival curves predicted from the models for two

distinct clinical scenarios. In addition, a direct comparison with

empirical data can be obtained by comparing the survival curves

predicted from the models with the non-parametric Kaplan-Meier

curves. Under the first clinical scenario (Figure 6A), no serious

discrepancies can be observed between the non-parametric and

model-based survival curves. But, in the second scenario

(Figure 6B) survival predictions obtained particularly from the

Cox model are quite different from those obtained by the Kaplan-

Meier estimator. Although the considered models have difficulty to

accommodate the heart failure dataset well, the additive modeling

suggests to be slight better than the standard Cox and the

extended Cox ones (Figure 6B), but none of them fit the data very

well. Since from the 500 patients under study 188 died during the

follow up, a possibility that one could think to enrich or enhance

the overall goodness of fit is to consider models that accommodate

the presence of long-term survivals. In this case, however, an

aspect that must be taken into consideration is whether follow up

in the data is sufficient [28]. In our study a longer follow up seems

to be recommended since at the last follow-up time there were

about 30% of patients with less than five years of follow-up and

also about 15% who did not return.

Figure 5. Cumulative martingale residuals plotted for each covariate. A. Cumulative residuals from the Coxs model with time-varying
effects. B. Cumulative residuals from the additive hazards model with time-varying effects.
doi:10.1371/journal.pone.0037392.g005

Table 5. Tests for assessing covariates consistent with the
extended models.

Extended Cox model Extended Additive model

Covariates
Sup
|hat B(t)|

p-
value sup|hat B(t)| p-value

Age 5.34 0.87 6.14 0.61

Serum sodium 7.20 0.59 10.24 0.06

Hemoglobin 6.01 0.79 7.79 0.22

Creatinine 4.53 0.91 5.90 0.67

LV ejection 9.39 0.41 7.28 0.33

Supremum test-statistic was based on the cumulative martingale residuals.
doi:10.1371/journal.pone.0037392.t005
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Discussion

Studies where the response is the time from a well defined

moment in time to the occurrence of some event of interest are

usual in many research areas. For handling these kinds of data

several methods have been proposed in the last decades. Amongst

them, are most known the non-parametric estimator proposed by

Kaplan and Meier [20] and the proportional hazards Cox model

[22], which assumes proportionality of the hazards. This

assumption, however, may not be proper in some applications

and there is the need for alternative models consider time-varying

effects of their covariates.

Interestingly, from analyses performed in this paper, particularly

on the scaled Schoenfeld residuals associated to the proportional

hazards Cox model, we found evidence that suggested three of the

most important predictors of outcomes in patients with heart

failure (hemoglobin, creatinine and left ventricular ejection

fraction) as having time-varying effects (Figures 1A, 1B and

Table 3), meaning that the effects of such covariates are probably

not constant over time, violating thus the assumption of

proportional hazards. Although the time-varying effects observed

in this cohort might not hold true in other populations, this brings

into discussion whether scores derived from a Cox model

framework without time-varying effects will be able to describe

noticeable and important features of the data sufficiently well, or,

put into a different perspective, whether using a Cox proportional

hazards framework is the most competitive approach to derive

proxy data that emulate the clinical scenario of heart failure, and

that may be used for clinical prognostication and important

treatment decisions.

In order to take into account time-varying effects, here we have

used flexible variations of the Cox model and also of the Aalen

additive hazards model in which some of the covariates are

allowed to change over time while others not. These models

provide alternative summary measures of the data, especially when

the follow-up period is long, as in the present study, or in cancer

studies, since part of the observed rate l(t) is explained by the

natural mortality of the background population. The covariates

considered were only the best predictors of mortality in patients

with heart failure, but the use of other predictors can be

incorporated in future models.

Although methodological limitations have been found in this

work with regard to appropriate methods for assessing the

goodness of fit of the models evaluated, the results of our analyses

were able to suggest that models do offer rather different survival

estimates that could, in a clinical setting, provide significantly

different thresholds for very expensive treatment options like heart

transplantation, ventricular assist-device implantation, or ICD use.

Predicted survival derived from these models are specially

discordant from the proportional hazards Cox model (but not

necessarily from empirically observed mortality) when one is more

concerned with long follow-up times (see Figures 5 and 6), and

specially for subgroups of patients that have values for time-

varying variables that are distant from the mean values observed in

the sample used for model derivation (see Figures 6A and 6B).

Clinical predictions (prognostic assessments) are usually based

on a patients status (covariates) at the time of evaluation. Although

there are alternatives to model covariate’s change over time or

even to recalculate scores after changes in clinical status or

medications/devices are prescribed, it isn’t always practical to take

historical or future values of some covariates into account. The use

of the described models may permit that, at baseline, one can

account for the greater tendency of particular covariates to

dynamically change.

Although we have graphically suggested better fit of the time-

varying effects models over the standard Cox model, one of the

limitations of the present work is the lack of validated analytical

procedures to compare these different models in terms of their

overall prediction capacity. In the paper we have used procedures

based on the Cox-Snell and martingale residuals as a way to show

that the models with time-varying effects can produce better

goodness-of-fit than the proportional hazards Cox model since this

model did not capture all important aspects of the data analyzed.

One such alternative could perhaps be the Bayesian information

Figure 6. Non-parametric and model-based survival curves for two scenarios. A. Curves predicted for patients with mean values for all
covariates (mean values in Table 1). B. Curves predicted for hypothetical patients aged 32 yrs old, serum sodium = 137, Hb = 13.7, creatinine = 1.0
and LV ejection fraction = 0.37. A subset of 39 patients who provided mean values equal to those considered in this scenario was used to estimate
the Kaplan-Meier curve.
doi:10.1371/journal.pone.0037392.g006

Survival Analysis in Heart Failure

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e37392



criterion (BIC), but although in the proportional hazards Cox

model, Volinsky and Raftery [29] propose defining BIC in terms

of the maximized partial likelihood using the number of deaths

rather than the number of individuals in the BIC penalty term,

BIC has not yet been addressed for survival models with time-

varying covariate effects like those used in this paper for analyzing

the heart failure data. Therefore, additional studies are needed to

investigate more appropriate methods to assess the goodness-of-fit

of these models. Indeed, we consider this to be an analytical

problem that should deserve more attention.

In conclusion, the analyses performed suggest that the extended

Cox model and also variations of the additive hazards model are

valuable tools for identifying covariates with time-varying effects

present in the heart failure models. The implementation of time-

varying covariate effects into heart failure prognostication models

may reduce bias and increase the specificity of such models, thus

contributing to more cost-effective management of patients with

such condition.
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