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Abstract

Objective: Myostatin is a secreted growth factor expressed in skeletal muscle tissue, which negatively regulates skeletal
muscle mass. Recent animal studies suggest a role for myostatin in insulin resistance. We evaluated the possible metabolic
role of myostatin in patients with type 2 diabetes and healthy controls.

Design: 76 patients with type 2 diabetes and 92 control subjects were included in the study. They were matched for age,
gender and BMI. Plasma samples and biopsies from the vastus lateralis muscle were obtained to assess plasma myostatin
and expression of myostatin in skeletal muscle.

Results: Patients with type 2 diabetes had higher fasting glucose (8.9 versus 5.1 mmol/L, P,0.001), plasma insulin (68.2
versus 47.2 pmol/L, P,0.002) and HOMA2-IR (1.6 versus 0.9, P,0.0001) when compared to controls. Patients with type 2
diabetes had 1.4 (P,0.01) higher levels of muscle myostatin mRNA content than the control subjects. Plasma myostatin
concentrations did not differ between patients with type 2 diabetes and controls. In healthy controls, muscle myostatin
mRNA correlated with HOMA2-IR (r = 0.30, P,0.01), plasma IL-6 (r = 0.34, P,0.05) and VO2 max (r = 20.26, P,0.05),
however, no correlations were observed in patients with type 2 diabetes.

Conclusions: This study supports the idea that myostatin may have a negative effect on metabolism. However, the
metabolic effect of myostatin appears to be overruled by other factors in patients with type 2 diabetes.
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Introduction

Human myostatin was first cloned in 1998 [1]. Myostatin, or

growth/differentiation factor 8 (GDF-8), belongs to the trans-

forming growth factor-b (TGF-b) superfamily and has been

identified as a major regulator of muscle mass [2]. Myostatin is a

peptide hormone produced by skeletal muscle and secreted into

the circulation. Myostatin is a negative regulator of muscle mass

and is well preserved across species as judged from its expression in

fish, birds, cows and humans [3].

Interestingly, recent observations in animal models suggest that

myostatin is involved in the regulation of energy metabolism as

hypermuscular myostatin knock-out mice have reduced fat mass

and are protected from dietary-induced insulin resistance [4–6].

Furthermore, animal models have suggested a role for myostatin

in diabetic muscle atrophy as ob/ob diabetic mice have higher

levels of myostatin expression, and reduced muscle mass as well as

fiber cross-sectional area [7,8]. In vitro studies of myostatins effect

on glucose metabolism is contradictory as myostatin was shown to

inhibit glucose uptake in a placental cell line [9] however an

increased glucose uptake has also been demonstrated using human

placenta extracts [10]. The finding that myostatin knock-out mice

are protected against obesity-induced insulin resistance as mea-

sured by a hyperinsulemeamic clamp [5] suggests an effect of

myostatin on insulin-mediated glucose uptake. Furthermore,

myostatin knock-out mice show an increased AMP-activated

protein kinase activity in skeletal muscle, which could explain the

increased insulin sensitivity [11]. In contrast, myostatin has been

shown to increase AMP-activated protein kinase activity in C2C12

myotubes thereby improving glucose uptake [12]. Taken together

in vitro and animal studies suggests that myostatin affects glucose

uptake, but the literature is not consistent. An inhibitory

association is supported by a gene expression study in which an

transcriptomic array revealed an increased myostatin expression in

skeletal muscles of patients with type 2 diabetes [13]. Although loss

of muscle mass is a clear clinical feature of type 2 diabetes [14,15],

it is uncertain whether increased circulating myostatin plays a role

in the metabolic deterioration of skeletal muscle in individuals with

obesity and insulin resistance.
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To elucidate the associations between myostatin and insulin

resistance, lean body mass, fitness and low-grade inflammation, we

evaluated circulating levels of myostatin as well as skeletal muscle

expression of myostatin in patients with type 2 diabetes and in

controls, who were closely matched for gender and body mass

index (BMI).

Materials and Methods

Study design
A cross-sectional design was employed. As previously described,

subjects (n = 233) were recruited by advertising in a local

newspaper. They received oral and written information about

the experimental procedures before giving their written, informed

consent to participate. Assessment of the type 2 diabetes diagnosis

was based on information from each subject and confirmed by an

oral glucose tolerance test (OGTT). Thirty-four subjects were

excluded as they were classified to have an impaired glucose

tolerance (IGT) [16,17]. From 168 subjects (92 healthy controls

and 76 patients with type 2 diabetes) sufficient sample material was

available for analysis of myostatin. In brief, participants were

screened to isolate such metabolic conditions other than type 2

diabetes, which are known to influence body composition and the

immune system. Exclusion criteria were treatment with insulin,

recent or ongoing infection, a history of malignant disease and

known dementia. Participants reported to the laboratory between

8 and 10 am after an overnight fast. They did not take any

medication in the 24 h preceding the examination, and the type 2

diabetics did not take their oral anti-diabetic medication for 1

week preceding the examination. A general health examination

was performed. Blood samples were drawn from an antecubital

vein and a biopsy was obtained from the vastus lateralis muscle.

An oral glucose tolerance test (OGTT) was performed on the same

day.

The study was approved by the Ethics Committee of the

Copenhagen and Frederiksberg Communities (KF 01-141/04).

OGTT
Blood samples were drawn before and 1 and 2 h after the

participant had drunk 500 ml of water containing 75 g of

dissolved glucose. The WHO diagnostic criteria were applied.

Participants found to have IGT were excluded from the study.

Fitness test
Cardiorespiratory fitness was measured by the Åstrand-Rhym-

ing indirect test of maximal oxygen uptake [18].

Body composition
Bone mass density (BMD), whole body fat and fat-free tissue

masses, trunk and extremities were measured using DXA scanning

(Lunar Prodigy Advance; GE Medical Systems Lunar, Milwaukee,

WI). DXA scanning does not distinguish between subcutaneous

and intraabdominal fat located in the trunk region. Software

(Prodigy, enCORE 2004, version 8.8, GE Lunar Corp., Madison,

WI) was used to estimate the mass of regional and total fat and fat-

free tissue.

Plasma samples
Blood samples were drawn into glass tubes containing EDTA,

which were immediately spun at 3500 g for 15 min at 4uC. Plasma

was isolated and stored at 220uC until analysed.

Tissue samples
Skeletal muscle biopsies were obtained from vastus lateralis

using a Bergström biopsy needle [26]. The biopsies were

immediately frozen in liquid nitrogen and stored at 280uC until

analysed.

Plasma analysis
The plasma myostatin assay is a competitive immunoassay. The

standards and samples are pre-incubated with a polyclonal rabbit-

anti human recombinant myostatin (full length) antibody. During

this pre-incubation free myostatin is bound by the myostatin-

antibody. The pre-incubated samples and standards are then

transferred to a microtiterplate coated with human recombinant

myostatin (full length). The unbound antibodies bind to the

immobilized antigen on the microtiterplate. By use of a peroxidase

conjugated goat-anti-rabbit antibody the bound antibody is

detected. Tetramethylbenzidine (TMB) is used as a peroxidase

substrate. Finally, an acidic stop solution is added to terminate the

reaction, whereby the colour changes from blue to yellow. The

intensity of the yellow colour is inversely proportional to the

concentration of myostatin. A dose response curve of the

absorbance unit (optical density, OD at 450 nm) vs. concentration

is generated using the values obtained from the standard.

Myostatin in the samples is determined from this curve. Detection

limit: 0.273 ng/ml. Inter assay CV: ,15% Intra assay CV:

,10%. Immundiagnostik AG, Bensheim, Germany, conducted

the plasma myostatin measurements. Plasma concentrations of

TNF-a and IL-6 were measured by ELISA (R&D Systems,

Minneapolis, MN, USA). Samples were analysed in duplicate and

mean concentrations were calculated. In plasma, levels of

cholesterol (HDL and LDL), triglycerides, C-reactive protein

(CRP), glucose and insulin were measured using routine labora-

tory methods. Based on the fasting plasma concentrations of

glucose and insulin, the level of insulin resistance was calculated

using the homeostasis model assessment of insulin resistance,

version 2 (HOMA2-IR) of 1998 (software available at http://

www.dtu.ox.ac.uk/) [19].

RNA isolation, reverse transcription and real-time PCR
Total RNA was extracted from ,40 mg muscle tissue using

Trizol Reagent (Invitrogen, Carlsbad, CA, USA) following the

manufacturer’s instructions. In summary, muscle tissue was

homogenized in 1 ml Trizol Reagent for 15 s using a Qiagen

Tissuelyser (Qiagen Nordic, Copenhagen, Denmark). Chloroform

was added and the phases were separated by centrifugation. The

aqueous phase with the RNA was transferred to a fresh tube and

the RNA precipitated by adding isopropanol and left at 220uC for

1 h. After another centrifugation, the RNA pellet was washed in

75% ethanol and finally dissolved in 50 ml diethylpyrocarbonate-

treated water.

The RNA concentration was determined spectrophotometri-

cally and 2 mg total RNA was reversed-transcribed in a total

volume of 100 ml using the Taqman Reverse Transcription Kit

(Applied Biosystems, NJ, USA) and random hexamers as primers.

Real-time PCR was performed using an ABI 7900 Sequence

Detection System (Applied Biosystems). The mRNAs for myosta-

tin and the endogenous control, b-actin, were amplified using

predeveloped assays (Applied Biosystems). The PCR conditions

followed the procedure recommended by the manufacturer, with

10 ml reaction volume and each sample run in triplicate for 50

cycles. The mRNA content of both the target and the endogenous

control gene was calculated from the cycle threshold values by

using a standard curve constructed from a serial dilution of

aliquots of cDNA pooled from all the samples.
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Statistical analysis
Data are generally presented as means with confidence interval

of the mean. If the data were not normally distributed, a

logarithmic transformation was applied and the data were

presented as geometric means. Logarithmic transformation was

performed on all data except: age, BMI, BMD, lean body mass, fat

mass and LDL cholesterol. For comparisons between the groups

(control versus type 2 diabetes and low versus high myostatin) a t-

test was used for continuous variable whereas a x2 test was used for

categorical variables. Analysis for correlations was performed

using Pearson’s approach. A multiple regression analysis was done

using a general linear model (PROC GLM). All analyses were

performed using SAS software version 9.1 (SAS institute, Cary,

NC, USA). P,0.05 was considered significant.

Results

Characterization of control subjects and patients with
type 2 diabetes

Seventy-six patients with type 2 diabetes and 92 control subjects

were investigated in the study. The patients with diabetes were

slightly older than the control subjects, but gender distribution was

similar in the two groups, Table 1. BMI and fat mass as

determined by DXA scan were similar in both groups. Fasting

glucose, plasma insulin, and HOMA2-IR levels were higher,

whereas plasma total cholesterol, LDL cholesterol, HDL choles-

terol levels were lower in the patients with type 2 diabetes than in

the control subjects. Plasma triglycerides, TNF-a and IL-6 were

higher in the patients with diabetes than in the control subjects;

these differences remained significant after age and gender

adjustment, Table 1.

Myostatin levels are increased in patients with type 2
diabetes

Skeletal muscle myostatin mRNA content was 1.4 fold (P,0.05)

higher in patients with type 2 diabetes when compared to the

control group, Figure 1A. This difference remained significant

after adjustment for age and gender (P,0.001). The plasma

myostatin concentration was slightly elevated in patients with type

2 diabetes 5.1 (4.6–5.7) mg/L compared to 4.5 (4.1–5.0) mg/L in

control subjects. However this difference was only significantly

different when correcting for age and gender (P = 0.0261),

Figure 1B. When the data from the patients with diabetes and

the control subjects were combined, plasma and muscle myostatin

levels were similar in men and women (P = 0.5 and P = 0.2

respectively).

Associations of muscle myostatin mRNA content and
plasma myostatin with clinical, glycaemic, lipid, and
inflammatory variables

To evaluate the association between clinical and biochemical

markers of insulin resistance Pearson’s correlations were per-

formed and appear from Table 2. The skeletal muscle content of

Table 1. Subject characteristics.

Healthy control
subjects (n = 92)

Type 2 diabetes
patients (n = 76) P-value P*-value

Clinical:

Age (years) 53.2 (50.7–55.7) 58.2 (55.7–60.7) 0.006 ----

Gender (M/F) 64/28 57/19 0.43 ----

BMI (kg/m2) 30.0 (28.7–31.4) 30.6 (29.2–31.9) 0.57 0.026

VO2 max (L/kg) 28.7 (26.8–30.7) 23.3 (21.6–25.4) 0.0001 0.0004

Body composition:

Bone mass density 3.0 (2.9–3.1) 2.8 (2.7–2.9) 0.03 0.002

Lean body mass 58.6 (55.9–61.3) 57.9 (55.1–60.7) 0.73 0.034

Fat mass 30.5 (27.3–33.6) 29.3 (26.9–31.7) 0.55 0.033

Glycemic parameters:

Fasting glucose (mmol/L) 5.1 (5.0–5.2) 8.9 (8.2–9.8) ,0.0001 ,0.0001

Fasting insulin (pmol/L) 47.2 (40.8–54.5) 68.2 (56.7–82.1) 0.002 ,0.0001

HOMA2-IR 0.9 (0.8–1.0) 1.6 (1.3–1.9) ,0.0001 ,0.0001

Lipids

Plasma cholesterol (mmol/L) 5.3 (5.1–5.5) 4.8 (4.5–5.1) 0.009 0.0008

LDL cholesterol (mmol/L) 3.5 (3.4–3.7) 2.9 (2.7–3.2) ,0.0001 ,0.0001

HDL cholesterol (mmol/L) 1.5 (1.4–1.6) 1.3 (1.2–1.4) 0.006 ,0.0001

Plasma triglycerides (mmol/L) 1.2 (1.0–1.3) 1.5 (1.3–1.8) 0.01 0.0011

Inflammation:

CRP (mg/L) 2.4 (2.0–2.9) 3.0 (2.5–3.7) 0.08 0.006

TNF-a (ng/L) 2.4 (2.3–2.5) 2.7 (2.5–2.8) 0.005 0.0045

IL-6 (ng/L) 1.2 (1.1–1.5) 1.7 (1.4–2.0) 0.02 0.0023

IL-18 (ng/L) 224 (207–243) 242 (221–264) 0.20 0.0315

Body composition, glycaemic variables, plasma lipids, and inflammatory markers in healthy control subjects and type 2 diabetes patients. BMI; Body mass index, P
indicates a significant difference between the groups, P* is corrected for age and gender. P,0.05 is considered significant.
doi:10.1371/journal.pone.0037236.t001
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myostatin mRNA correlated positively with fasting insulin,

HOMA2-IR, plasma IL-6, CRP, BMI and triglycerides, and

negatively with maximal oxygen uptake (VO2 max) when all

participants were analysed together. Only fasting blood glucose

correlated with plasma myostatin and only when the healthy

controls and patients with type 2 diabetes were analysed in

combination, Table 2. However when the groups were analysed

separately, muscle myostatin mRNA content only correlated

significantly in the control group. Plasma myostatin and muscle

myostatin mRNA content was positively correlated in the healthy

controls only. The healthy controls and patients with type 2

diabetes were divided into low (QL) and high (QH) muscle content

of myostatin mRNA and the fasting glucose, insulin, HOMA2-IR,

and plasma IL-6 levels were compared. In the patients with type 2

diabetes no difference was observed. However, in the healthy

controls with a high myostatin mRNA content in the vastus

muscle, a higher level of fasting insulin, HOMA2-IR and plasma

IL-6 could be demonstrated, Figure 2. No differences were found

when the same analysis was performed for circulating myostatin,

Figure 3.

Figure 1. Skeletal muscle mRNA content (A) and plasma myostatin (B) in healthy control (n = 92) and patients with type 2 diabetes
(n = 76). Individual data are presented and the bar indicates the geometric mean. * indicates a significant difference between healthy controls and
patients with type 2 diabetes, P,0.05.
doi:10.1371/journal.pone.0037236.g001

Figure 2. Muscle myostatin mRNA divided in low (QL) and high (QH) content in control subjects and patients with type 2 diabetes,
respectively. The bar represents geometric means for plasma (A), plasma insulin (B), HOMA2-IR (C) and plasma IL-6 (D). * indicates a difference
between low versus high muscle content of myostatin mRNA. P,0.05 is considered significant.
doi:10.1371/journal.pone.0037236.g002
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Multivariate analysis
To further investigate the relationship between the variables

found to correlate with muscle myostatin mRNA content, a

multivariate analysis was performed. Besides diabetes, age, and

gender, only predictors that correlated significantly were included.

As it appears from Table 3, age and plasma IL-6 remained

significant. Plasma myostatin was solely significantly correlated

with fasting glucose.

Discussion

The present study demonstrates that skeletal muscle myostatin

mRNA is elevated in patients with type 2 diabetes when compared

to healthy control subjects. Furthermore we show that muscle

myostatin mRNA content is associated with impaired insulin

sensitivity, increased triglycerides, and low-grade chronic inflam-

mation as well as obesity and a poor fitness level. Interestingly,

clear associations were found in healthy controls, but were absent

in type 2 diabetes patients. Therefore, if a causal relationship exists

between myostatin and metabolism, it appears that the negative,

regulatory effects of myostatin on metabolism are overruled by

other factors in advanced type 2 diabetes. In accordance, a positive

association between plasma and muscle myostatin was only

observed in the healthy controls, which may suggest an alteration

in the regulatory mechanism with diabetes. It appears that plasma

myostatin, compared to muscle myostatin, was a less strong

marker of metabolism, as plasma myostatin was only associated

with fasting glucose.

Very few studies have assessed the plasma levels of circulating

myostatin in humans. Lakshman et al [20] applied an in house

developed ELISA to measure serum myostatin in 50 young and 48

old men and found serum concentrations at 8.0 and 7.0 mg/L,

respectively. In the present study, the average plasma level of

myostatin was 4.8 mg/L. The circulating levels are within the same

range; however the discrepancy could be due to the differences in

matrix (plasma versus serum) and differences in populations, as

well as to the large range of variation observed between

individuals. In the present study, no difference was detected

between young and old, which most likely was due to the low

number (n = 7) of young participants (age,35 years). Even though

no differences were observed between young and old, a negative

association with age and muscle myostatin mRNA content was

observed, which remained significant when adjusting for insulin

resistance, inflammatory status and fitness. Lakshman et al did not

find an association between lean body mass and circulating

myostatin, which is in line with the present study, where no

correlation was found between lean body mass and neither plasma

myostatin, nor muscle myostatin mRNA content.

Myostatin KO mice demonstrate improved insulin sensitivity

[5,6], suggesting that myostatin is involved in glucose regulation.

However, these mice concomitantly had altered adiposity, but

interestingly treating ob/ob mice with anti-myostatin antibodies

resulted in an improved glucose clearance, without any changes in

fat mass [21]. The effects of myostatin on glucose metabolism

could be due to effects on the muscle tissue itself, as only inhibition

of myostatin signaling in skeletal muscle and not adipose reveal an

improved insulin sensitivity [6]. An alternative mechanism could

be via TNF-a [5], which is known to cause insulin resistance [22].

Interestingly, a positive association was observed between circu-

lating TNF-a and myostatin mRNA expression in the control

Figure 3. Plasma myostatin divided in low (QL) and high (QH) content in control subjects and patients with type 2 diabetes,
respectively. The bar represents geometric means for plasma (A), plasma insulin (B), HOMA2-IR (C) and plasma IL-6 (D). * indicates a difference
between low versus high muscle content of myostatin mRNA.
doi:10.1371/journal.pone.0037236.g003
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subjects, supporting the observations made in mice. In the

multivariate analysis muscle myostatin mRNA content was

predicted by age and plasma IL-6, when adjusting for insulin

resistance, plasma triglycerides and obesity. It is noteworthy that

plasma IL-6 and fitness are inversely related [23,24]. A reduction

in myostatin mRNA with improved fitness is in line with a

reduction in muscle myostatin mRNA content after an acute bout

of exercise [25], however this inverse association in the present

data is not significant if adjusted for BMI. Very few studies have

evaluated the response of plasma myostatin in humans in relation

to exercise or training, whereas several have demonstrated a

reduction of muscle mRNA content [25–28]. One study reported

that after 10 weeks of resistance training, circulating levels of

myostatin have decreased by approximately 20% [29]. The

present cross-sectional data suggest that plasma myostatin is a poor

marker of fitness, although this does not rule out the possibility that

individual changes in plasma myostatin could be a valuable

marker. Furthermore these human data reveal a positive

association between insulin resistance and myostatin mRNA

expression in the skeletal muscle in healthy subjects. Increased

myostatin mRNA expression might be a predisposing marker for

the development of insulin resistance in healthy subjects.

Table 2. Pearson’s correlations to plasma myostatin and myostatin mRNA expression in skeletal muscle tissue.

Control subjects (n = 92)
Patients with type 2
diabetes (n = 76) Combined (n = 168)

Variable Plasma Muscle Plasma Muscle Plasma Muscle

Clinical:

Age (years) 0.04 20.26* 0.15 0.01 0.14 20.10

BMI (kg/m2) 20.06 0.31* 20.03 20.02 20.04 0.19*

VO2 max (L O2/kg) 0.09 20.26* 0.03 20.08 0.03 20.23*

Body composition:

Bone mass density 0.07 20.07 0.19 0.18 0.08 20.02

Lean body mass 0.08 0.16 0.09 0.15 0.08 0.14

Fat mass 20.09 0.29** 0.03 20.14 20.06 0.13

Glycemic parameters:

Fasting glucose (mmol/L) 0.02 20.04 0.19 20.02 0.17* 0.15

Fasting insulin (pmol/L) 20.02 0.31** 20.02 20.08 0.005 0.18*

HOMA2-IR 20.03 0.30** 0.04 20.05 0.05 0.20**

Lipids

Plasma cholesterol (mmol/L) 20.09 20.10 0.08 0.16 20.03 20.02

LDL cholesterol (mmol/L) 20.09 20.16 20.03 0.09 20.10 20.12

HDL cholesterol (mmol/L) 20.11 20.17 20.05 0.06 20.10 20.10

Plasma triglycerides (mmol/L) 0.09 0.24* 0.09 20.02 0.11 0.15*

Inflammation:

CRP (mg/L) 20.06 0.22* 20.10 0.07 20.06 0.19*

TNF-a (ng/L) 20.08 0.23* 0.07 20.15 0.02 0.11

IL-6 (ng/L) 20.002 0.34* 20.13 0.15 20.03 0.29**

IL-18 (ng/L) 0.07 0.13 0.001 20.03 0.05 0.08

Myostatin

Plasma myostatin (mg/L) 0.21* 20.01 — 0.14

Muscle myostatin mRNA content 0.21* 20.01 0.14 —

Pearson’s correlations coefficients r between plasma myostatin and muscle myostatin mRNA, respectively, and different clinical and biochemical variable.
*P,0.05;
**P,0.01.
doi:10.1371/journal.pone.0037236.t002

Table 3. Multivariate analysis, including variables that were
found to correlate with muscle myostatin mRNA content.

Muscle myostatin mRNA.

Over all model: P = 0.0011 n = 168

Explanatory variables Estimate P-value

Diabetes 0.127 0.05

Age 20.007 0.03

Gender 0.097 0.15

BMI 20.003 0.65

VO2 max 20.460 0.09

HOMA2-IR 0.038 0.74

TAG 0.014 0.90

CRP 20.033 0.10

IL-6 0.216 0.04

doi:10.1371/journal.pone.0037236.t003
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Interestingly, the fitness level correlated inversely with the

myostatin mRNA only in the group of healthy subjects, why it

could be speculated that an increased insulin resistance, which is

associated with increased myostatin can be counter acted by

exercise.

Myostatin is involved in adipocyte differentiation [30] and

recently, Hittel et al [31] compared 6 lean (BMI,25) with 9

extremely obese (BMI.40) subjects using western blotting and

found an association with muscle and plasma myostatin to both

BMI and HOMA2-IR. In the present study a positive association

was also observed regarding muscle myostatin mRNA and both

BMI and insulin resistance as measured by HOMA in normal

controls subject. However, the present data contribute by allowing

adjustment for age, inflammation and fitness, which reveals that

the association with HOMA2-IR and BMI was no longer

significant.

In conclusion, high muscular expression of myostatin is

associated to impaired metabolism, systemic inflammation, obesity

and poor fitness level in healthy subjects. These associations are

disrupted in patients with type 2 diabetes, where no associations

are observed although myostatin mRNA levels are moderately

enhanced. The findings of the present study as well as data from

recent experimental reports make us suggest that muscle-produced

myostatin exerts direct and negative effects on glucose and lipid

metabolism. However, the metabolic effect of myostatin appears to

be overruled by other factors in full-blown type 2 diabetes.
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