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Abstract

Background: Bacteria have evolved the ability to efficiently and resourcefully adapt to changing environments. A key means
by which they optimize their use of available nutrients is through adjustments in gene expression with consequent changes
in enzyme activity. We report a new method for drawing environmental inferences from gene expression data. Our method
prioritizes a list of candidate carbon sources for their compatibility with a gene expression profile using the framework of
flux balance analysis to model the organism’s metabolic network.

Principal Findings: For each of six gene expression profiles for Escherichia coli grown under differing nutrient conditions, we
applied our method to prioritize a set of eighteen different candidate carbon sources. Our method ranked the correct
carbon source as one of the top three candidates for five of the six expression sets when used with a genome-scale model.
The correct candidate ranked fifth in the remaining case. Additional analyses show that these rankings are robust with
respect to biological and measurement variation, and depend on specific gene expression, rather than general expression
level. The gene expression profiles are highly adaptive: simulated production of biomass averaged 94.84% of maximum
when the in silico carbon source matched the in vitro source of the expression profile, and 65.97% when it did not.

Conclusions: Inferences about a microorganism’s nutrient environment can be made by integrating gene expression data
into a metabolic framework. This work demonstrates that reaction flux limits for a model can be computed which are
realistic in the sense that they affect in silico growth in a manner analogous to that in which a microorganism’s alteration of
gene expression is adaptive to its nutrient environment.
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Introduction

Our goal in this research is to draw inferences about an

organism’s nutrient use from its pattern of gene expression. The

key to the feasibility of our approach is the way microorganisms

such as Escherichia coli make adaptations to optimize their growth

when adequate nutrients are available. They can control the

uptake and efflux of many metabolites through the expression of

membrane-bound protein complexes called transporters. Since the

biochemical reactions required to sustain life are largely catalyzed

by enzymes, adjustment of the quantity and activity of enzymes

provides another mode of control for microorganisms. An

organism can therefore adjust to the presence of a desired nutrient

by producing adequate transporters for its uptake and insuring

that important internal biochemical reactions are not limited by

insufficient enzyme activity.

In addition, the organism may restrict the expression of

transporters and enzymes that favor the use of less preferred

carbon sources. For example E. coli growing on glucose will, by use

of the lac operon, severely restrict production of both the permease

that would allow the transport of lactose into the organism and the

enzyme beta-galactosidase required to catabolize lactose into

glucose. Thus, in the presence of both glucose and lactose, the

bacterium will consume all the available glucose before metabo-

lizing the lactose [1].

The main contribution of this research is a method for

prioritizing candidate nutrient conditions from gene expression

data. We draw environmental inferences based on the premise

that the organism’s changes in gene expression are largely

adaptive, as in the glucose/lactose example. Our method is

unbiased, in the sense that we do not select relevant genes a priori,

but apply a uniform method to the interpretation of the expression
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of all genes represented in the model. This is useful because naı̈ve

interpretation of the expression of single genes can lead to

incorrect predictions. For instance, the expression of genes for

glucose transport does not imply the presence of glucose. E. coli

growing solely in the presence of acetate will express glucose

transporters, albeit at a lower level than it would if glucose were

present.

To implement our approach we model the organism’s

metabolic network using the method of flux balance analysis.

Our key innovation is the way we use gene expression data to

constrain reaction flux limits. Ideally, adaptive reductions in

relative gene expression by the organism will be reflected in our

model by reduced flux through key reactions. When we model

growth we expect that the constraints placed by gene expression

will not have a big impact when the corresponding in silico carbon

source is used, but that model growth will be reduced for other in

silico carbon sources. We therefore rank candidate nutrients by the

extent to which their simulated growth is inhibited.

Drawing Environmental Inferences from Gene
Expression Data

Researchers may be motivated by biological, medical, engineering

or ecological concerns to investigatean organism’s environmentor its

nutrient use. For example, understanding the in vivo environment of

the pathogen Mycobacterium tuberculosis may provide clues toward the

development of therapeutics, but it is difficult to study this

environment directly. Analyzing the organism’s metabolic behavior

may provide insight into its nutrient use and environment, but

measurement of metabolic behavior in vivo is also difficult. Measure-

ment of gene expression, on the other hand, is comparatively simple

and, indeed, it is possible to measure the gene expression of M.

tuberculosis during host infection [2]. The feasibility of using gene

expression data to draw inferences about an organism’s environment

hasbeenpreviouslydemonstrated [3,4,5,6]. In thispaper,wedevelop

a systematic method for relating measurements of gene expression to

predictions of metabolic behavior.

What is novel in our approach is that the relevant biological

knowledge is encapsulated in a metabolic model that links enzymatic

reactions to genes, and that the inferences are based on the impact of

gene expression on model growth. In some of the studies cited, prior

biological knowledge was used to select genes of interest. In other

studies, genes of interest were selected via clustering of expression

profiles (or other computational methods) and then interpreted using

a biological database such as Gene Ontology [7].

Flux Balance Analysis (FBA)
We employ a flux balance approach to the modeling and

analysis of the metabolism of E. coli [8]. (For a review of the scope

of applications of FBA to E. coli see [9].) The central entity in the

model is the reaction flux – the rate at which an enzymatic

reaction proceeds. FBA models are valid on a time scale in which

the reaction fluxes have reached steady state [10].

A core application of FBA models has been the accurate

prediction of organism growth given nutrient uptake measure-

ments. This approach, pioneered by Bernhard Palsson, makes the

biological assumption that the organism is growing as rapidly as it

can given its metabolic constraints. Computationally this corre-

sponds to finding the maximum rate at which biomass – the dry

constituents of a cell – can be produced subject to an FBA model’s

constraints. These constraints include a minimum flux level for

non-growth associated ATP maintenance to ensure viability of the

in silico organism. This method and its underlying assumptions

have proven successful for a range of organisms and growth

conditions [8,9,10,11,12,13].

Regulation and the Modeling of Flux Limits
The first generation of FBA models made no attempt to model

gene regulation. Non-uptake reactions typically had large non-

limiting upper bounds on fluxes. Subsequently, regulatory FBA

(rFBA) models [11,12,13] were developed. These models use a set

of rules to explicitly model the role of isoenzymes, enzyme

complexes, transcription factors and effector metabolites in

controlling reaction flux. Evaluation of these rules with respect

to metabolite and relative gene expression levels results in reaction

upper flux limits being either non-limiting (on) or zero (off).

Incorporation of gene expression data into metabolic models is an

area of ongoing research [13,14,15].

Our method shares with that of C. Colijn et al. [15] the use of

gene expression data to set maximum flux limits. Allowing

maximum flux limits to take on continuous values contrasts

with approaches such as rFBA models which take a Boolean (on/

off) approach to deriving flux limits from gene expression. Our

approach can therefore model situations in which the down-

regulation of a gene reduces, but does not abolish the flux through

the corresponding reaction.

Method Overview
Our method takes as input a challenge set of gene expression

values obtained for growth on an unidentified in vitro nutrient and

prioritizes a set of candidate nutrients in order of decreasing

likelihood. In order to convert absolute expression values to

relative ones the algorithm requires an estimate of the expression

range for each gene. In our current implementation we use the

maximum expression value for each gene over several gene

expression sets for this estimate. We also require an FBA model

which may include arbitrarily large flux limits.

The key algorithmic steps in our method are as follows:

1. First, create a set of baseline flux limits for the metabolic model.

Our procedure is intended to estimate the maximal flux

capacity of each reaction for simulated growth over the selected

set of in silico candidate nutrients (Figure 1, Panel A). This

requires setting a realistic in vitro growth rate and computing

the corresponding in silico nutrient supply rate.

2. Next, create expression-derived flux limits. These limits are

specific to a challenge gene expression set, and are computed

by scaling the baseline flux limits using the ratio of each gene’s

expression level in the challenge condition to its maximum over

several gene expression sets (see Figure 1, Panel B, and Figure 2,

Panel B). The resulting flux limits reflect the organism’s

adaptation to the unknown in vitro nutrient condition

3. Last, prioritize candidate nutrients for the challenge gene

expression set. For each candidate nutrient:

a. Find the expression-derived biomass production rate for

the candidate nutrient by optimizing biomass production

using the expression-derived flux limits and the baseline

supply of that in silico nutrient.

b. Compute the relative biomass production by dividing the

expression-derived biomass production rate by the baseline

biomass production rate (computed in step 1). The

prioritization is accomplished by ordering the candidates

by decreasing relative biomass production.

The ranking of the in silico nutrients provides the key measure of

the success of our algorithm; if the correct in silico nutrient is

ranked near the top only a few experiments will be necessary to

validate it. We rank candidate nutrients by relative biomass
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production because we expect this to be high (near one) for the

correct candidate nutrient, assuming that the organism’s expres-

sion pattern is well adapted to its nutrient environment. Relative

biomass production will be reduced when there is a mismatch

between the relative expression of a gene and the metabolic

requirements for utilizing a candidate nutrient.

For example, E. coli requires the use of the glyoxylate shunt for

growth on acetate, but not for growth on glucose. When grown on

acetate it expresses the gene isocitrate lyase (icl) at a many-fold

greater level than it does when grown on glucose. The upper flux

limit for the corresponding glyoxylate shunt reaction will be near

or at its maximum in the acetate expression challenge, but many-

fold lower in the glucose expression challenge because of the

difference in relative expression. Now consider the situation when

growth on different in silico nutrients is evaluated using the glucose

expression-derived flux limits. Under these conditions the flux

capacity of the glyoxolate shunt reaction will be significantly

reduced from the level needed for growth on acetate. Simulated

growth on glucose will be essentially unimpaired, because growth

on glucose does not require the glyoxolate shunt. However growth

on acetate will be significantly reduced because of the now limiting

rate of the glyoxolate shunt reaction. Even if the source of the

expression data was unknown we could confidently state that

glucose is a much stronger candidate for the carbon source than is

acetate. This idea is illustrated in Figure 1, Panels C and D.

Results

Our algorithm prioritizes candidate nutrients for their compat-

ibility with an in vitro nutrient challenge gene expression set. The

more compatible the in silico nutrient and the challenge expression

data are, the larger the relative biomass production. We applied

our method to a set of eighteen candidate carbon sources, using a

set of six challenge gene expression data sets obtained from growth

of E. coli on a subset of the candidate nutrients. The six challenge

gene expression data sets were used to estimate maximum

expression for each gene.

We present our results in two sections. The first section reports

the rankings of the in silico nutrients for each challenge expression

set and includes analyses that demonstrate the robustness and

specificity of our algorithm. The second section compares

simulated growth on an in silico nutrient across the six gene

expression profiles, demonstrating the degree to which the gene

expression profiles are tuned to their in vitro carbon sources.

Rankings of the in silico Nutrients
Each panel in Figure 3 presents results for one of the six

challenge expression sets. The candidate nutrients are sorted with

the best candidate (with the largest percent relative biomass

production) at the top. For cases where the in silico nutrient

corresponds to the in vitro carbon source for the expression in the

panel, the bar has a distinguishing green color. We refer below to

such correspondences as matching, and to other pairs of candidate

nutrient and challenge expression set as non-matching.

The rankings of the correct (matching) candidate nutrients are

given in Table 1. The correct carbon source is one of the top three

choices for five of the six challenge expression sets, and ranks fifth

for one expression set. The mean ranking of the correct choice was

Figure 1. The principles of our method illustrated using a
simple metabolic network. Flux limits in this figure are represented
by a thin black outline. Reaction fluxes are represented as shaded
regions with flux magnitude proportional to thickness. Flux direction is
not indicated. Panel A. Creation of the baseline flux limits (corre-
sponding to b

(0)
j in Figure 2, Panel A). Each reaction is given a flux limit

corresponding to the maximum optimal flux solution over the two in
silico nutrient uptake conditions. The shading is orange for in silico
glucose growth, blue for in silico acetate and grey where the two
solutions overlap. Panel B. Creation of the glucose expression-derived
flux limits (corresponding to b

(in vitro nutrient x)
j in Figure 2, Panel B). Each

flux limit shown in Panel A has been scaled by the level of gene
expression for in vivo growth on glucose relative to the maximum gene
expression for that reaction over both nutrient conditions. The arrows
indicate two reactions for which gene expression was significantly
lower on glucose than on acetate, resulting in significantly reduced flux
limits. Panel C. Effect of the glucose expression-derived flux limits of
Panel B on in silico glucose growth. The glucose optimal flux from Panel
A (orange region) lies within the limits; biomass production is not
changed. Panel D. Effect of the glucose expression-derived flux limits
of Panel B on in silico acetate growth. The acetate optimal flux from
Panel A (blue region) exceeds the flux limits for several reactions. (This is
analogous to the optimal flux vector vin silico nutrient 2 lying outside the

flux cone in Figure 2, Panel B.) Hence the flux limits will lead to smaller
optimal fluxes for these reactions and reduced biomass production.
Relative biomass production is therefore smaller for in silico acetate
than for in silico glucose, and we conclude that glucose is the more
likely carbon source for the expression data.
doi:10.1371/journal.pone.0036947.g001
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2.5 out of 18 (where we assigned an average ranking for ties)

indicating a high degree of success.

Many approaches to analyzing gene expression limit their

attention to genes that are strongly differentially expressed. To

examine the effect of such filtering, we applied a cut-off on p-

values calculated from a two-sample t-test comparing condition-

specific gene expression with maximal expression for each

reaction. Using a p-value cut-off at 0.05 to focus on significant

expression changes caused a large reduction in the number of

reactions for which scaling is applied. The resulting priority

Figure 2. The principles of our method illustrated with flux cones. Only three of the many reaction fluxes are shown. For simplicity only two
in silico candidate nutrients are represented. The figure does not correspond to actual experimental data. Panel A. Creation of the baseline flux
limits, represented as a rectangular parallelpiped. Reaction fluxes must lie within the flux cone (grey area). Flux vectors producing maximal biomass
for candidate nutrient i are indicated by colored asterisks and labeled vin silico nutrient i : These solutions of the baseline FBA model constrained by
in silico nutrient uptake lie on the surface of the flux cone. For each dimension j the baseline upper flux limit is denoted b

(0)
j : Panel B. Creation of the

expression-derived flux limits by scaling the baseline flux limits. The upper flux limit for dimension j derived using expression data for the unknown in
vitro nutrient l is denoted b

(in vitro nutrient l)
j , and the solution vectors are denoted v

in vitro nutrient l expression
in silico nutrient i : The baseline flux limits are indicated with

dashed lines, the scaled limits are indicated by solid lines. In this hypothetical example the expression of the gene for the enzymatic reaction
producing flux v2 is 40% of the maximal expression level for that gene under the other nutrient condition. The maximal flux for this reaction is set to
40% of its original level. This smaller flux cone represents the metabolic capabilities of the organism under the corresponding growth condition. The
solution vector producing optimal biomass for nutrient 1 has not changed with the new flux limits, but the solution vector for nutrient 2 has been
reduced in magnitude, with a consequent reduction in biomass production. Relative biomass production will be larger for nutrient 1 than for nutrient
2. We would therefore conclude that the in vitro nutrient l that gave rise to the expression profile is probably nutrient 1, rather than nutrient 2.
doi:10.1371/journal.pone.0036947.g002
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Figure 3. Priority ordering of candidate nutrients for each expression set. A panel for each of the six challenge expression sets presents the
candidate nutrients ordered from top to bottom in order of decreasing relative biomass production. The length of the horizontal bars indicates the
relative biomass production for the corresponding candidate nutrient for that challenge expression set. The bar for the in silico nutrient that
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doi:10.1371/journal.pone.0036947.g003
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ordering of expression profiles and matching (see Figures S1 and

S2) show that the biomass produced across the range of carbon

sources increased with more carbon sources showing relative

biomass production within 95% of the maximum production and

a reduction in the ranking of the matching source in most cases.

The resulting loss of discriminatory power should not be

surprising. Filtering of individual reactions in this manner fails to

recognize the collective effect of a group of reactions on metabolic

changes. Tools such as Gene Set Enrichment Analysis (GSEA)

[16] attempt to achieve this by creating functional groupings. Our

algorithm aims instead to use the relationship of the reactions

within the structure of the metabolic network.

As can be seen from Figure 3, in many cases consecutively

ranked nutrients are close in relative biomass production. We

therefore tested whether the rankings would remain fairly stable

despite the typical variations in gene expression found across

biological or technical replicates. We undertook a stochastic

analysis in which we simulated variation for all six expression data

sets (see Methods). For each set of simulated expression data we

ranked all the in silico nutrients, and then computed the means and

standard deviations for each set of rankings. As can be seen from

Table 1, the mean ranking over the six challenge sets increased

slightly, going from 2.5 in the original analysis to 2.85 using the

stochastic model.

Are the rankings of the matching in silico nutrients due to specific

patterns of gene expression or to overall levels of gene expression?

To answer this question we performed a simulation in which gene

labels were randomly permuted (see Methods). The result (Table 1)

was that the mean ranking of the correct nutrient over the six

expression sets was 9.5 with a standard deviation of 0.0. With 18

choices, a random ordering of candidates would result in an

average ranking for the correct nutrient of 9.5. This result clearly

indicates that our original findings are due to the expression of

specific genes, not overall gene expression.

This data should make it clear that our algorithm is able to

significantly narrow the search for the carbon source correspond-

ing to a set of gene expression data. Assaying candidate nutrients

in prioritized order over the six expression sets would require an

average of 2.5 tests with our algorithm. This is a four-fold

improvement over the average 9.5 tests that would be required if

candidate nutrients were assayed in a random order.

Our method is robust–adding perturbations to the expression

values had no significant effect on the rankings. Furthermore, our

method is sensitive to the expression of specific genes, since

permutation of the genes resulted in a complete loss of

discriminatory power.

Optimality of Adjustment to Nutrient Conditions
In this section we compare simulated growth of E. coli for in silico

nutrients across the challenge gene expression sets, restricting

ourselves to the challenge carbon sources. In Figure 4 for each

in silico nutrient labeled vertically on the y-axis there is a group of

bars representing the percent relative biomass production for that

nutrient for each expression set. The expression sets are labeled

horizontally on the y-axis and ordered by decreasing percent

relative biomass production for each in silico nutrient.

Table 2 and Figure 4 show that in silico nutrients generally grow

better when constrained by the matching expression set rather

than one of the non-matching ones. The matching expression set

was top ranked for five of six cases, and fourth for the remaining

case. Averaging over all six candidate nutrients the mean for

matching expression sets was 94.84%, dwarfing the 65.97% mean

for non-matching expression.

The case where the matching expression set does not result in

the greatest relative biomass production is succinate, and this case

does rather poorly, with the relative biomass production of the

matching expression set only slight greater than the mean for non-

matching expression sets (86.69% as opposed to 84.59%). We

suspect this may be due to the way in which succinate is

metabolized, where it enters the TCA cycle directly, without any

degradation reactions. The lack of degradation reactions reduces a

key component of expression differentiation, which in turn reduces

the specificity of our method.

The mean percent relative biomass production of 94.84% for

matching expression sets shows that they do not impose much of a

limitation on growth beyond that due to nutrient limitation, since

by definition relative biomass production is the ratio of biomass

production with both expression and nutrient constraints to

biomass production with nutrient constraints alone.

The key results of this analysis are 1) gene expression for

matching carbon sources supports nearly optimal growth and 2)

growth constrained by non-matching gene expression is signifi-

cantly reduced. Since the constraints due to matching gene

expression have only a small effect on biomass production our

method produces in silico growth close to that predicted by FBA

models constrained by nutrient uptake alone. Such standard FBA

models have been shown to accurately predict empirical growth

rates of E. coli grown on several of the nutrients used as our sources

of expression data [17]. The second result shows both that there is

specificity to E. coli’s adjustment to each carbon source, and that

our algorithm is sufficiently responsive to the corresponding

changes in gene expression.

These results also show that for reactions critical to metabolic

adjustment of varied carbon sources the baseline flux limits are

Table 1. Ranking of the six challenge nutrients.

orig. data stochastic model permutation model

Challenge expression set ranking mean std. dev. mean std. dev.

glucose 5 5.49 0.98 9.50 0.00

glycerol 3 3.74 1.87 9.50 0.00

succinate 3 3.78 1.23 9.50 0.00

Alanine 2 1.73 0.42 9.50 0.00

Acetate 1 1.20 1.26 9.50 0.00

proline 1 1.14 .77 9.50 0.00

mean 2.50 2.85 9.50

doi:10.1371/journal.pone.0036947.t001
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doi:10.1371/journal.pone.0036947.g004
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neither dramatically too small nor too large, even though they

were determined independently of the expression data. If the

baseline flux limits were too small the expression-scaled limits

would significantly impede optimal growth, and the relative

biomass production could not approach one hundred percent.

Similarly, if the baseline flux limits were too large, accurate

discrimination between matching and non-matching expression

would not be possible.

Discussion

Flux Limits
Setting meaningful flux limits for internal reactions – not just

transport reactions – is critical for FBA modeling of situations in

which reactions are enzyme-limited. Although traditional FBA

techniques have been successfully used to model knockout

organisms [11,18,19], they cannot model cases in which the

increase or decrease of enzyme activity is relevant for predicting

biomass production. Metabolic engineers have found cases in

which decreasing enzyme activity increases the biosynthesis of a

desirable product, but knocking out the corresponding gene results

in an organism that is not viable [20].

An all-or-nothing approach to flux limits can result in incorrect

predictions when gene expression data is applied to wild-type

organisms [21]. Similarly Covert et al. [11] found that strict

implementation of their statistical criteria for turning off reactions

associated with down-regulated genes produced some incorrect

predictions of loss of viability.

We believe that setting upper flux limits for internal reactions

that take on values in a continuous range provides a realistic and

powerful framework for applying gene expression data to

metabolic models, and is a worthwhile alternative to using upper

bounds that are either zero or non-limiting. Our core idea is that

for conditions in which in vivo reaction fluxes are actually

constrained by enzyme activity, the model’s reaction flux limits

should also constrain in silico growth. Although reaction rates

depend on the relative concentration of substrates and products,

enzyme activity provides an upper limit on reaction rates. Actual

reaction rates depend on the relative concentration of substrates

and products, and may not attain this upper limit. As an early test

of our ideas we used empirical activity values [22] to set flux limits

and found we could discriminate between glucose and acetate as

E. coli nutrient sources, using a simple model incorporating

glycolosis, gluconeogenesis and the citric acid cycle.

The measurement of activity values is labor and time intensive,

and a comprehensive set of such measurements is not available.

Genome-scale gene expression measurement is, on the other hand,

routine. We therefore developed a method that uses relative

expression as a rough proxy for relative activity. Before discussing

the logic and validity of our method we present our approach to

deriving flux limits from expression values. First, we compute a set

of baseline maximum flux rates (fluxmax) that conceptually play the

role, for each reaction, of the maximal enzyme activity encoun-

tered over a set of experimental conditions. The condition-specific

flux limits are obtained by scaling these values by relative

expression. Mathematically we choose fluxmax values for each

reaction that are the maximum of any flux that might be

encountered under optimal in silico growth conditions. We also

determine minimal flux limits for all reversible reactions(details are

in the Methods section). Notably, these limits generally lead to in

silico model behavior that mimics the effect of rate-limited

reactions.

We do not claim that every baseline flux limit approximates

the actual maximum flux capacity of the corresponding reaction.

The flux limits produced by our algorithm tend to underestimate

the flux capacity of reactions that are always substrate-limited for

the set of in silico candidate nutrients. This should not be

problematic if the relative expression of corresponding genes is

near one, which would be the case if their expression does not vary

significantly over set of experiments used to determine the

expression range. However for very small fluxes it may well be

that there will always be sufficient enzyme, and that any reduction

of these limits will have a deleterious effect. For example we

needed to take special account of cofactors which, because they

have very small coefficients in the biomass reaction, generally have

small flux limits. Rather than removing cofactors from the biomass

function one could set a relatively small minimum upper flux limit

to simulate the presence of some enzyme. We found that using this

approach with a minimum upper flux limit of.03 produced results

essentially identical to those obtained with the alternative biomass

function.

The results obtained by our method may be improved by setting

flux limits using expression profiles obtained from cells adapted to

specific nutrients over a number of generations. It has been

observed that E. coli cells undergo adaptive evolution over several

hundred generations to reach phenotypes predicted by FBA [17],

and the expression changes that occur during this adaptive

evolution should improve the performance of our method.

Unfortunately, we could not find expression profile data sets of

adaptively evolved E. coli on several nutrient sources (measured by

the same lab to minimize spurious variation) which would be

suitable for our method and which we could use to test this

hypothesis.

Assumptions and Approximations Underlying the
Method

Enzyme activity is proportional to enzyme concentration. It can

also be affected by changes in experimental conditions such as

temperature and pH which alter the properties of the protein. Our

method is appropriate for experiments designed to keep such

variables nearly constant while allowing the nutrient source to

vary. Such conditions justify our first approximation: the activity of

an enzyme across experiments depends only on its concentration.

We then make the further approximation that relative enzyme

concentration is proportional to relative gene expression, while

acknowledging that many factors affect enzyme concentration

besides the level of the mRNA from which they are translated.

Given these assumptions, the ratio between enzyme activity levels

Table 2. Relative biomass production for matching versus non-matching expression.

in silico nutrient glucose glycerol succinate alanine acetate proline mean

matching expression 82.8 99.56 86.69 100 100 100 94.84

non-matching expression 45.97 78.61 84.59 96.35 90.31 0 65.97

doi:10.1371/journal.pone.0036947.t002
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under two experimental conditions is a function of the relative

expression of the corresponding genes.

The degree to which gene expression and enzyme activity are

coupled is an empirical question. There is experimental evidence

that a roughly linear relationship does hold for our system of

interest. A study of nine E. coli central metabolism genes in both

wildtype E. coli DF11 and a phosphoglucose isomerase (pgi) mutant

found a relatively high Pearson correlation of.81 between the log

ratio of transcripts and the log ratio of enzyme activities [22].

Another study [23] showed excellent correlation between log ratios

for protein abundance and those for enzyme activities for E. coli

grown on glucose, glycerol, gluconate and acetate. The one

exception was isocitrate dehydrogenase (idh) which undergoes a

four-fold reduction in activity due to phosphorylation when

acetate is the carbon source. This is an example of knowledge that

could be incorporated into our algorithm. The ability of our

algorithm to achieve accurate results despite certain exceptions to

our underlying assumptions should help make it clear that these

assumptions do not need to hold absolutely for each gene, enzyme,

reaction and carbon source.

On the other hand, application of our algorithm to eukaryotic

systems in which posttranscriptional and posttranslational modi-

fications play a significant role would require modification to

incorporate additional data or biological knowledge. Attention

must also be paid to other factors that can disrupt the relationship

between gene expression and enzyme activity such as the

intracellular localization of proteins and growth rate dependent

differences in protein synthesis and degradation rates across

conditions.

A final assumption made by our method, which is shared by

other uses of FBA, is that the organism is optimizing the goal

embodied in the model as an objective function. Our choice of

goal, maximal growth (biomass production), is common for FBA

models. Predictions based on biomass production as an

objective function have been experimentally validated for the

growth of E. coli and other organisms under a wide variety of

environmental conditions [8,9,11,23,24]. Biomass production as

an objective makes sense on evolutionary grounds for organisms

competing in an environment in which optimal use of nutrients

is an effective survival strategy. However under other circum-

stances organisms may adapt strategies for which growth is not

a valid objective.

Biological Conditions Necessary for Discrimination
The previous section discussed biological conditions that are

necessary for the validity of our method. However, even if our

method is valid additional conditions are necessary for its

application to result in discrimination between nutrient sources.

If all changes in flux result from changes in mass action, that is,

from the relative concentration of substrates, products and

modifiers our method will not avail, because flux limits do not

play a limiting role. What our method needs for discrimination

is regulation of some reactions by changes in enzyme

concentration that result from changes in gene expression.

With this type of regulation the reaction flux limits come into

play for some nutrient conditions.

Empirical Tests of Assumptions
As indicated previously, there is evidence in the literature that

the biological assumptions underlying this project are valid to a

sufficient degree for E. coli carbon metabolism. However in

applying this method to different conditions it is important to test

the validity of these assumptions empirically. In doing so it is

helpful to keep in mind that most genes are not informative;

specifically they do not undergo significant changes in relative

expression. The authors of the paper from which we take our data

considered that fewer than 300 out of approximately 4000 genes

underwent significant change for the six experimental conditions

[25]. For our method to be successful, significant increases in

expression of metabolic genes must in most cases be markers of

significant increases in enzyme activity, although the changes need

not be strictly proportional. These changes in enzyme activity

must also enable greater reaction flux for some genes.

One can directly determine the extent to which the relative

mRNA expression is roughly proportional to both relative protein

levels and to relative activity through concurrent measurements of

gene expression, protein abundance and enzyme activity for key

genes. RNA-Seq and quantitative RT-PCR for the measurement

of gene expression for key genes may be desirable if gene chips

produce results that are too noisy, having high levels of variance,

and a more limited dynamic range. If relative enzyme protein

abundance can be directly quantified, it can be used as input to

our algorithm in place of mRNA expression.

The extent to which the regulation of key reactions in a pathway

is due to changes in enzyme concentration versus changes in mass

action can be tested using a method proposed by ter Kuile and

Westerhoff [26].

Conclusions
In this paper we presented a method to prioritize a set of

candidate carbon sources with respect to their compatibility with a

target gene expression profile. The method requires a metabolic

network for the microorganism, and a small set of gene expression

profiles measured under different nutrient conditions. We applied

the method using eighteen candidate nutrients and a set of six

E. coli expression profiles. We ranked the candidates using in turn

each of the six profiles as the target. The correct nutrient was

ranked in the top three for five profiles and was fifth for the other

profile. Additional analyses showed these rankings to be robust to

experimental variations in gene expression and to result from

specific gene expression rather than general expression level. We

also showed that the gene expression profiles are highly adaptive,

with in silico organism growth being nearly optimal for matching in

silico sources, while often being substantially reduced for non-

matching sources. This result demonstrated that our baseline flux

limits were well sized.

Our rankings depend on computing flux limits specific to

experimental conditions. These flux limits are designed to

approximate the constraints imposed on some reactions by

enzyme activity. We analyzed the biological conditions that must

hold for our approximation to be a valid one, and found they held

for E. coli carbon metabolism.

One potential use of this method is the determination of

nutrient use by pathogens in an intracellular environment. Direct

determination of carbon nutrient sources may be significantly

more challenging in such micro-environments than the measure-

ment of gene expression. Another potential application of our

method is its use as an aid to the creation of growth media for

microorganisms. Development of such media is important for

establishing laboratory growth conditions that can dramatically

facilitate study of an organism, as illustrated by the development of

the candle method for P. falciparum [27]. Since only a small percent of

microorganisms identified in metagenomic studies are currently

culturable in isolation [28] the application of in vivo expression data

to help identify nutrients and environmental conditions (e.g.,

oxygen availability) necessary for their in vitro growth would benefit

laboratory research.
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Methods

Expression Data
We used gene expression data obtained by Liu et al. [25] and

deposited in the Gene Expression Omnibus (GEO) database under

accession number GSE2037. This data is comprised of the gene

expression of E. coli grown separately on six different carbon

sources – glucose, glycerol, succinate, L-alanine, acetate, and L-

proline – as measured using Affymetrix GeneChipH E. coli

antisense genome arrays. The data set consists of 15 samples: five

samples of E. coli grown on glucose and two samples of E. coli

grown on each of the five other carbon sources. Details of the

experimental protocol followed and the normalization procedures

applied to obtain the data can be found in [25]. We averaged the

log-normalized expression of all samples in each condition and

then exponentiated the averages to obtain the condition-specific

expression used in subsequent analyses.

Reaction Networks
The genome-scale model was created using the SBML file

available with the supplementary material for Feist et al. [12]. We

used the COBRA toolbox [29] to convert it to a COBRA model,

and then transformed it into our internal format. Flux limits were

changed as detailed in the following section.

In our calculations, we used a modified objective function that

was created by removing the 15 metabolites specified as belonging

to the category Cofactors, Prosthetic groups and others from the biomass

reaction (see [12]). These metabolites are listed in Table 3, along

with their original stoichiometry. Collectively they make up less

than 2.9% of the biomass. We used this modified objective

function because the reactions involved in synthesizing cofactors

typically only require very small fluxes and, in our method, they

have very small unscaled flux limits that cause bottlenecks during

the scaling phase.

Baseline Flux Limits
We set baseline flux limits by the following procedure which is

intended to estimate the largest range of fluxes encountered over

the external conditions of interest, i.e., over growth on any of the

18 in silico nutrients we consider.

Following the standard FBA modeling framework (see, for

example, [30]), we estimate the distribution of fluxes in E. coli in

log-phase growth on a given nutrient by solving the following

linear optimization problem:

max f 0v

subjectto
Sv~0

aƒvƒb

�
ð1Þ

where v is a length n vector representing the fluxes of the n

reactions in the network, f is a length n vector representing the

organism’s objective, S is a matrix containing the stoichiometries

of the various reactions in the network (more precisely, Sij is the

stoichiometric coefficient of metabolite i in reaction j), and a and b

are vectors of lower and upper bounds on v, respectively. Let jbiomass

be the index of the reaction representing a unit of biomass in terms

of its constituents. Then we set fj
biomass

: = 1, fi : = 0 for i ? jbiomass, a

typical objective for log-phase growth. By way of notation let F(a,

b) be the optimal value f 0v obtained with flux limit vectors a and b.

For a given nutrient in silico k, let jk be such that vjk is the flux of

the reaction that dictates the exchange of nutrient k with the

external environment. We determine ajk and bjk such that the

biomass production corresponds to the experimentally measured

growth rate of E. coli on nutrient k, as obtained from [25]. In the

absence of experimentally measured growth rates for a particular

nutrient, we assumed a nominal rate of 0.5 h–1. We denote this

optimal biomass production rate as Fk.

For each in silico nutrient k, with a and b set in this way, and the

added constraint that biomass production must be at least 90% of

its optimal (that is aj
biomass

: = .9Fk), we successively maximize and

minimize each flux subject to the constraints of the problem – a

problem sometimes referred to as the max/min problem

[31,32,33] – i.e., we solve

Table 3. Constituents removed from iAF1260 biomass.

Biomass Constituents Amount (mm/gDW) in original biomass function

10-formlytetrahydrate 0.000223

2-octaprenyl-6-hydroxyphenol 0.000223

S-adenosylmethionine 0.000223

Coenzyme A 0.000576

FAD 0.000223

5,10-methylenetetrahydroflolate 0.000223

NAD 0.001831

NAD(P) 0.000447

protoheme 0.000223

pyridoxal 59phosphate 0.000223

riboflavin 0.000223

siroheme 0.000223

tetrahydroflolate 0.000223

thiamine diphosphate 0.000223

undecaprenyl pyrophosphate 0.000055

doi:10.1371/journal.pone.0036947.t003
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max =min vj

subjectto
Sv~0

aƒvƒb

�
: ð2Þ

Let v(k) and �vv(k) be the minimum and maximum reaction fluxes

thus obtained, respectively. We set a(0) : ~ min
k

v(k) and

b(0) : ~ max
k

�vv(k), and these vectors a(0) and b(0) are the baseline

flux limits. For a given in silico nutrient k, we take the baseline flux

limits a(0) and b(0) and appropriately set the component for

exchange reaction jk as above. We denote the resulting lower and

upper bound vectors a(k,0) and b(k,0), respectively.

Determining Expression-derived Flux Limits
For each experimental condition l (with expression data set l),

we determine flux limit vectors a(l) and b(l)specific for that

experimental condition. The calculation for a specific reaction

depends on whether it is catalyzed by the product of a single gene,

by more than one enzyme, or by a protein complex formed by

several genes. If reaction j is catalyzed by an enzyme that is the

product of a gene with expression x
(l)
j in experimental condition l

we set a
(l)
j : ~a

(0)
j x

(l)
j

.
maxlx

(l)
j and b

(l)
j : ~b

(0)
j x

(l)
j

.
maxlx

(l)
j .

When reaction j is catalyzed by one of n enzymes (isozymes)

formed by genes with expression x
(l)
j,1,x

(l)
j,2, . . . ,x

(l)
j,n, we set

x
(l)
j : ~

Xn

m~1
x

(l)
j,m: In the case that reaction j is catalyzed by a

protein complex formed by genes with expression x
(l)
j,1,x

(l)
j,2, . . . ,x

(l)
j,n,

we set x
(l)
j : ~ min

m~1,...,n
x

(l)
j,m: For nested relationships, we apply

these rules repeatedly. We denote the lower and upper bound

vectors corresponding to in silico nutrient k and experimental

condition l, by a(k,l) and b(k,l), respectively, and set the component

of the exchange reaction jk as above.

Computing Relative Biomass Production
Relative biomass production for an expression set l and an

in silico nutrient k is denoted by RBP(l,k) and is defined as

RPB l,kð Þ~
F a k,lð Þ,b k,lð Þ� �
F a k,0ð Þ,b k,0ð Þð Þ : ð3Þ

For convenience the results are reported as percents.

Stochastic Analysis
For each iteration of the stochastic analysis, normally distributed

random values with mean zero were added to the log base two of

the expression values. The expression values were then trans-

formed back via exponentiation. The relative biomass was

recomputed for each combination of expression set and in silico

nutrient. The candidate nutrients were ordered for each challenge

expression set. This procedure was repeated 1000 times. Given a

gene g and a set of n replicate expression measurements Xgl (base 2)

for expression set l, the standard deviation of the Gaussian

distribution was sXgl

� ffiffiffi
n
p

: Division by
ffiffiffi
n
p

is a computational

shortcut for averaging n random values from a Gaussian

distribution with standard deviation sXgl
justified by a well-known

result on the sum of independent normally distributed random

variables.

Permutation Analysis
For each iteration of the permutation analysis, the set of

expression values for all 3797 E. coli genes in the data set was

permuted and the relative biomass was recomputed for each

combination of expression set and in silico nutrient. The candidate

nutrients were ordered for each challenge expression set. This

procedure was repeated 1000 times.

We implemented our method using Gurobi Optimizer (Gurobi

Optimization, Houston, TX) and MATLAB (The MathWorks,

Inc., Natick, MA).

Supporting Information

Figure S1 Priority ordering of candidate nutrients for
each expression set with p-value filtering. This figure is the

analog of Figure 3 for the case where p-value filtering with a cut-

off of 0.05 has been applied to the expression sets.

(EPS)

Figure S2 Relative biomass production for each expres-
sion set with p-value filtering. This figure is the analog of

Figure 4 for the case where p-value filtering with a cut-off of 0.05

has been applied to the expression sets.

(EPS)
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