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Abstract

Background: Among herbivorous insects that have exploited agro-ecosystems, the peach-potato aphid, Myzus persicae, is
recognized as one of the most important agricultural pests worldwide. Uses over 400 plant species and has evolved
different insecticides resistance mechanisms. As M. persicae feeds upon a huge diversity of hosts, it has been exposed to a
wide variety of plant allelochemicals, which probably have promoted a wide range of detoxification systems.

Methodology/Principal Findings: In this work we (i) evaluated whether insecticide resistance mutations (IRM) in M. persicae
can give an advantage in terms of reproductive fitness when aphids face two hosts, pepper (Capsicum annuum) a suitable
host and radish (Raphanus sativus) the unfavorable host and (ii) examined the transcriptional expression of six genes that
are known to be up-regulated in response to insecticides. Our results show a significant interaction between host and IRM
on the intrinsic rate of increase (rm). Susceptible genotypes (not carrying insensitivity mutations) had a higher rm on pepper,
and the transcriptional levels of five genes increased on radish. The rm relationship was reversed on the unfavorable host;
genotypes with multiple IRM exhibited higher rm, without altering the transcriptional levels of the studied genes. Genotypes
with one IRM kept a similar rm on both hosts, but they increased the transcriptional levels of two genes.

Conclusions/Significance: Although we have studied only nine genotypes, overall our results are in agreement with the
general idea that allelochemical detoxification systems could constitute a pre-adaptation for the development of insecticide
resistance. Genotypes carrying IRM exhibited a higher rm than susceptible genotypes on radish, the more unfavorable host.
Susceptible genotypes should be able to tolerate the defended host by up-regulating some metabolic genes that are also
responding to insecticides. Hence, our results suggest that the trade-off among resistance mechanisms might be quite
complex, with a multiplicity of costs and benefits depending on the environment.
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Introduction

The evolution of insecticide resistance is one of the best-known

examples of Darwinian microevolution on an ecological time-scale

[1,2]. In addition, given their negative impacts on crops and its

economic consequences, the development of insecticide resistance

in pest insects represents an important threat to human welfare [3–

5]. Overall, insecticide resistance is based on several non-exclusive

mechanisms: (i) behavioral evasion, (ii) thickening of the cuticle,

(iii) increased activity of the metabolic machinery and, (iv) point

mutations at insecticide target sites that reduce or eliminate

insecticide sensitivity [3,6–8].

Among the groups of herbivorous insects that have successfully

exploited the agricultural environment, the green peach aphid,

Myzus persicae (Sulzer), is recognized as one of the most important

agricultural pests worldwide [9,10]. This species uses over 400 plant

species around the world from 50 different families [11,12], and it

causes damage both through direct feeding and by transmitting

plant viruses. Although several insecticides have been used to

control this species, M. persicae has developed resistance to all of

them through either metabolic or target site mutation mechanisms

[13,14]. So far, four mechanisms of insecticide resistance through

target site mutations have been described in this species: (i) modified

AChE (MACE) [15–17], (ii) knock-down mutations (kdr) and super-

kdr mutations in voltage-gated Na+ channels [18,19], (iii) a mutation

in the GABA-Rdl receptor [20], and (iv) the recently described

mutation of a key residue in the loop D region of a nAChR b1

subunit [13]. Regarding the metabolic insecticide resistance, M.

persicae shows resistance through over-production of E4 or EF4

esterases [21–26], and the recently reported over-production of

cytochrome P450 [13,27,28].

Regarding those metabolic and target site insensitivity mecha-

nisms, several authors have proposed that plant allelochemical

detoxification systems found in insects have served as a pre-

adaptation for the acquisition of insecticide resistance [8,29–36].
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Two lines of evidence have contributed to this hypothesis. First,

insecticides not only resemble plant chemical defenses in their

structure, but some are also derived from them(e.g. pyrethroids

and neonicotinoids) [37,38]. Second, the metabolic pathways

involved in the detoxification of secondary metabolites in insects

are highly conserved [39,40]. Indeed, M. persicae feeds on a wide

diversity of hosts, therefore being exposed to a range of

phytochemicals, thus favoring a great diversity of enzymatic

detoxification systems [41–43]. Detoxification mechanisms against

allelochemicals, however, are poorly investigated in M. persicae

[44]. Nevertheless, it has recently been reported that esterases play

a role in the ability of the tobacco aphid (Myzus persicae nicotianae) to

feed on tobacco plants (Nicotiana tabacum) [45], while glutathione S-

transferases participate in detoxifying glucosinolates and isothio-

cyanates characteristic of the Brassicaceae family [46].

The fecundity of adult aphids is one of the most frequently

studied traits used to characterize the ability to feed on different

hosts, because it is expected that specialization in herbivorous

insects has evolved towards an optimal exploitation of the host in

terms of maximizing individual fitness [47]. In this work, we

explored the reproductive and transcriptional responses of M.

persicae clones carrying different insecticide resistance mechanisms

under distinct environmental regimes imposed by the host plant.

First, we evaluated the reproductive fitness of different aphid

genotypes carrying or not MACE and kdr insensitivity mutations,

which were reared on suitable and unfavorable host plants.

Second, we compared the transcriptional levels for six specific

genes on aphid genotypes reared on both hosts. In particular, we

selected some genes coding for Cathepsin B, Heat Shock Protein

70, Glutathione S-Transferase, Carboxylesterase and Cytochrome

p450 family CYP6 and CYP4. We selected those genes because

they showed the highest up-regulation in expression (ranging 2–5

fold change) in a previous work where M. persicae individuals were

subjected to insecticides [48].

Results

Insecticide Resistance Assessment
Of a total of 44 multilocus genotypes studied, thirty-three did

not carry any resistance mutations and were labeled as sensitive

(i.e. S). Six genotypes were heterozygote for kdr mutation and five

were heterozygote for both kdr and MACE mutations. These

genotypes were labeled simple resistant (i.e. SR) and multiple

resistant (i.e. MR), respectively. No genotypes was found to carry

either MACE or kdr mutations in homozygote state, or carrying a

super-kdr mutation. Of the 44 genotypes evaluated for constitutive

carboxylesterase activity (EST activity), thirty-two genotypes were

classified as susceptible (S), ten as moderately resistant (R1) and

two were highly resistant (R2), following the nomenclature

proposed by Devonshire et al. (1992) [49]. No genotype was

found to be extremely resistant (R3). Nine genotypes (N36-1,

Teno7B, Sur25A, 26A, N30A-1, Cruz 4A, Peralillo 1, Sur 74-1

and 16A) were selected for the experiments, considering different

genetic configuration for insecticide resistance mutations (IRM)

and EST activity (Table 1).

Reproductive Fitness
Table 2 shows descriptive statistics for intrinsic rate of increase

(rm) and body mass, for each tested genotype on both host plants

(suitable and unfavorable). The results shown no variation for

reproductive fitness (x2[1] = 0.000001, P = 0.999) among lines

within genotypes; thus, line was removed from the final model. On

the other hand, reproductive fitness was, as expected, positively

affected by body mass (b = 0.227, SE = 0.020; F1, 230 = 131.42,

P,0.0001). In addition, not all genotypes responded in the same

fashion to both hosts; that is, there was an interaction between

genotype and host (x2[1] = 8.477, P = 0.004). Within each geno-

type, aphid reproductive fitness was significantly lower on the

unfavorable host (radish) for S genotypes (N36-1, Sur25A). Finally,

our results also shown a significant interaction between host and

IRM on reproductive fitness (F2,6 = 5.771, P = 0.040). In particu-

lar, on pepper, the S genotypes had a higher reproductive fitness

than SR and MR genotypes. However, the relationship was

reversed on radish: S genotypes showed a lower reproductive

fitness than SR and MR ones (Figure 1).

Transcriptional Levels of Candidate Genes
The transcriptional level for all six of the selected genes

depended on the genotype (Figure 2).

Cathepsin B gene – This gene showed a significant up-regulation

only in the S genotypes (N36-1 and Sur25A) when aphids were

reared on radish (Figure 2A). Genotypes SR (Peralillo 1) and MR

(16A) showed only a slight but not significant up and down-

regulation, respectively.

Heat Shock Protein 70 gene – A significant up-regulation was

observed only in the genotype MR (16A) when reared on radish.

The transcriptional levels for the remaining genotypes was not

significantly different from 1 (Figure 2B).

Glutathione-S-transferase gene – The relative expression of the GST

gene was significantly higher for three aphid genotypes reared on

radish compared to aphids reared on pepper; only the MR

genotype showed no significant differences in relative expression

between hosts (Figure 2C).

Esterase gene – Only one genotype (N36-1) showed an up-

regulation of the E4/FE4 gene when aphids were reared on radish

(Figure 2D). The transcriptional levels for the E4/FE4 gene were

not significantly different from 1 in the other genotypes.

Cytochrome P450 genes – Two genes belonging to this family were

assessed (CYP6CY3 and CYP4). The genotypes SR and MR

evidenced a slight but not significant down-regulation for both

genes (Figure 2E and 2F). However, both S genotypes showed an

up-regulation for the CYP4 gene (Figure 2F), while only the S

genotype Sur 25A showed a higher relative expression for the

CYP6CY3 gene (Figure 2E) after rearing aphids on radish.

Discussion

In this work we examined the potential involvement of specific

genes to determine whether point mutations at insecticide target

sites (MACE and kdr) found in a pest aphid in Chilean

agroecosystems can provide an advantage in terms of reproduction

success when aphids are faced with well-defended host plants. This

is particularly interesting when studying a highly polyphagous

insect that is able to feed on more than 50 different plant families

exhibiting a vast range of chemical defenses against herbivorous.

The subject of this study was to determine whether the diversity of

possible hosts and their defenses has promoted the evolution of

different aphid counter-defense mechanisms that can be also

involved in insecticide resistance. Therefore, we evaluated the

impact of host plants with different levels of allelochemicals on: (i)

the reproductive performance of aphid genotypes carrying or not

MACE and kdr insensitivity mutations and, (ii) the transcriptional

expression for six selected genes. Particularly, we selected genes

coding for Cathepsin B, Heat Shock Protein 70, Glutathione S-

Transferase, Carboxylesterase and Cytochrome p450 family

CYP6 and CYP4, as they were observed to be highly up-regulated

(ranging 2–5 fold change) in a previous work where M. persicae

genotypes were subjected to insecticides [48].

Insecticide Resistance in the Green Peach Aphid II
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Our results highlight a number of aspects regarding the

complexity of the relationships between phytophagous insects

and their host plants in heterogeneous environments. Clearly,

genotype-specific traits and genotype-by-environment interaction

are determinant of aphid’s gene expression pattern and overall

performance. Thus, it is neither straightforward nor simple to

make generalizations. In spite of this, a few common features can

be identified.

Inter-clonal Variation and Potentiality to Adaptive
Evolution

The fitness among genotypes exhibited a high variation on the

two tested hosts (pepper or suitable host and radish or unfavorable

host). This significant inter-clonal variation in performance has

also been reported by other authors [50–53], suggesting that

populations of M. persicae have the potential to evolve in response

to selection agents like host plants.

Environmental Canalization versus Phenotypic Plasticity
Although we have only studied nine genotypes, in overall terms

our results are in agreement with the general idea that

allelochemical detoxification systems can serve as a pre-adaptation

Table 1. Genetic configuration for insecticide resistance mutation (IRM) and constitutive esterase activity (EST)of
selected genotypes.

Genotype IRM Genotype IRM EST activity Genotype EST

MACE kdr s.kdr (U aphid-equiv. 21)

N 36-1 SS SS SS S 0.133±0.05 S

Teno7B SS SS SS S 0.09160.01 S

Sur 25A SS SS SS S 0.300±0.02 S/R1

26A SS SR SS RS 0.20760,01 S

N 30A-1 SS SR SS RS 0.39060.06 S/R1

Cruz 4A SS SR SS RS 0.35960.09 S/R1

Peralillo 1 SS SR SS RS 0.701±0.08 R1/R2

Sur74-1 SR SR SS RM 0.14260.02 S

16A SR SR SS RM 0.291±0.05 S

IRM genotypes were assigned according to whether or not the insects carried the IRM being studied. Thus, genotypes that did not carry any resistance mutations and
were labeled as sensitive (S), genotypes were heterozygote for kdr were labeled as simple resistant (SR) and heterozygotes for both kdr and MACE mutations were
labeled as multiple resistant (MR). Genotypes for EST activity were assigned following the nomenclature proposed by Devonshire et al. (1986, 1992). Thus, genotypes
were classified as susceptible (S), moderately resistant (R1) and highly resistant (R2). Values are means 6 SE. The genotypes shown with dark background were used for
RT-qPCR experiments.
doi:10.1371/journal.pone.0036810.t001

Table 2. Descriptive statistics for intrinsic rate of
increase (rm) and body mass for each tested genotype.

Genotype Pepper (suitable host) Radish (unfavorable host)

rm(day-1) mass (mg) N rm (day-1) mass (mg) N

N 36-1 0.30±0.01 0.48±0.04 15 0.23±0.02 0.48±0.04 8

Teno7B 0.2960.01 0.3660.03 16 0.2860.01 0.4260.03 15

Sur 25-A 0.31±0.01 0.51±0.04 8 0.22±0.02 0.46±0.04 9

26A 0.2160.01 0.2860.03 14 0.2460.01 0.4960.03 15

N 30A-1 0.2860.01 0.3560.03 15 0.3160.01 0.5260.02 10

Cruz 4A 0.2760.01 0.3860.02 16 0.3260.01 0.5360.02 16

Peralillo 1 0.30±0.01 0.44±0.03 16 0.26±0.01 0.41±0.03 14

Sur74-1 0.2660.01 0.3460.03 14 0.3060.01 0.4960.03 12

16A 0.26±0.01 0.42±0.04 13 0.20±0.01 0.40±0.03 15

Shown values of rm when aphids were reared on pepper (Capsicun annuum var.
grossum) and radish (Raphanus sativus var. sparkler), followed by body mass and
sample size (N). Values are means 6 SE. The genotypes shown with dark
background were used for RT-qPCR experiments.
doi:10.1371/journal.pone.0036810.t002

Figure 1. Norms of reaction in reproductive fitness (rm) of
Myzus persicae genotypes in different host. For nine genotypes
with three different genetic configurations of insecticide resistance
mutations (IRM) is shows the mean in rm (mean 6 SE) in two host,
pepper (suitable) and radish (unfavorable).The green circles correspond
to mean in genotypes sensitive (S, N = 3), the yellow circles corresponds
to mean in simple resistant (SR, N = 4), and the red circles corresponds
to multiple resistant genotype (MR, N = 2). The interaction HOST X IRM
was significant (F2,6 = 5.771, P = 0.040, from nested ANOVA).
doi:10.1371/journal.pone.0036810.g001

Insecticide Resistance in the Green Peach Aphid II
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Figure 2. Quantification of relative expression levels in four genotypes on suitable (pepper) and unfavorable (radish) hosts. The
results represent the relative mRNA expression, with transcripts expressed by the aphids on pepper as calibrator and on radish as interest sample.
Data were normalized for variation using GADPH expression. The green bars correspond to S genotypes (sensitive; N36-1 and Sur25A), the yellow bar
corresponds to the SR genotype (simple resistant; Peralillo 1) and the red bar corresponds to the MR genotype (multiple resistant; 16A). Data
represent mean 6 SE of two different experiments, with three technical replicates each case.*p,0.05 and **p,0.01 indicate a significant difference
compared to 1, used as a reference value for no change in expression using a t-test. Gene abbreviations: (A) cathepsin B-N, cathepsin B clade N; (B)
HSP-70, heat shock protein 70; (C) GST, glutathione S-transferase; (D) Esterase E4/FE4, carboxylesterase type E or FE4; (E) CYP6CY3, cytochrome p450family
CYP6CYP3; (F) CYP4, cytochrome p450 family CYP4.
doi:10.1371/journal.pone.0036810.g002
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for the development of insecticide resistance. In our case, the SR

and MR genotypes exhibited a higher reproductive fitness than S

genotypes on the defended host. However, costs and benefits

associated with phenotypic expression depend on the locations of

fitness optima in different environments [54,55]. Thus, individuals

that carry insensitivity mutations or constitutive overproduction of

detoxification enzymes could have higher costs in environments

without insecticides or plant chemical defenses compared to

undefended individuals. It is known that insecticide insensitivity

mutations are associated with fitness costs [56,57]. Pleiotropic

effects of E4/FE4 gene duplication and kdr mutation on important

behavioral traits have been reported for M. persicae, particularly in

response to environmental signals such as presence of natural

enemies (parasitoids) and low temperatures, which ultimately

could lead to reduced fitness [58–63]. In addition, the MACE

mutation appears to reduce the fitness of individuals that carry it

[64]. However, the effect of this mutation by itself has not been

clarified yet [65,66]. This might explain the inverse relationship

we observed in aphids reared on pepper: genotypes SR and MR

having a lower reproductive fitness than S genotypes. However,

SR and MR genotypes did not change significantly their

reproductive fitness between hosts, and present a weak transcrip-

tomic response, suggesting an environmental canalization.

On the other hand, the overall lower reproductive fitness

showed by S genotypes on radish might be indicative of a cost.

Two S genotypes (N36-1 and Sur25A) showed the greatest

variation in fitness between hosts and thus were selected for

transcriptional analyses. Those S genotypes were also the most

plastic in terms of transcriptional variation, showing an important

up-regulation in five of the six genes evaluated on the defended

host. Therefore, the lower reproductive fitness shown by these two

genotypes on the defended host might be indicative of an energetic

trade-off, suggesting non-adaptive plasticity [67–69]. In fact, it has

been reported that metabolic detoxification mechanisms in insects

are energetically expensive, which would result in an allocation

trade-off between defense mechanisms and other biological

functions such as growth and reproduction [70–72]. Certainly,

this trade-off allows aphids to survive on the defended host, but at

a lower reproductive rate.

Transcriptional Plasticity and the Evolution of Pre-
adaptation

If resistance to plant chemical defenses is a pre-adaptation that

enables aphids to deal with insecticides, then it would be expected

that genotypes carrying no resistance mechanism should be able to

tolerate the defended host by up-regulating specific metabolic

genes in the same way as they do when exposed to insecticides

[48]. Overall, this is what we found for most of the studied genes

(cathepsin B clado N; heat shock protein 70; glutathione S-transferase;

Esterase E4/FE4, cytochrome p450 family CYP6CYP3 and CYP4).

The Cathepsins B are enzymes with cysteine protease activity

that process exogenous polypeptides into aminoacids, which are

used to synthesize their own proteins by sap-sucking insects [73–

75].Also, these proteases are up-regulated to minimize the effects

of plant protease inhibitors (PIs) in some insects[76–79]. In aphids,

including M. persicae, PIs interfere with aminoacid assimilation,

having a negative impact on fitness [74,80]. In addition, these

defense mechanisms have been reported in Brassica plants

[74,81,82]. Our results show a significant up-regulation of the

cathepsin B gene in both S genotypes. This could be a counter-

defense mechanism against the PIs in radish plant or to supplying

aminoacids for the biosynthesis of the enzymatic machinery

needed for detoxification.

Heat shock proteins-70 (Hsp70) are a family of well known

proteins involved in cell protection and repair, reducing protein

aggregation and unfolding no-native protein conformations caused

by environmental stress [83–86]. The up-regulation of Hsp70

genes has been reported in insects exposed to pesticides [87–89],

thermal stress [89–91], oxidative stress [92], and metals [89,93],

among other stressors. In our study, the genotype MR was the

only one showing a significant Hsp70 up-regulation after being

reared on radish. Furthermore, this was the only gene that was

significantly over-expressed by this genotype. On the other hand,

the transcriptional expression for the remaining genotypes was not

different from 1, probably because other detoxifying mechanisms

are preventing the level of stress from reaching a threshold level.

The other studied genes belong to the three gene families that

typically participate in detoxification of plant chemical defenses

and metabolic resistance to insecticides: glutathione S-transferases

(GST), cytochrome P450 (P450s proteins, encoded by CYP genes) and

carboxylesterases (ESTs).GST enzymes participate in the detoxifica-

tion of xenobiotic substrates by conjugation of glutathione to

electrophilic toxic molecules [30,94]. Increments in the activity of

GST enzymes in M. persicae have been reported as a response to

glucosinolates and isothiocyanates [46], which are characteristic of

Brassicaceae plants such as radish [11,95–99]. Thus, it is not

unexpected that the relative expression of the GST gene was

consistently higher in S and RS genotypes reared on radish.

ESTs participate in the sequestration and hydrolysis of esters

and amides [8,21,100]. Metabolic insecticide resistance (to

organophosphates, pyrethroids and carbamates) through increased

ESTs activity is one of the several mechanisms reported in

M. persicae. However, this metabolic resistance is due to up to 80-

fold duplication of the carboxylesterases genes (E4 and FE4)

[101,102]. We found that the S genotype (N36-1) was the only one

showing a 30-fold up-regulation of the E4/FE4 gene when aphids

were reared on the defended host. The other S genotype studied

(South 25 A), had a constitutive E4/FE4 expression more than

twenty-fold than genotype N36-1 (expression among genotypes

reared on the most suitable host; data not shown), which could

explain the absence of up-regulation of this gene in that genotype.

P450 enzymes oxidize a broad range of endogenous and

exogenous lipophilic compounds [8,40,103–105]. More than 660

CYP genes have been characterized in several insect orders [8],

with the CYP6, CYP3 and CYP4 families being the most important

in detoxifying plant defenses and insecticides [105]. For most of

the tested genes, transcriptional levels were dependant on the

genotype. Particularly, the S genotypes showed higher levels of

expression when aphids were reared on the defended host.

In general, for the six genes studied, the low transcriptional

plasticity exhibited by aphid genotypes SR and MR suggest a

greater constitutive expression of these or other related genes,

including paralogs for those studied here. While the SR genotype

up-regulated only one detoxifying gene (GST), it showed a

constitutively high level of EST activity (Table 1). In fact, the

E4/FE4 expression among genotypes reared on the suitable host

showed that SR genotype presented fifty times more transcripts in

average (data not show) than the other genotypes. In the case of

the MR genotype, only the hsp-70 gene was up-regulated, but

constitutively showed approximately three times more transcripts

for GST than in the other genotypes (data not shown). This kind of

canalization in response to defended plants has been recently

reported for the grain aphid Sitobion avenae. Using the so-called

‘superclones’ (i.e. the most common and time-persistent genotypes)

of the grain aphid reared on highly defended cereals, aphids

demonstrated a rigid detoxifying capacity. That is, they did not

modify detoxification enzyme activities with a similar cost across

Insecticide Resistance in the Green Peach Aphid II
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defended and non-defended plants [106]. It has been suggested

that detoxification systems demand fitness and metabolic costs

only when aphids are reared on poorly defended plants [107]. On

the other hand, a transcriptomic study in M. persicae at the whole

genome level showed that in general the S genotype avoided the

lethal effects of insecticide by up-regulating 183 genes [48]. In

contrast, that study also showed the SR and MR genotypes up-

regulated only 17 and 7 genes respectively, with the most

insensitive genotype showing rigidity for the expression of genes

encoding enzymes involved in insecticide detoxification. There-

fore, the lower reproductive fitness observed in genotypes carrying

insensitivity mutations, in comparison with sensitive genotypes on

the susceptible host, could be explained in terms of the inability to

turn off the detoxification machinery.

In conclusion, our results suggest that aphids under ‘‘insecti-

cide’’ or ‘‘chemically defended plants’’ conditions have similar

adaptive solutions to two different selective agents. Although we

have only studied nine genotypes, their overall response in both

reproductive performance and transcriptional expression was

fairly consistent across genotypes carrying or not carrying MACE

and kdr insensitivity mutations reared on suitable and unfavorable

hosts. Thus, our results suggest that the trade-off among resistance

mechanisms (by detoxification or insensitivity) might be quite

complex, with a multiplicity of costs and benefits between

environments. All of the selective agents (i.e. predators, climate,

temperature, plant allelochemicals, and insecticides) play key roles

in shaping population structures. Studies that consider the spatial

and temporal dynamics of aphids are needed to understand the

cost/benefit balance of the mechanisms herein studied. Finally,

more research is certainly needed to confirm the generality of our

findings and to determine and understand the wide arrange of

phenotypic correlates of detoxification responses that M. persicae

can exhibits.

Materials and Methods

Aphid Genotypes
Ninety four clonal lineages (genotypes) previously sampled and

established in the laboratory were used in this study and genotyped

using six microsatellite loci (for details see Castañeda et al. 2011)

[108]. Among these, 44 genotypes were selected for study their

insecticide resistance mechanisms, from these nine were selected

for reproductive fitness experiments and finally four of these were

used to quantitative reverse transcription PCR experiments. Each

aphid genotype was reared on seedlings of pepper (Capsicum annuum

var. grossum) in Blackman boxes under conditions that ensure

parthenogenetic reproduction (2061uC and L: D 16:8). Colonies

were maintained by transferring 5 wingless adults on new 7-day-

old pepper seedlings every 10 days for at least 20 generations

before the experiments.

Insecticide Resistance Assessment
The presence of insecticide resistance mutations (IRM) was

screened in the 44 genotypes, using allelic discrimination based on

quantitative-PCR assays developed by Anstead et al. (2004) for kdr

(L1014F) and super-kdr (M918T) mutations, and by Anstead et al,

(2008) for the MACE mutation [109,110].Constitutive carbox-

ylesterase activity (EST activity),indicative of the genotype respect

to the number of copies for E4/FE4 carboxyl esterase genes

[101,102], was evaluated in the same genotypes using the

microplate bioassay [49,111], with five independent biological

replicates and three technical replicates per measurement.

Breeding Design and Reproductive Fitness
Determination

The host-plant effect on the fitness of M. persicae was conducted

by estimating the intrinsic rate of natural increase (rm) when aphids

were reared on pepper (C. annuumvar. grossum), the most suitable

host for M. persicae [112], and radish (Raphanus sativus var. sparkler),

an unfavorable host species [53] in which glucosinolates (GLS)

have been described as the main defense systems against aphids

[41,95].

One single adult wingless aphid (parental) from each selected

genotype (Table 1) was transferred to a nine 3-months-old sweet

pepper or radish plant and left to reproduce for 24 to 48 hours.

Two parthenogenetic nymphs were maintained on the same plant

until adulthood, discarding the rest of the aphids, giving rise to two

lines per genotype and host. Each of these aphids was then

transferred to a new 3-month-old plant and maternal and grand

maternal effects were erased by 3 rounds of parthenogenetic

reproduction on sweet pepper and radish. At the end of this

procedure, 8 individual sub-lines for each line by genotype and

host were obtained.

The intrinsic rate of natural increase (rm) for each genotype on

each host was estimated following Wyatt and White (1977). The

days from birth to first reproduction (Td) and the number of

offspring produced in that time (Md) were determined. Then, the

intrinsic rate of natural increase was calculated as rm = 0,738 (loge

Md)/Td, where 0,738 is a correction factor [113]. Aphids were

cooled in ice for a few seconds and weighed to the nearest

microgram on a microbalance MXA 5/1 (Radwag, Czech

Republic).

Quantitative Reverse Transcription PCR (RT-qPCR)
Transcriptional levels of six genes (cathepsin B clado N; heat shock

protein 70; glutathione S-transferase; esterase E4/FE4, carboxylesterase tipo

E or FE4; cytochrome p450 family CYP6, CYP3 and CYP4) that are

known to be regulated when S and SR aphid genotypes for IRM

are exposed to carbamate insecticides [48] were evaluated using

RT-qPCR. Two sub-lines (randomly selected) per host in four

genotypes (see genotypes shown with dark background in Table 1)

were used for RT-qPCR experiments. After estimating rm, at least

3 nymphs from each line were maintained on its host plant until

they were up to 12 days old. Aphids were collected from their host

plants and immediately frozen in liquid N2 until RNA extraction.

Total RNA was isolated using the RNeasy Plant Mini Kit

(Qiagen, Cat no. 74904) from three aphids per genotype and

condition. From approximately 1.5 mg total RNA (previously

treated with DNA-freeTM kit Ambion), cDNA synthesis was

conducted using AffinityScript QPCR cDNA Synthesis kit

(Agilent). Then, the cDNA was diluted to 1:10, taking 2 ml for

PCR reactions (25 ml final volume). Each PCR reaction mix

contained 10 pmol of each primer, 12.25 ml SYBR Green PCR

Master Mix (Applied Biosystems) and 0.375 ml of Rox (dilution

1:500), the latter used as passive reference dye. Negative controls

were included for detecting foreign contamination, and all PCR

reactions were performed in triplicate in a Mx3000P QPCR

Systems (Stratagene) under the following cycling conditions:

10 min at 95uC, followed by 40 cycles of 15 s at 95uC, 15 s at

57uC and 20 s at 72uC. A dissociation curve was included

immediately after each PCR using a ramp of 65–95uC, to confirm

the absence of nonspecific amplifications. Primers were designed

from the sequences of M. persicae contigs for six target genes

(EC387286, EE261252, EC387215, EE262012, EC388935,

EE263097) and one endogenous control gene (DW011095), using

the FastPCR (V 5.4.30) and AmplifX (V 1.3.7) packages, and
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checked in NCBI/Primer-BLAST (for details in primer sequences

and PCR efficiencies see Silva et al. 2012) [48].

Statistical Analysis
We used a linear mixed modeling approach to evaluate the

effect of IRM and host on rm, taking into account the presence of

random factors (genotype, and genotype * host interaction), the

nested structure of our design (i.e. the presence of mutations were

genotype-specific, clonal lines were nested into genotypes) and

some minor unbalances. Body mass was included as a covariate.

Hypothesis testing for fixed effects was based on marginal F tests

and for random effects was based on likelihood ratio tests of nested

models [53]. Statistical analyses were performed using the NLME

package [114] implemented in R platform 2.10.1 (R Development

Core Team, 2009).

The relative expression ratio of a target gene was computed by

relative quantification using the comparative Ct method (Applied

Biosystems User Bulletin No. 2 P/N 4303859, 1997) [115], with

the glyceraldehyde-3-phosphate dehydrogenase (GADPH) gene as nor-

malizing endogenous control. Several studies have validated the

use of GAPDH as a reference gene for normalization [116–118].

Furthermore, this gene has been shown to be one of the most

stable endogenous genes in response to insecticides in the aphid M.

persicae (fold change range 0.94 – 0.99) [48]. Ratios were calculated

from a mean normalized expression (MNE) value obtained

between biological replicates, as they show the same trend in all

cases, with MNE values obtained from aphids maintained in sweet

pepper as a calibrator. In each case we performed a t-test between

the average and 1, which was considered as the reference value for

no change in relative expression.
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