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Abstract

Background: One possible strategy to evaluate whether signals in different modalities originate from a common external
event or object is to form associations between inputs from different senses. This strategy would be quite effective because
signals in different modalities from a common external event would then be aligned spatially and temporally. Indeed, it has
been demonstrated that after adaptation to visual apparent motion paired with alternating auditory tones, the tones begin
to trigger illusory motion perception to a static visual stimulus, where the perceived direction of visual lateral motion
depends on the order in which the tones are replayed. The mechanisms underlying this phenomenon remain unclear. One
important approach to understanding the mechanisms is to examine whether the effect has some selectivity in auditory
processing. However, it has not yet been determined whether this aftereffect can be transferred across sound frequencies
and between ears.

Methodology/Principal Findings: Two circles placed side by side were presented in alternation, producing apparent
motion perception, and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to
this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. However,
the aftereffect was observed only when the adapter and test tones were presented at the same frequency and to the same
ear.

Conclusions/Significance: These findings suggest that the auditory processing underlying the establishment of novel
audiovisual associations is selective, potentially but not necessarily indicating that this processing occurs at an early stage.
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Introduction

Integration of information received via multiple senses is

thought to be fundamental to perception and cognition. The

combination of inputs from different senses can function to reduce

perceptual ambiguity [1–4] and enhance stimulus detection [5–7].

However, the brain has to evaluate whether signals in different

modalities come from a common external event or object. One

possible strategy for this task is to form associations between the

inputs received via different senses. This strategy would be rather

effective because signals in different modalities from a common

external event would then be aligned spatially and temporally.

Indeed, our previous studies demonstrated that a strong associa-

tion between a sound sequence and visual motion is easily formed

within a short period and that, after forming the association,

sounds can trigger visual motion perception for a static visual

object [8]. In an adaptation period, two circles placed side by side

were presented in alternation, and each onset was accompanied by

a tone burst of a specific and unique frequency. After a few

minutes of such exposure to this visual apparent motion

accompanied by the tones, the tones began to trigger illusory

visual motion in response to a static visual stimulus (Figure 1).

Such a sound-contingent visual aftereffect might be mediated in

the higher cortical areas, where cells receive both visual and

auditory inputs and have large receptive fields that provide neural

substrates for translational invariance. If this were the case, an

aftereffect would be observed even in retinal positions other than

those exposed. However, surprisingly, the sound-contingent visual

aftereffect was observed only at the retinal position previously

exposed to an apparent motion with tone bursts [8]. This finding

indicates that visual processing units that have selectivity regarding

the retinal position are responsible for the aftereffect. If such

selectivity could also be observed in the auditory domain, we could

consider that the sound-contingent visual aftereffect involves

relatively early sensory processing of each modality. In order to

clarify the auditory nature of the aftereffect, we examined the

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e36803



frequency selectivity and the ear’s selectivity in the sound-

contingent visual motion aftereffect.

Materials and Methods

Ethics Statement
Informed written consent was obtained from each participant

before the experiments were conducted. All procedures were

approved by the ethics committee of the Research Institute of

Electrical Communication of Tohoku University.

Participants
There were eight participants, including the authors, all of

whom had normal hearing and normal or corrected-to-normal

vision. Except for the authors, the participants were naı̈ve to the

purpose of the experiments.

Stimuli and Apparatus
The visual stimuli were presented on a 24-inch CRT display

(refresh rate: 60 Hz) at a viewing distance of 1 m. A red circle (0.4u
in diameter; 17.47 cd/m2) for fixation and two white circles

(5.12 cd/m2, 1.0u in diameter) were presented on a black

background. The auditory stimuli were tone bursts (sampling

frequency 44.1 kHz, 85 dB SPL, 50 ms in duration with a 5-ms

rise-and-fall time) transmitted to both ears through headphones.

The range of sound frequency was from 200 Hz to 4200 Hz (the

details provided in the next section). Using a digital oscilloscope,

we confirmed that the onset of the visual and the auditory stimuli

was synchronized. The participants were instructed to place their

heads on a chin rest. All experiments were conducted in a dark

room.

Procedures
Experiment 1: Frequency selectivity experiment. The

strength of the illusory motion was measured before and after

exposure to visual apparent motion with tone bursts (pre- and

post-exposure sessions, respectively).

In the exposure phase, two white circles were placed side by side

and presented in alternation. The distance between the two circles

was 5.0u. The center between the two circles was 10.0u right of

fixation. The duration of the presentation of each circle was

400 ms, with a stimulus onset asynchrony of 500 ms. For half of

the participants, the onset of the leftward circle was synchronized

with a tone burst of high (2100 Hz) frequency and the rightward

circle with a tone burst of low (400 Hz) frequency. For the other

half, the relationship was reversed. Participants were asked to keep

looking at the fixation and were exposed to the apparent visual

motion accompanied by tone bursts for 18 min.

In the pre- and post-exposure sessions, the strength of the

illusory motion was quantified by a motion-nulling procedure (e.g.,

[9]). The degree of visual displacement that corresponded to

a point of subjective stationarity (PSS) was measured using the

method of constant stimuli. The order of the session was

randomized and counterbalanced among the participants, and in

the second session, a 3- min re-adaptation period was introduced.

In each session, two circles (each with a duration of 400 ms) were

presented with 500 ms of a stimulus onset asynchrony (SOA),

synchronized with two tone bursts. In the rightward sound

condition, the first visual stimulus was synchronized with the tone

that accompanied the leftward circle during the exposure to

apparent motion, and the second stimulus was synchronized with

the tone that accompanied the rightward circle. In the leftward

sound condition, the relationship was reversed. The no-sound

condition was also included. The visual stimulus was displaced

0.12u, 0.24u, 0.48u, or 0.96u from left to right, or vice versa. The

degree of displacement and the sound condition were randomized

from trial to trial. The participants were asked to judge whether

the visual stimulus moved leftward or rightward. In order to

examine the sound frequency selectivity, we set seven pairs of test

sound frequencies: 200–1050, 283–1485, 336–1766, 400–2100,

476–2497, 566–2970, and 800–4200 Hz. These frequencies were

different from the adaptation frequencies by 21, 21/2, 21/4, 0,

1/4, 1/2, and 1 octave. Twenty trials were conducted for each

Figure 1. Experimental design. In an adaptation period, observers were exposed to apparent visual motion for 18 min, during which two white
circles placed side by side were presented in alternation. The onset of the left circle was accompanied by tone A1 and the right circle by tone A2. In
the test phase, a white circle was presented twice. The circle was perceived as lateral motion in the same direction as the previously presented
apparent motion when the onset of the circle was synchronized to tones of alternating frequencies. When the onset of the first circle was
synchronized with tone A1 and the second circle with tone A2, the circle appeared to move from left to right. The strength of this illusory motion was
quantified by a motion-nulling procedure.
doi:10.1371/journal.pone.0036803.g001
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pair of sound frequencies. The order was reversed for the other

half.

In order to confirm the results of our generalization tests,

another set of experiments using the same procedure was

conducted using an exposure frequency pair of 566 and

2970 Hz. For these experiments, we also set the following seven

pairs of test sound frequencies: 283–1485, 400–2100, 476–2496,

566–2970, 673–3532, 800–4200, and 1132–5940. These frequen-

cies were different from the adaptation frequencies by 21, 21/2,

21/4, 0, 1/4, 1/2, and 1 octave. Previous studies on frequency

selectivity showed that there is no interference between 400 and

2100 Hz, and between 566 and 2970 Hz [10]. These additional

experiments were performed for the left visual field in order to

prevent the possible influences of the aftereffect by the 400–2100

adapter–because it had already been shown that sound-contingent

visual motion aftereffects have rigid localization [8]–so that the

effect could be observed only at the retinal position previously

exposed to apparent motion with tone bursts.

Experiment 2: Ear selectivity experiment. The same

methods were employed as in Experiment 1, except for the

following. The frequencies of the tone bursts were 1000 and

1500 Hz. These frequencies were selected in order to avoid the

influences of Experiment 1; we found that the sound contingent

visual motion aftereffect lasts for a few days [8]. Since some

participants remained the same between the two experiments, we

changed the frequencies of sounds in Experiment 2. Further, it

could be assumed that there was little interference between two

frequencies from the results showing sharp sound frequency

selectivity of the aftereffect in Experiment 1. They were

presented monaurally. The tones were presented to the left ear

of the participants (N = 8) in the pre- and post-exposure sessions.

While the tones were presented to the left ear in the exposure

phase in the same-ear condition, the tones were presented to the

right ear in the different-ear condition.

Results

Experiment 1: Frequency Selectivity
In order to determine the amount of visual displacement that

corresponded to PSS, we estimated the 50% point of rightward

motion perception by fitting a cumulative normal-distribution

function to each individual’s data using a maximum likelihood

curve fitting technique.

When the adapter and test tone pairs were consistent (400–

2100 Hz), the sounds did not affect the perception of visual motion

before exposure to an apparent motion (Figure 2). After the

exposure, however, the sounds acquired driving effects for visual

motion. While the PSS shifted in the direction of the leftward

visual motion in the rightward sound condition, it shifted in the

direction of the rightward visual motion in the leftward sound

condition. There was an asymmetry for the aftereffect: the

aftereffect is stronger in the rightward direction than in the

leftward. This asymmetry was also found in our previous studies

[8,11], such that a stronger aftereffect was observed for the motion

toward the peripheral visual field relative to that toward the foveal

one. We have found that motion perception tends to be clearer for

the motion toward the peripheral visual field, although we cannot

provide a clear explanation for this [8,11].

A two-way repeated measures analysis of variance (ANOVA)

with exposure (2; pre/post) 6 sound conditions (3; leftward2/

rightward2/no-sound) showed main effects from the sound

conditions [F(2,14) = 4.12, p,0.05]. An interaction between these

factors was also significant [F(2,14) = 5.03, p,0.05]. With regard

to one simple main effect of post-exposure [F(2,28) = 8.78,

Figure 2. Sound-contingent visual motion aftereffect. The
proportion of rightward motion perception of visual stimuli as
a function of the degree of physical displacement of visual stimuli.
Positive values indicate physical rightward visual motion on the
horizontal axis and negative values indicate physical leftward visual
motion. Blue lines represent the results for the leftward sound
condition, red lines represent the rightward sound condition, and the
black line the no-sound condition. While lined symbols represent the
results obtained prior to the adaptation period, filled ones represent the
results after the adaptation. The dashed horizontal line indicates 50%
point of rightward motion perception (the point of subjective
stationarity: PSS). (B) Estimated PSSs. Positive values represent the shift
of PSS in the direction of the leftward visual motion. Blue bars represent
the results for the leftward sound condition; red bars, the rightward
sound condition; and grey bars, no sound condition. The error bar
denotes the standard error of the mean.
doi:10.1371/journal.pone.0036803.g002
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p,0.01], a post hoc test (Tukey’s HSD) found a significant

difference in the PSSs of the rightward and the leftward sound

conditions [p,0.05] as well as in the PSSs of the rightward and

the no sound condition [p,0.05]. In contrast, the simple main

effect of pre-exposure was not significant [F(2,28) = 0.26, p= 0.7].

These results indicate that after prolonged exposure to visual

apparent motion accompanied by tones, the tones became drivers

for the perception of illusory motion.

Then, we analyzed the effect of test sound frequencies. In line

with the previous study [8], the sound-contingent visual motion

aftereffect was demonstrated in a positive manner: the sounds

induced rightward visual motion perception in the rightward

sound conditions. More leftward visual motion was necessary to

cancel out this sound-induced illusory visual motion, so that the

PSSs shifted to the leftward visual motion. The reverse was true for

the leftward sound condition (Figure 2). We also found that the

PSSs in the no-sound condition were around 0 deg. of visual

motion and did not differ among the exposures. Based on these

findings, we calculated the magnitude of the aftereffect as the

distance between the PSSs of the leftward or the rightward sound

conditions and the ones of the no-sound condition. We first

estimated the amount of PSS shift by subtracting the PSSs in the

post-exposure from those in the pre-exposure condition in each

sound condition. Then, the aftereffect’s magnitude was computed

using the following formula:

L-magnitude: PSS shift (No sound)–PSS shift (Leftward sound)

R-magnitude: PSS shift (No sound)–PSS shift (Rightward

sound)

Figure 3 presents the magnitude of the aftereffect as a function

of test frequencies. The larger values indicate that stronger positive

aftereffects occurred. Surprisingly, there was no cross-frequency

transfer of the aftereffect. For all test frequencies and all

participants, the magnitude of the aftereffect was found to be

largest when the frequencies of the adapter and test tone pairs

were identical (400–2100 Hz). The aftereffect decreased as the

frequency difference between the adapter and test tone pairs

increased, and virtually disappeared at a difference of one-half

octave. A two-way ANOVA showed that the interaction between

the sound and test tone frequency condition is significant

[F(6,42) = 3.81, p,0.01]. Post hoc tests (Tukey’s HSD) showed

the significant differences in the magnitude of aftereffect between

the rightward and leftward sound conditions measured when test

tone frequency was presented at 400–2100 Hz, the same as the

adapter frequency (p,0.01).

In order to confirm the results of our generalization tests, we

analyzed the data using a 566–2970 Hz adapter tone (Figure 3B).

Again, with regard to the calculated magnitude of the aftereffect,

a two-way ANOVA showed that the interaction between the

sound and test tone frequency condition is significant

[F(6,42) = 2.85, p,0.05]. Post hoc tests (Tukey’s HSD) showed

the significant differences in the magnitude of aftereffect between

the rightward and leftward sound conditions measured when the

test tone frequency was presented at 566–2970 Hz (p,0.01).

These results using another frequency band for the adapter tone

confirmed that the sound-contingent visual motion aftereffect is

characteristically frequency selective.

When the tone frequencies of the adapter and the test tone pairs

were the same, the aftereffect was strong. The results of

Experiment 1 showed that the sound-contingent visual motion

aftereffect occurs in a frequency-selective manner.

Experiment 2: Ear Selectivity
In this experiment we tested whether the sound-contingent

visual motion aftereffect would transfer in an interaural manner.

As in Experiment 1, we calculated the magnitude of the

aftereffect for each ear condition (Figure 4). A two-way ANOVA

showed that the interaction between the sound and ear condition

is significant [F(1,7) = 6.66, p,0.05]. Post hoc tests (Tukey’s HSD)

showed the significant differences in the magnitude of aftereffect

Figure 3. Frequency selectivity of the aftereffect. The magnitude
of the aftereffect as a function of test tones in the variable test
frequency condition. The magnitude of the aftereffect was calculated
subtracting the PSS-shift of each sound condition from the PSS-shift of
the NS condition. (A) The right visual field and 400–2100 Hz adaptor
combination. (B) The left visual field and 566–2970 Hz adapter
combination. For further explanation of how the magnitude was
estimated, see text. The mean of the six participants is shown. Error bars
indicate s.e. across participants.
doi:10.1371/journal.pone.0036803.g003
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between the rightward and leftward sound conditions measured

when the adapter and the test tone pairs were presented to the

same ears. Thus, the sound-contingent visual motion aftereffect is

highly selective in the ear.

Discussion

In the present study, we investigated whether the sound-

contingent visual motion aftereffect is specific to the adapted

frequency and ear. We found that the aftereffect was significantly

reduced when the adapter and test tone pairs were presented in

different sound frequency regions and to different ears.

Audiovisual cross-modal adaptation effects have been reported.

For example, adaptation to a constant temporal lag between audio

and visual stimuli can bias subsequent temporal order judgment

[12–15]. It has further been shown that the temporal lag

adaptation effect can transfer across different ears. Audiovisual

cross-modal adaptation effects have also been reported for

ventriloquism aftereffects [16–20]. The apparent location of test

sounds shifts in the direction of the previously presented visual

stimulus following prolonged exposure to auditory and visual

stimuli presented in inconsistent locations (e.g. [20]). Substantial

ventriloquism aftereffects have been observed across a four-octave

range of sound frequencies [16,17]. While frequency-specific

adaptation effects have also been reported [19,20], the frequency

range was quite wide, such as more than 2 octaves. In the present

study, we systematically manipulated the sound frequency within

a 1-octave range and showed that the aftereffect disappeared with

a difference of one-fourth octave. Our findings provide pioneering

evidence for the existence of a high selectivity of sound frequency

in auditory processing in the audiovisual aftereffect. These results

alleviate the concern that sound-contingent visual motion after-

effects might simply be due to a response bias in the decision-

making process.

We found robust ear selectivity of the aftereffect. However, the

magnitude of aftereffect with the monaural adaptation (Experi-

ment 2) was weaker than that with the binaural adaptation

(Experiment 1). One might assume that the dichotic presentation

of sounds would be effective on the aftereffect and would involve

higher brain areas. However, the S:N ratio of auditory input was

improved in the dichotic presentation compared to the monaural

presentation [21]. Therefore, the auditory input of low S:N ratio

might attenuate the magnitude of the aftereffect.

The present finding demonstrates that the sound-contingent

visual motion aftereffect is specific to both the adapted frequency

and the adapted ear. This result indicates that the auditory

processing governing the establishment of novel audiovisual

associations is at least somewhat selective. This selectivity might

indicate that early-stage auditory mechanisms underlie the

aftereffect examined here, but it is also possible that the sound-

contingent visual motion aftereffect could be mediated by top-

down processes, such as attention. For instance, it has been shown

that location-specific adaptation is modulated by attention in the

visual modality [22]. Further, the traditional view of low-level

location-specific visual perceptual learning was challenged by

a recent study showing that learning transferred between eyes

when a double-training procedure was used [23]. Further research

should clarify the effect of attention processes on the sound-

contingent visual motion aftereffect. One possibility is to use

indiscriminable sounds, which would prevent participants from

attending to a specific audiovisual pair.
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