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Abstract

Metabolic reprogramming is associated with tumorigenesis. However, glucose metabolism in tumors is poorly understood.
Here, we report that glucose levels are significantly lower in bulk tumor specimens than those in normal tissues of the same
tissue origins. We show that mono-ubiquitinated histone H2B (uH2B) is a semi-quantitative histone marker for glucose. We
further show that loss of uH2B occurs specifically in cancer cells from a wide array of tumor specimens of breast, colon, lung
and additional 23 anatomic sites. In contrast, uH2B levels remain high in stromal tissues or non-cancerous cells in the tumor
specimens. Taken together, our data suggest that glucose deficiency and loss of uH2B are novel properties of cancer cells in
vivo, which may represent important regulatory mechanisms of tumorigenesis.
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Introduction

Cancer cells exhibit aberrant glucose metabolism characterized

by aerobic glycolysis, a phenomenon also known as the Warburg

effect [1,2]. This metabolic reprogramming is thought to play an

important role in supplying proliferating tumors with necessary

building blocks for biomass production [3]. Compelling evidence

also indicates that oncogenes and tumor suppressors play opposing

roles in regulating glucose metabolism [3]. Despite the importance

of glucose metabolism in tumors, it is not known whether high

glucose levels are required for cancer cells to maintain their

proliferative advantage in vivo.

Results and Discussion

To determine glucose levels in human tumors and normal

tissues, we first assayed the glucose contents in matched clinical

tumor specimens and normal tissues of the same tissue origins.

Because of the inherent variability of clinical tissue specimens [4],

we normalized the glucose levels with the total protein from the

matched specimens, an approach that has been adopted by others

[5]. Although it is difficult to estimate the total protein levels in

cancer and normal cells as a result of the tumor heterogeneity, the

total protein level in tumor interstitial fluid is comparable to that of

normal subcutaneous fluid in xenograft models [6], suggesting that

the total protein levels might be operationally useful for

normalizing the glucose amounts in inherently-variant clinical

tumor and matched normal tissue specimens. As shown in Fig. 1,

the relative amounts of glucose from frozen and unfixed human

breast, prostate and colon tumor specimens were much lower than

those of normal cells of the same tissue sites, indicating that glucose

may be deprived in the bulk tumor specimens. These results are

consistent with the observation that lower amounts of glucose are

detected in tumor veins than in tumor arteries in rats [2]. These

results are also in agreement with the fact that lower amounts of

glucose are found in tumor interstitial fluid than in normal

subcutaneous interstitial fluid in xenograft models [6]. Moreover,

these results are consistent with the finding that glucose levels,

detected by low-resolution bioluminescence assays, are drastically

increased in bulk tumor specimens that have been treated with

chemotherapy or radiation in comparison to untreated tumors in

a xenograft model for lung cancer [7].

Tumors are typically heterogeneous organs with a microenviron-

ment of various non-malignant cell types both within the tumor area

and in their stromal environment [8]. Therefore, we reasoned that

a glucose marker would be required to identify the cellular source of

glucose deprivation in the bulk tumor specimens. We have

previously demonstrated that glucose is the sole nutrient inducer

of mono-ubiquitination of histone H2B (uH2B) at K123 in yeast,

and at its orthologous site K120 in human cells [9,10,11], indicating

that uH2B is an evolutionarily conserved chromatin marker for

glucose. To test whether uH2B could be used as a semi-quantitative

marker for glucose, we grew U87 (glioblastoma), MCF7 (breast

cancer) and HCT116 (colon cancer) in various amounts of glucose

spanning serum normal glucose levels. We then analyzed the levels

of uH2B in these cells with an antibody specific to ubiquitinated

histoneH2BatK120 [12].As shown in Fig. 2, exposure to increasing

levels of glucose resulted in a corresponding increase in levels of

uH2B in tumor cells. In contrast,H2B levels remained unchanged in

all samples. These data suggest that uH2B can be used as a semi-

quantitative histone marker for glucose in tumor cells.

We have reported that uH2B is not detectable in stationary phase

yeast by Western blotting analysis [9]. Using a yeast strain (Y117)

with FLAG-H2B as the sole source of H2B, we incubated stationary
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phase Y117 in various amounts of glucose for 1 hr [9]. As shown in

Fig. 2, the uH2B levels also correlated with those of glucose, whereas

H2B remained unchanged in all samples. Taken together, these data

further suggest that uH2B is an evolutionarily conserved semi-

quantitative marker for glucose in yeast and tumor cells.

We noted that uH2B levels as a function of glucose concentra-

tion were not linear in the range of glucose concentrations that we

tested. Further analysis would clarify whether some of the glucose

concentrations were at or above the saturation point for some of

the cells or whether it is due to the nonlinearity of Western blotting

analysis, which was based on chemiluminescence/X-ray film

imaging. Nevertheless, our results indicate that uH2B levels

correlate semi-quantitatively with those of glucose in yeast and

tumor cells.

To determine whether the uH2B levels as a function of relative

amounts of glucose could be detected by immunohistochemistry,

we formalin-fixed and paraffin-embedded the same batches of

glucose-treated tumor cells used for the Western blotting analyses

in Fig. 2. After hybridizing the cellblock sections with antibodies

specific to either uH2B or H2B, and horseradish peroxidase-

conjugated secondary antibody, we then counterstained the cells

with Hematoxylin. At least 1000 cells were examined for each

sample. As shown in Fig. S1, uH2B levels detected by

immunohistochemistry correlated with the amounts of glucose

Figure 1. Glucose levels in tumors are lower than those of
normal tissues of the same tissue sites. Five pairs of matched
tumor and normal tissue specimens from Biochain (B) and Origene (O)
were analyzed for glucose and protein content. The amount of glucose
was normalized with the total protein concentration. Each sample was
assayed in quadruplicate.
doi:10.1371/journal.pone.0036775.g001

Figure 2. uH2B is a semi-quantitative histone marker for glucose. Stationary phase (SP) yeast (Y117) was incubated with different amounts of
glucose for 1 hr. Brain (U87), Breast (MCF7) and colon (HCT116) cancer cell lines were grown in complete media (10% FBS/DMEM) until 40–60%
confluency and subsequently incubated with DMEM containing 10% dialyzed FBS with indicated amounts of glucose for 24 hrs. The glucose (Glc)
concentrations used in the assays covered the physiological serum glucose levels (0.07–0.12%). uH2B levels in these cells corresponded to those of
glucose semi-quantitatively. Half of the glucose-treated tumor cells were also formalin-fixed and paraffin-embedded for immunohistochemical
staining of uH2B and H2B (Fig. S1). uH2B levels, detected by immunohistochemistry, were also proportional to those of glucose, further suggesting
that uH2B may be used as a chromatin marker for glucose.
doi:10.1371/journal.pone.0036775.g002

Impairment of Glucose-Induced uH2B in Cancer Cells
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that the cells were exposed to. In contrast, H2B levels remained

unchanged in all samples. Taken together, these data further

demonstrate that glucose-induced uH2B may be used as a semi-

quantitative chromatin marker for examining relative amounts of

glucose in tumor specimens from cancer patients.

To identify a cellular source of glucose deprivation observed in

the bulk tumor specimens (Fig. 1), we examined glucose-induced

uH2B levels from patient biopsies or surgery specimens. As shown

in Fig. 3a, breast cancer cells showed significantly less uH2B

staining than their adjacent stromal cells. uH2B levels also

exhibited a clear demarcation between cancer cells and their

adjacent normal cells. For instance, uH2B staining was intense in

both myoepithelial and luminal epithelial cells in normal breast

duct (Duct 1, BC-D9 breast cancer specimen, Fig. 3a). However,

uH2B levels were significantly reduced in luminal epithelial cancer

cells that had undergone transformation while remained un-

changed in normal luminal epithelial cells in Duct 2. In contrast,

H2B levels were the same in both normal and cancer cells. In

another breast cancer case, uH2B levels were also lower in cancer

cells while uH2B levels remained high or unchanged in adjacent

normal tissue (BC-01, Fig. 3a). Similarly, uH2B levels were also

lower in cancer cells compared to their adjacent non-cancer cells

in 33 cases of additional 34 breast cancer specimens of different

histopathological types, grades and stages.

To determine whether impairment of glucose-induced uH2B

occurs in other types of cancer cells, we analyzed tumor specimens

from colon and lung cancer patients. As shown in Fig. 3b and 3c,

impairment of uH2B was also evident in colon and lung cancer

cells. Specifically, of 36 colon tumor specimens of various types,

grades and stages, 31 cases showed lower uH2B levels in cancer

cells compared to their stromal cells. Weak uH2B levels were also

observed in 4 tumor specimens, in which no stromal cells were

present. Moderate uH2B levels in one case were detected in both

cancer and their stromal cells.

Of 36 lung cancer specimens of various types, grades and stages,

35 cases showed lower uH2B levels in cancer cells compared to

their adjacent stromal cells. One case showed low levels of uH2B

in all cells of the specimen, in which no stromal cells were present.

Therefore, impairment of uH2B was detected in virtual all breast,

colon and lung cancer cells compared to their stromal cells in 106

out of 109 cases. Furthermore, lower uH2B levels were also

observed in cancer cells of additional 23 anatomic sites compared

to their stromal tissues (n = 123 per anatomic site, data not

shown). Taken together, these results indicate that impairment of

glucose-induced uH2B is characteristic of cancer cells in vivo.

As discussed earlier, glucose is the sole nutrient inducer of uH2B

in yeast and mammalian cells [9,11]. uH2B levels correlated with

the amounts of glucose in cultured cells by both Western blotting

and immunohistochemical analyses (Fig. 2 and Fig. S1). There-

fore, lower levels of uH2B in cancer cells of the tumor specimens

may thus represent glucose deprivation in cancer cells in vivo. This

is consistent with the observation that relative glucose levels were

lower in bulk tumor specimens than those of normal cells of the

same tissue origins (Fig. 1). As discussed above, uH2B levels exhibit

a clear demarcation between cancer cells and their adjacent

normal cells (Fig. 3). In addition, loss of uH2B occurs, to a similar

extent, in all cancer cells within a cancer cell nest (Fig. 3). Taken

together, these data thus suggest that glucose deficiency is

characteristic of cancer cells in vivo.

Glucose deprivation in cancer cells may be a molecular basis for

clinical detection of tumors by positron emission tomography

(PET). PET depends on the fact that tumors exhibit higher uptake

of 18F-deoxyglucose. Since 18F-deoxyglucose uptake inversely

correlates with glucose concentrations in cultured cells [13],

PET detection of 18F-deoxyglucose uptake in tumors may reflect

glucose deprivation in cancer cells. Because glucose deficiency can

select cells with oncogenic mutations in vitro [14], glucose

deprivation of cancer cells in vivo, as demonstrated in this study,

may offer a proliferative advantage of cancer cells in patients.

We have previously reported that glucose-induced uH2B

regulates expression of metabolic genes in yeast [9]. Others have

recently shown that uH2B is also required for DNA repair in yeast

and mammalian cells [15,16,17]. Since uH2B was impaired in

virtually all cancer cells from breast, colon, lung and additional 23

Figure 3. Glucose-induced uH2B is significantly impaired in cancer cells compared to their adjacent stromal tissues. Human breast,
colon and lung tumor specimens from surgery were immunohistochemically stained for uH2B and H2B and subsequently counter-stained with
Hematoxylin. A. uH2B levels are inhibited in breast cancer cells in 36 out of 37 cases. Two representative cases are shown. Intense staining of uH2B
was observed in normal myoepithelial and luminal epithelial cells of Duct 1 of a tumor specimen from breast cancer patient BC-D9. Although it was in
the tumor specimen, Duct 1 had no cancer cells. uH2B was significantly reduced in luminal epithelial cancer cells, which was encircled with a dashed
line in Duct 2. In contrast, uH2B remained high in normal luminal epithelial cells in Duct 2. Other cancer cells in BC-D9 tumor specimen were not
separated with dashed lines for the purpose of clarity. Breast cancer cells from patient BC-01 also showed low uH2B staining, whereas adjacent
normal cells maintained high uH2B staining. B. uH2B levels are drastically reduced in colon cancer cells in 35 out of 36 cases. Two representative
cases are shown. C. uH2B levels are significantly inhibited in lung cancer cells in 35 out of 36 cases. Two representative cases are shown. The black
arrow shows a piece of cigarette tar. N denotes normal cells or stromal tissues. C denotes cancer cells. Dashed lines demarcate cancer cells from their
adjacent normal or stromal cells. Scale bar = 50 m
doi:10.1371/journal.pone.0036775.g003
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anatomic sites that we have tested, coupling of glucose deprivation

with loss of uH2B may likely play an important role in regulating

metabolic reprogramming and DNA damage response in tumor-

igenesis.

Materials and Methods

Cell Lines, Culture Media, Chemicals and Antibodies
U87 MG human glioblastoma (grade IV) cells and MCF7

(ATCC) were maintained in high-glucose Dulbecco’s modified

Eagle’s medium (DMEM) (4.5 g/L glucose, 0.584 g/L glutamine

and 110 mg/L pyruvate, (catalog # 11995, Gibco) supplemented

with 10% fetal bovine serum (catalog # A15–351, PAA

Laboratories) and 1% penicillin/streptomycin (P/S) at 37uC in

a humidified atmosphere of 95% air and 5% CO2. LnCap and

HCT116 (ATCC) were cultured in RPMI 1640 medium (catalog

# 11875, Gibco) supplemented with 10% FBS and 1% P/S at

37uC in a humidified atmosphere of 95% air and 5% CO2. FBS

(10 ml) was dialyzed against PBS (pH 7.4, 261 liter) at 4uC for

48 hrs. The dialyzed FBS (dFBS) was filtered through 0.22 mm
filter unit (Millipore) and stored at 4uC until use.

Glucose minus DMEM (catalog # 11966, Gibco) contained

584 mg/L L-glutamine but no glucose. Glucose minus RPMI

1640 (catalog # 22400, Gibco) contained L-glutamine but no

glucose. Mouse monoclonal antibody specific to ubiquitinated

histone H2B at K120 was from Medimabs (catalog # MM-0029-

P) [12]. Histone H2B antibody (ChIP grade) was from Abcam

(catalog # ab1790). Beta-actin antibody was from Abcam (catalog

# ab8224). Peroxidase-conjugated immuno pure goat anti-mouse

IgG (H+L) (catalog # 31430) and peroxidase-conjugated immuno

pure goat anti-rabbit IgG (H+L) (catalog # 31460) were

purchased from Pierce.

Glucose Analysis of Human Normal Tissue and Tumor
Samples
Matched human tumor and normal tissue specimens of the

same tissue origins (the samples were paired, unfixed and frozen)

were from BioChain (Breast cancer, catalog # P8235090-PP; and

colon cancer, catalog # P8235090-PP). Additional paired tumor

and normal specimens (frozen/unfixed breast, prostate and colon

tumor/normal tissues CP5656504; CP565671; CP5655651;

CP565424; CP5655718; CP565608) were from Origene. Glucose

was assayed as previously described [9]. Protein concentration was

estimated with CB-X Protein Assay Kit (catalog # 786-12X, G

Biosciences).

Analysis of Glucose-regulated uH2B in Cultured Tumor
Cells and Yeast
U87 (Glioblastoma), MCF7 (breast cancer), LnCap (prostate

cancer), and HCT116 (colon cancer) were cultured in 60 mm

dishes with high-glucose DMEM or RPMI 1640 supplemented

with 10% FBS and 1% P/S until they were 40–60% confluent.

After the media were removed, cells were rinsed twice with

phosphate buffered saline (PBS) and subsequently incubated with

glucose minus medium DMEM (catalog # 11966) or RPMI 1640

(catalog # 22400) supplemented with 10% dialyzed FBS and 1%

P/S and 0%, 0.045% or 0.450% glucose for 24, 40, or 48 hrs.

Although some cells became detached during the glucose-minus

medium incubation, virtual all of the detached cells excluded

Trypan Blue (data not shown), suggesting that they were alive.

To collect both attached and detached cells, we scraped the

attached cells in glucose minus medium with cell scrapers (catalog

# 353085, BD) and collected the cell suspension by centrifugation

at 200 g for 2 min. The cell pellets were boiled in 4 X SDS-PAGE

sample buffer at 100uC for 5 min. Protein concentration was

estimated with CB-X Protein Assay Kit (catalog #786-12X, G

Biosciences) and normalized by Western blotting. For yeast

analysis, stationary phase (SP) yeast (Y117), which contained

FLAG-tagged H2B as the sole source of H2B (submitted), was

incubated with different amounts of glucose for 1 hr and harvested

for Western blotting analysis as described [9]. The intensity of

Western blotting signals was estimated with Image J.

To correlate Western analysis with immunohistochemical

analysis, half of the harvested cells were formalin-fixed and

paraffin-embedded. Specifically, cell suspension were centrifuged

at 200 g for 2 min and washed once with PBS. Washed cells were

collected by centrifugation and re-suspended by 1:10 buffer diluted

formalin at room temperature for 24 hrs, subsequently paraffin-

embedded and immunohistochemically stained.

Immunohistochemical Analysis of Clinical Tumor
Specimens
Breast, colon and lung tumor arrays were from Pantomics

(catalog # BRC962, COC962 and LUC962). Tumor arrays from

27 anatomic sites were from BioChain (catalog# Z7020082, lot#
B412135). Mach 4 Universal HRP-Polymer Detection Kit

(Biocare Medical, LLC) were used for immunohistochemical

analyses with 200 x dilution of the antibody raised against

a synthetic branch peptide of ubiquitinated histone H2B at K120

[12] (Medimabs, catalog # MM-0029-P) or histone H2B antibody

(Abcam, catalog # ab1790). All images (406) were captured and

analyzed with an Aperio scanner (USC).

Supporting Information

Fig. S1 Tumor cells, from the same batches of the
glucose-treated cells that were used in Western blotting
analysis (Fig. 2), were formalin-fixed and paraffin-
embedded for immunohistochemical staining of uH2B
and H2B. These cells were subsequently counterstained with

Hematoxylin. At least 1000 cells were examined for each sample.

uH2B levels correlated with the amounts of glucose (Glc) of the

media for culturing glioblastoma cells (U87, A), breast cancer

(MCF7, B) and colon cancer (HTC116, C) cells. Scale bar

= 50 m .
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