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Abstract

Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen
upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of
information in a chain of members including three testable concepts: first, linearity assumes that individual ‘‘agent bees’’
that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis
addresses the coincidence of the individual property of trigger direction with the collective property of wave direction.
Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours
hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger
direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active
neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously
active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras.
Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based
luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave
direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the
bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3%
and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary
part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and
evolutionary adaptedness in Giant honeybee colonies to respond to rapidly changing threats such as predatory wasps
scanning in front of the nest.
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Introduction

Shimmering behaviour in Giant honeybees (Apis dorsata) [1,2]

involves a display of social waves with antipredatory impact [3–9].

These waves originate at discrete areas on the surface of the nests,

where generator bees have been identified [10] as leaders in the

general responsiveness to external cues. These generator bees raise

their abdomen first and affect their nest mates around them to

follow them in sequential order. Such behavioural cascades

generate self-organized [11–13] patterns propagating across the

nest surface in a fraction of a second. The visual domain of these

spatial time patterns [movies S1, S2, and S3] aim at repelling

external addressees such as predatory wasps [7,14,15] or

mammals. It is reasonable to assume that the mechanoceptive

domain [16] of shimmering is important for colony-intrinsic

communication [16], because the waves affect most of the colony

members not only in the surface layer, but in all layers of the bee

curtain [7,14]; they are even supposed to influence the bee curtain

on the non-shimmering, opposite side of the comb [17].

The specific involvement of surface bees in wave propagation is

not well understood. However, several features of shimmering can

be compared with wave-like processes in general. For instance,

colliding wave-fronts which extinguish each other would suggest

the presence of refractory processes, which have been extensively

studied in excitation physiology (e.g. [17]). Second, similar to

water or sound waves [18,19], shimmering waves reorient or fade

out (Fig. 1; movies S1, S2, and S3) at physical hindrances to the

propagation of waves. In Giant honeybee nests, such hindrances

can be architectural or functional structures, which are given at

rim areas, attachment zones or at the mouth zone (Fig. 1C; [7,20]).

Third, similarity exists with other types of social waves such as the

Mexican waves of human spectators in football stadiums, which

has led some authors to classify shimmering as a Mexican-wave-

like process [16,21].

At first sight, and to the naked eye, shimmering appears to

spread mostly in linear tracks. If examined more closely, the waves

reveal a series of group-level properties [11]. An example for the

higher complexity in shimmering is the saltatoric spreading pattern

[14,22], where information ‘‘jumps’’ from one group of bees to a

neighbouring one. Another indication for complex group-level

properties is the variability of the directedness of propagation,

which regularly shows linear, curved or even spiral patterns

[23,24] (movie S1).
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In this study, we investigated the propagation mechanisms of

shimmering, paying particular attention to the principle of bucket

bridging [14]. Bucket bridging can be regarded as the simplest group-

level property in wave propagation, whereby cues are passed on

from one individual in a chain to another (Fig. 2A). The term

bucket bridging originates from a collective human behaviour, where

a bucket of water is delivered to the site of fire by a chain of

humans who pass the bucket from one individual to another. If

one member in the chain quits his duty, the bucket transfer will be

delayed, stopped (Fig. 2B), or rerouted to other individuals of the

same or of another chain (Fig. 2C). If the propagation of

shimmering waves was to conform strictly to the bucket-bridging

hypothesis, the wave would spread according to the principles here

defined as linearity, continuity and graduality.

Linearity in bucket bridging assumes that information is delivered

sequentially from one member of a chain to the next. In the case of

shimmering, linear propagation would result in the wave front

proceeding steadily from one surface bee to the next. An

individual bee, here termed agent bee, with a disposition to

participate in the wave, will be affected by the wave front

preferentially from the site of wave origin. The directed-trigger

hypothesis addresses here the coincidence of the individual

property of trigger direction with the collective property of the wave

direction. Continuity in shimmering is defined as the transfer of

information by groups of surface bees without being stopped,

delayed or re-routed. The stimuli that trigger continuous

shimmering would come from the direction of maximal activity

of neighbouring agents. This shimmering principle will be

addressed by the active-neighbours hypothesis, investigating the

coincidence between the angular sector where the majority of

active neighbours are positioned, and the trigger direction of the

selected individual. Graduality is the third principle of bucket bridging

and also refers to the interaction between a surface bee and her

neighbours. The graduality hypothesis assumes a proportional

relationship in the strength of abdomen flipping of an agent bee

and her previously active neighbours.

However, shimmering depends upon a series of factors that can

considerably curtail the above-mentioned principles of bucket

bridging. Such factors include the architecture and the partitioning

of the nest (Fig. 1A; [14]), the defence state of the colony [10], and

the sensory equipment of the bees. Individual surface bees are

believed to be free to decide to join or not to join a shimmering

Figure 1. Experimental Giant honeybee nest. Chitwan (Nepal) in January 2009. (A) View of the whole nest; the green line gives the quiescent
zone, where the bees are positioned with their heads upwards and the abdomens downwards; outside of this zone are the rim areas (left side and
bottom), the attachment zone (top), and the mouth zone (right) marked with the yellow line; the green and yellow rectangles show nest areas which
are displayed at a bigger scale in (B, quiescent area) and (C, mouth zone); white circles show the near neighbourhood (r,40 mm) and the far
neighbourhood (r,100 mm) of the selected focus bee, which is positioned in the centre of the circles. The outer black circle within the white size
marker (bottom left of the nest) is 6 cm in diameter. (B) Area of the quiescent zone; the white dot shows the position of the thorax of the selected
focus bee, defining the centre of the white open circle (r = 40 mm) of the near neighbourhood and of the white square which indicates the detection
area (60 x 60 px) of the selected bee to assess the relXYmov values (see Methods). Note the differences in orientation of the surface bees between
quiescent zone (B) and mouth zone (C).
doi:10.1371/journal.pone.0036736.g001
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wave [14,16]. If they do, they flip their abdomen with a variable

angle of up to 120u, synchronizing and cascading their behaviours

collectively, which, for the external observer, results in a wave-like

pattern [14,25,26] with a high level of complexity, sophistication

and thus, unpredictability. Considering these restricting factors it

seems likely that wave propagation in shimmering does not obey

the strict laws of bucket bridging alone.

This paper addresses the applicability and restrictions of the

bucket-bridging hypothesis for wave propagation in shimmering [7]

in Giant honeybees, focusing on the principles of linearity, continuity

and graduality. We precisely determined the position of individual

agent bees over time in the three dimensions of space, thereby

gaining information regarding the trigger conditions and the

neighbourhood of focus bees. The behaviours were recorded with

high-resolution and high-speed video. Bees at the surface of the

bee curtain were re-identified on an individual basis [16] frame by

frame by stereo imaging and automated tracking, enabling us to

analyse the underlying mechanisms of wave propagation.

Materials and Methods

Ethics Statement
The office of the rector of the centre for international relations

of Tribhuvan University (Kathmandu, Nepal) certified the

research expedition entitled ‘‘Study on the behaviour of the Giant

Figure 2. Schematic of bucket bridging during shimmering and the aspects of linearity and continuity in propagation. (A) Linear and
continuous transmittance: Information is transferred (symbolized by red arrows) from one agent bee to the next member of the chain. (B) Linear but
discontinuous transmittance: one agent bee in the chain fails to act as transmitter but information is by-passed to the next agent in the chain. (C)
Schema of a sample wave which spreads from left to right (dirWAV = fromLtoR) explaining the complex situation of the bee curtain of A. dorsata during
shimmering, with non-linearity and discontinuity of transmittance; three types of agent bees are noted: red, strong transmittance corresponding to
wave strength levels of cws.2; light red, weak transmittance corresponding to wave strength levels of 1$cws#2; grey, no transmittance
corresponding to a wave strength level of cws = 0 (these bees were detected as agent bees but not further considered in the evaluation). The arrows
signify that information is transmitted from any abdomen-flipping agent bee into all eight neighbourhood sectors (for definition of dir Nh, see sketch
at the bottom right, see Table 1 for definitions of angular sectors).
doi:10.1371/journal.pone.0036736.g002
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honeybees: Observations and Recording of behaviours at the

nesting site’’ in Chitwan district of Nepal.

Experimental Site and Recording
The shimmering behaviour of Giant honeybees (Apis dorsata) was

studied under field conditions in Chitwan, Nepal, during two

expeditions in February 2009 and November 2010. To obtain a

detailed view of the movements of individual bees within the

entirety of the bee curtain [7,14] the motions of hundreds of

surface bees were measured simultaneously in the three directions

of space. This was achieved by an adaptation of the stereoscopic

imaging principle [27] with its fundamental algorithms [16]:

segmentation [28], matching [29,30] and reconstruction [31,32]

by tracking and triangulation (Fig. 3A,B). Two video cameras (type

DALSA Falcon 4M60) delivered black-and-white images with a

resolution of 235261728 pixels (px). From the given working

distance of 2 m, and with a calibrated focal length of 53 mm,

about two thirds (700 mm in diameter) of the nest were recorded,

whereby one px represented , 0.30 mm in metric real-world

coordinates. Therefore, the characteristic abdomen width of 6 mm

of a bee was imaged by roughly 20 px. The cameras were able to

capture 60 frames per sec (fps) and so resolve the abdomen-

flipping phase of an individual bee of 200 ms within 12 frames (for

further details see [16]).

Identification of Surface Bees
In a Giant honeybee nest, the colony members are arranged at

both sides of the central comb in several layers. A nest has several

functional regions (Fig. 1) such as the mouth zone, the attachment

zone, the rim zone and the quiescent zone [14,20,33,34].

Shimmering behaviour is displayed primarily by the surface bees

in the quiescent zone [7,35]. More than 600 individually identified

surface bees per frame were tracked (Fig. 3A,B; the identification

of the positional coordinates defines them as ‘‘agent bees’’), summing

up to 14549 wave incidents which were documented in successive

film sessions (defined as a sequence of images tracked continuously

in the course of a single experiment). The identification of

individual agent bees throughout a single session is challenging

because Giant honeybees in a colony are extremely similar in

morphology, are densely clustered, and show rapid movements in

3D during their abdominal flipping [16]. In addition, an individual

bee that has sensed an incoming wave front due to the 3D

movements of her neighbours is free to decide whether or not to

join the wave, and if she joins, whether to raise her abdomen

strongly or weakly. Weak participation of individuals in shimmer-

ing is difficult to detect by automated analysis. Furthermore, it is

critical to distinguish active ‘‘movements’’, i.e. abdominal flipping,

from passive ‘‘motions’’ caused by the surrounding bee curtain.

Definition of the Wave Directions
The architecture of the bee curtain of Giant honeybee nests is

determined by three characteristics: first, by the orientation of

surface bees which hang, particularly in the quiescent areas, with

their heads upwards and their abdomens downwards (Fig. 1B;

[7,14]); second, by the particular structure of the nest, which

suspends freely from overhead structures to which it is attached;

and third, by the polarity between the nest centre of the mouth

zone and the quiescent periphery. Four key directions of wave

spreading were defined (dirWAV = 1-4; Table 1), namely two

horizontal directions (from Right to Left [fromRtoL], from Left to Right

[fromLtoR]) and two vertical directions (from Bottom to Top

[fromBtoT], from Top to Bottom [fromTtoB]), numbered clockwise,

starting with fromRtoL. For that, shimmering waves in these key

directions were identified visually from recorded movies.

Assessment of the Motion Strength at the Individual
Level

For each identified agent bee (Fig. 3A,B) a set of data was

available frame by frame [16]. We introduced the parameter

relXYmov (Fig. 3C,D) to categorize the motion strength of

individual agents throughout the experiment [16]. This measure

allowed the assessment of the precise time of the arrival of a wave

at an agent’s position. A reliable trigger criterion was found by

detecting the luminance changes in two sequential frames (fi-1, fi) in

a pixel-wise subtraction creating a difference image [16]. A region of

interest (ROI; Fig. 1B, Fig.4A) of 60660 px around an agent bee

was defined, with the centre point positioned in the middle of the

thorax corresponding to 18618 mm in real-world coordinates.

The size of the ROI was chosen in conformance with the mean

side-to-side distances between surface bees [16] covering 80% of

the agent bee, including most of the abdomen, and also

considering the stretched-wing condition where the two wings

on each side are presented separately without overlapping, which

is characteristic of surface bees. A larger sensor field would have

interfered too much with the motion activities of the neighbours.

We recorded 8-bit px values regarding the differences in

luminance (D lum) between two successive frames assessed by

pixel-operated subtraction [16] with the references as black

[D lum = 0] and white [D lum = 255].

These D lum values represented motion activities of a selected

agent bee regarding the whole body within 16.67 ms. These

motions were quantified by the parameter relXYmov and include

positional changes in horizontal (x-) and vertical (y-) directions, but

also movements of head, abdomen, and extremities, such as legs,

antennae or wings. This value is therefore affected by various

behavioural contexts: first, by passive deflections of the whole body

in x-, y- and z-directions which originate from the immediate

neighbourhood [16]; second, by active movements of the body

parts such as observed in flickering [36] or shimmering [14], and

third, by locomotor activities of the whole body such as moving

around on the nest surface or penetrating into deeper layers of the

nest. For quiescent conditions the D lum values typically were on

average 3 per px, which summed up to relXYmov = 1.08 * 104 for

the whole 3600 px of the ROI. Massive shimmering activity

reached on average tenfold relXYmov values. Therefore, the

relXYmov value was an appropriate parameter to quantitatively

describe the level of the individual participation of an agent bee in

shimmering waves, i.e. the wave strength (ws) of a given wave

incident [16].

Determination of the Time Zero of a Singular Wave
Incident

When a wave front reaches an agent bee, weak passive

deflections are detectable, but when an agent bee starts raising

her abdomen the ws-value sharply rise and peak within 40 ms

(Fig. 3C). This effect was utilized, first, to determine the starting

time (t0) of an individual shimmering incident. The time point zero

t0 was defined one frame before the time t1 at which the sharp rise

of relXYmov value was detected (t0 = t [f1–1]). Second, this rapid

rise of the relXYmov value was also utilized to synchronize the

multitude of shimmering incidents which took place, simulta-

neously or successively, at the various agents of the whole nest. For

that, we defined an additional threshold level of D wsth = 10 to

identify an agent bee which participated in the shimmering wave.

An agent must have shown D ws-values which exceeded this

threshold for at least five successive frames (D relXYmov

(t1,…t5) . D wsth), to exclude noise-triggered processes. Both

rules were important because the parameter relXYmov was also
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used to categorize eight levels of participation of agent bees in

shimmering (cws = 1–8). The assignment of cws = 1 served as the

minimum level of shimmering activity of an agent bee (Fig. 3C,D)

and unambiguously excludes sub-threshold shimmering activities.

The Concept of the Focus Bee
The participation in shimmering varied strongly from agent to

agent. This individual bias is caused by a series of agent-specific

factors such as the location in the nest, the individual’s age, the

direction of wave spreading at the agent’s location, the level of the

passive participation (i.e. motion without abdominal flipping) or of

the active participation (i.e. motion caused by abdominal flipping

at variable strength), and lastly the participation of the neighbours

of the selected agent in the wave. Therefore, we introduced the

concept of the focus bee (fb) to enable the pooling and statistical

evaluation of the data in particular. For every focus bee, we defined

two areas of neighbourhood (Fig. 1A,B), the near neighbourhood

(radiusNh,40 mm) and the far neighbourhood (radiusNh,100 mm),

and selected those neighbour bees (nb) which participated in

shimmering before the wave front had arrived at the focus bee. As a

consequence, an agent bee was treated in the evaluation either as

focus bee or as neighbour bee of a previously defined focus bee.

Triggering the Participation in Shimmering
For a given focus bee, the relXYmov value (Fig. 3C,D) was utilized

to define the arrival time (t0) of the shimmering front and also the

level of participation in shimmering (cws-value). For the nest mates

around a given focus bee, the rapid rise of the relXYmov value at

t1 = t[f1] was used to assign the potential trigger neighbour (tn) for a

given shimmering incident by considering three criteria: (a) The

trigger neighbour had already participated in the same wave, but

only for a maximum of 5 frames (Dt#88 ms) before the focus bee

itself had started her shimmering activity. (b) The trigger

neighbour was closest of all other candidates to the focus bee and

was positioned in her near neighbourhood which made up not more

than 5–7 agents. This rule excluded those bees from analysis which

generated daughter waves [22]. Such surface bees were flipping

their abdomens singularly or in a small group and were farther

away from other active bees than defined by the near neighbourhood.

(c) Furthermore, the angular position of the trigger neighbour (atn)

defined the trigger direction (dirTRIG) of the focus bee. For that, eight

sectors of neighbourhood (dirNh = 1–8) circularly around the focus

bee were defined in steps of angular ranges DaNh = 45u (Table 1).

Consequently, the trigger direction of the focus bee was defined by the

angular sector (dirTRIG = 1–8) in which the trigger neighbour was

positioned (Table 1).

Figure 3. Schematic of the evaluation process to analyse properties of the propagation process in shimmering. The light-grey flow
charts (A–G) address the single-agent analysis from image acquisition, stereoscopic imaging of individuals, wave incident detection, to the
synchronization, categorization, and pooling of wave incidents. The black arrows and dashed lines on the right side symbolize that the stereoscopic
analysis produced further data for hundreds of agent bees simultaneously. (A) The experimental nest was captured by two frame-locked video
cameras positioned at an angle of 30u two meters in front of the nest. A single recording session lasted 15 s and included up to two shimmering
waves which spread across the nest surface. Shimmering was elicited by a dummy wasp. (B) In the offline data assessment phase the acquired images
were processed as follows: Segmentation distinguished single agent bees in the densely packed clusters of bees on the surface of the nest in each of
the paired images, stereo matching identified corresponding agent bees in both paired images. These two processes enabled stereo tracking of the
agents in subsequent frames throughout whole film scenes and the triangulation of their thoracic positions regarding the three dimensions of space
(x,y,z) [14]. (C) The stereoscopic analysis delivered identities of agent bees in subsequent image sequences. The arrival of the wave front at an
individual agent was recognized by a movement detection algorithm (see Fig.1B, white square). The grey arrow on the right with the stop bar
symbolizes that a minority of identified agents did not participate in shimmering and was not evaluated further. (D) The detection of active
participation in the wave allowed synchronization of wave incidents of individual agent bees at different positions of the nest. (E,F) Four
categorizations of participating agents were discerned to define single focus bees: the wave direction dirWAV (F1); the wave strength level (cWS) as a
measure of the response strength, which refers to the maximal relXYmov values of a wave incident (F2); the trigger direction dirTRIG gives the angle of
the triggering neighbour in the near neighbourhood (F3); the oval area with its displacement from the centre shows the direction of the maximum
activity of neighbours in the far neighbourhood (F4); in (F5), the paradigm of direct-sector and opposite-sector analysis was introduced. (G) Pooling of
synchronized and categorized 3D data (Dx, Dy, Dz) and wave strength values relXYmov. (H-J) Using the parameters defined in F1–5, three criteria of
bucket bridging were assessed (dark-grey flow charts H,I: linearity, continuity, graduality) and the respective hypotheses (directed-trigger-, active-
neighbours- and gradual-transfer-) were tested (J1–3). The panels in D, F and I illustrate the results of the processes given in the grey or black boxes
(see referenced figures and movies for details).
doi:10.1371/journal.pone.0036736.g003

Table 1. Definitions of categories of directions (dir) and sectors around a focus bee.

Directions Sectors

from whence the activities started CATEGORIES dirNh, dirTRIG CATEGORIES dirWAV ANGULAR RANGES aNh, atb, aTRIG, aWAV

from Right 1 1 [fromRtoL] 0622.5u

from Bottom-right 2 45622.5u

from Bottom 3 2 [fromBtoT] 90622.5u

from Bottom-left 4 135622.5u

from Left 5 3 [fromLtoR] 180622.5u

from Left-up 6 225622.5u

from Top 7 4 [fromTtoB] 270622.5u

from Right-up 8 315622.5u

aNh622.5u, the sector of neighbourhood with aNh as its central direction; aTRIG222.5u,atb ,aTRIG+22.5u, the angular range where the triggering bee is located,
synonymous to the trigger angle; aWAV, the angle from where the wave is spreading.
doi:10.1371/journal.pone.0036736.t001
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Relative Time Scales
The time point t0 (Fig. 3D) of a focus bee defined the frame before

the focus bee displayed the supra-threshold movement of abdomen

flipping. This reference established a time scale for both partners

in the trigger process, the triggered focus bee and her triggering

neighbour. The time courses of the movements of both agents

(fb,tn) were registered and synchronized to the time zero of either

the focus bee herself (t0[fb]) or in the case of the triggering

neighbours (tn), to the time zero of the focus bee to which they had

been referred to. This synchronization conjoined the movements

of both agents by the positional (x,y,z) parameters and by the wave

strength (relXYmov). Such wave processes of identified focus bees

and of their neighbours collected at different locations and times

were consecutively synchronized and sorted according to behav-

ioural categories such as wave strength cws, main wave direction

dirWAV and trigger direction dirTRIG (Table 1).

Stimulation by Dummy Wasps
Waves were elicited using a cable car device [16] with a dummy

wasp positioned at the outer sun-oriented nest side below the

mouth zone (shown on the bottom right side of the experimental

nest in movies S1, S2, and S3). Using this computer-controlled

device [16,35], the dummy wasp could be moved at variable

velocities (0.1 - 0.5 m/s) and directions (Fig.3A). The dummy

consisted of Styrofoam (L6W6H: 40615615 mm) with white,

yellow and black painted stripes. The dummy was fastened to the

cable car by a thin thread, so that is was freely swinging with the

length axis horizontally. In the experiments described here, the

dummy wasp was moved at an angle of 90u to the nest surface. For

more intense stimulation we used the manual technique of moving

a rod with a swinging dummy of the same geometrical pattern as

under cable-car conditions.

Results

Categorization of Active Participation in Shimmering
Individual agent bees were identified on the surface of a Giant

honeybee nest by stereoscopic imaging (Fig. 3A,B; [11]) for 66

manually selected shimmering waves (Fig. 3C). Twenty-two

independent data sets of four wave directions (dirWAV = 1–4) were

analysed. Only a subset of 53.0663.05% of identified agent bees

were found to participate actively in shimmering, defined by

flipping their abdomens at an above-threshold strength level

(cWS = 1-6). Bees that did not participate above this threshold were

excluded from further analyses. Focus bees (Fig. 3E) received the

mechanical cues from their nest mates in the near neighbourhood. The

category of focus bees constituted 75.7262.90% (n = 22 data sets

of 10715 identified bees) of those bees which actively contributed

to shimmering. The complementary part of 24.28% active bees

Figure 4. The time courses of wave strength of focus bees and their triggering neighbours. (A) Details about the assessment of the image-
based relXYmov values (see Methods); yellow square gives the 60660 px region of interest (ROI) around the selected focus bee; the red circle defines
the near neighbourhood (r , 40 mm); the white lines in the background show the eight sectors of neighbourhood (dirNh = 1–8). (B) Time courses of
the relXYmov values of focus bees at different wave strength levels (dirWAV = fromBtoT; cws = 1-6; n = 2908 wave incidents). The contours of the green
areas show arithmetic means, vertical grey bars show mean errors. Black lines are means of relXYmov values of the triggering neighbours
(radiusNh,40 m) regarding the paired, focus bee-related wave incidents; mean errors are not displayed here. Red vertical bars signify the time points
t0 defined by the rapid onset of shimmering activity (quantified by the ordinate relXYmov values) of the focus bees. (C) How long does it take that
information of shimmering is transferred from the neighbours in the far neighbourhood (radiusNh,100 mm) to the focus bees? Estimation exemplified
for dirWAV = fromRtoL; abscissa, wave strength level; ordinate, time interval in ms in which information has been transferred, with means (red dots) 6 SE
(black vertical bars), n = 14 threshold levels (relXYmov = 1.0–2.3 in steps of 0.1) for the neighbourhood activity; ordinate values are calculated by
weighted interpolation and cross correlation of the time courses between focus bees (fb) and their trigger neighbours (nb) of the same wave strength
level (Nfb = 2824; Nnb = 29237).
doi:10.1371/journal.pone.0036736.g004
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flipped their abdomens without having received a mechanical cue

from their immediate neighbours. These bees were likely to be

members of an alternative spreading mechanism [22] and were

excluded from further evaluation (Fig. 3E–H).

The Time Courses of Wave Incidents of Focus Bees and
Their Triggering Neighbours

By definition, the focus bees started their participation in

shimmering at t0, after they had received triggering cues from

their active neighbours. Prior to t0, the shimmering activities rose

slowly within 200 ms (Fig. 4B) which was caused in the arrival

Figure 5. Correspondence of trigger direction and wave direction in individual focus bees addressing linearity of wave spreading in
shimmering. The ordinates show the rate of wave incidents assessed at individual focus bees (relnfb) and normalized for the maximum number of
incidents per wave direction (relnfb = 1 for MAX nfb [dirWAV]). (A) Distribution of wave incidents regarding the four wave directions (dirWAV = 1–4). The
focus bees were distinguished according to their individual wave strength levels (cws = 1–6) in different colours; for evaluation, only those focus bees
were selected that had been triggered by an immediate neighbour in the near neighbourhood (radiusNh,40 mm); red, from Right to Left (fromRtoL),
n = 2825 wave incidents; green, from Bottom to Top (fromBtoT), n = 2908; orange, from Left to Right (fromLtoR), n = 2433; blue, from Top to Bottom
(fromTtoB), n = 1256. (B-C) distributions of wave events regarding the trigger directions of individual focus bees (dirTRIG = 1–8; for definition, see Table 1).
Angular sector lines in (B) and abscissa in (C) show the trigger angle aTRIG. (C) The curves show the regression polynomials (for specification see Table
2); the grey vertical bars refer to the main wave directions coded by the median as aWAV (dark grey) and the tolerances of 6 45u (bright grey).
doi:10.1371/journal.pone.0036736.g005
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phase of the shimmering front by the movements of the

neighbours [16]). This passive motion of the focus bees can be

considered as a potential decision-enabling cue which may trigger,

or at least influence, the start and strength of the subsequent

participation. In particular at higher wave strength levels, the

subsequent course of relXYmov values displayed damped oscilla-

tions, which were due to resonance conditions of the bee curtain

[16].

Fig. 4B also shows in black lines the curves of the neighbours in

the far neighbourhood of the focus bees assembled in their trigger

direction. For that, only those neighbours were selected that had

flipped their abdomens at the same wave strength as the focus bee.

This enabled the assessment of the time for the information to

spread from the neighbours to the focus bees which lie at

47.2961.12 ms (Fig. 4C; mean 6 SE; n = 6 wave strength levels;

averaged for threshold levels of 1.0$relXYmov$2.3, Fig. 3C). For

small and higher wave strength values (cWS = 1; cWS.4) the

transfer times are significantly shorter. Taken in account the

average distance of 62 mm between the focus bee and neighbours in

the far neighbourhood, bucket bridging achieved a speed of

1.31160.030 m/s for this step of wave propagation.

Testing Linearity of Wave Propagation
In shimmering, the directed-trigger hypothesis.

aTRIG:aWAV ð1aÞ

can be tested at each focus bee by the coincidence of trigger direction

and wave direction (Fig. 3H1). We proved this aspect of linearity

(Fig. 3I1) using four independent data sets (dirWAV = 1–4; Table 1)

of selected sample waves. In detail, we checked whether and how

the angular positions of the triggering neighbour coincided either

with the direction from where the wave came (conforming to

Figure 6. Proof of linearity and continuity in wave spreading of shimmering as documented by neighbour-bee related analysis.
(A) Arithmetic means (curves) and SE (vertical bars) of the relative numbers of shimmering neighbours (relnNh) in the far neighbourhood
(radiusNh,100 mm) around the focus bees regarding to the wave strength levels cws = 1-5; abscissa: DaTRIG | Nh, the deviation from the trigger angle in
degrees at which the focus bees were activated to participate in shimmering, therefore DaTRIG | Nh = 0 refers to the trigger angle (trigger direction).
Four data sets representing different spreading directions of shimmering waves (for colour codes, see Fig. 5): fromRtoL, nnb = 138190 neighbours;

fromBtoT, 105356; fromLtoR, 159417; fromTtoB, 93199; (B) arithmetic means (curves) of the relative numbers of shimmering neighbours in the far
neighbourhood (relnNh), considering four classes of wave strength levels were considered: darkest grey lines, cws = 4-5; brightest grey lines, cws = 1–2.
The curves show the respective regression functions of the means (see Table S2); SEs are not shown. (C) Angular diagrams of relative numbers of
shimmering neighbours (relnNh ) of only those focus bees selected for mid-level wave strength activation (cws = 3): fromRtoL, nnb = 4652 neighbours;

fromBtoT, 4458; fromLtoR, 7182; fromTtoB, 2295; background sectors give the trigger angles aTRIG of the focus bees (C1) focus bees which were triggered in
the direction where the wave had come from (equation 1a); (C2) focus bees which were triggered in the direction opposite to that under C1

(equation 1b).
doi:10.1371/journal.pone.0036736.g006
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equation 1a, ) or with the opposite direction, into which the wave

spread.

aTRIG{1800:aWAV ð1bÞ

Strict linearity in wave propagation would support that the

participation of the focus bee is triggered from the side where the

wave came from, but not that the trigger process is launched from

the opposite direction.

In a first step of analysis, the focus bees were screened for their

participation in shimmering. In all four data sets (Fig. 5A) the

normalized counts relnfb were Gauss-distributed around mid-level

strengths (cws = 2–4); the reference (relnfb = 1.00).

relnfb~nfb=maxnfb ð2aÞ

was the total number of wave incidents at a given wave direction. We

then pooled the data of all wave strength levels (cws = 1–6), and sorted

them according to their trigger direction (dirTRIG = 1-8; Table 1). The

data sets showed (Fig. 5B) oval-shaped angular distributions with

clearly positioned minima and maxima (Fig. 5C). Furthermore,

the maxima referred to those trigger angles (aTRIG) that

conformed to the direction from where the wave came (equation

1a), while the minima were displayed at those trigger angles that

conformed to the angle where the wave spread to (Equation 1b).

Both results were replicated with four independent data sets, and

reliably support the directed-trigger hypothesis which addresses the

linearity principle in spreading (for test statistics see below).

However, the results of Fig. 5 also demonstrate that the

propagation process is affected by a strikingly high level of

fuzziness, unpredictability and non-linearity. In detail, the normal-

ized counts relnfb correlated along the trigger angle with the

polynomial regression curves revealing maxima of 0.15260.004

and a distance between minima and maxima of 0.05560.004

(n = 4 data sets of dirWAV; further specifications of the polynomials

of Fig. 5C, see Table S1). An average base quantity of focus bees

(0.09760.002; n = 4 | dirWAV = 1–4) was observed in each of the

eight angular sectors of trigger direction. This means that for a

socket of nearly 80% of focus bees, of a total of 100% per

behavioural condition (n = 24 | cws = 1–6; dirWAV = 1–4), the

trigger angles did not correlate with the main wave direction.

Here, the question arises, to which extent the polynomial

regression curves (Fig. 5) may then signal linearity in the

propagation of shimmering waves. We confirmed this by a simple

test considering the counts of those angular sectors (ns) which

coincide in wave and trigger direction in the four data sets

(dirWAV = 1–4). Linearity would here be obvious if the relnfb-values

above median level (see ordinate values in Fig. 5) referred to the

sectors of wave direction (sWAV ; sTRIG), proving coincidence of

both directional paradigms (dirWAV ; dirTRIG) in the shimmering

process. To test this, we expanded the critical directional window

by aWAVnew = aWAVorig 6 45u (which increased the numbers of

critical sectors in the comparison by the factor of 3). This is

legitimate because the manual selection of wave direction had a

similar level of tolerance (see Methods). Our results proved linearity

because both quantities of ns .

ns nfb§ mid nfb½ �: ns nfb½ ½aWAV+ 450�� ð2bÞ

coincided here at 100% (Fig.5C). In other words, the majority of

focus bees were triggered from the direction where the wave came

from

nfb aTRIG½ �: nfb aWAV + 450½ � ð2cÞ

and the minority of the focus bees were triggered from the

direction where the wave was spreading to

nfb aTRIG½ �: nfb aWAV {1800 + 450½ � ð2dÞ

In a next step, the level of linearity in wave propagation was

estimated in two ways (A,B). For estimateA, we integrated the

percentages of participations above the fuzziness level (which was

defined by the minima of the polynomials; Fig. 5C). EstimateA

referred to 20.9962.38% (n = 4 data sets of dirWAV) of the total of

identified wave incidents and signifies the overall variability in

directedness in spreading. For estimateB, we summed the percent-

ages of participations only above the median level of

relnfb = 0.125360.0015 (n = 4 data sets of dirWAV; equation

2e; Fig. 5C).

midnfb~median relnfb 00{3150½ �ð Þ ð2eÞ

This estimateB was 6.1561.05% (n = 4) of identified wave

incidents and included only the excess quantities of wave incidents,

which were primarily responsible for the directedness of

shimmering waves.

Summarizing, the data strongly support the directed-trigger

hypothesis. However, the rates of focus bees conforming to equation

1a and considered by estimateB were only 6.15% of all identified

wave incidents. Therefore, the principle of directedness in

spreading was extremely outnumbered by the complementary

part of 93.85% of focus bees which were triggered from random

directions, independently of the main propagation direction of the

waves.

Testing Continuity of Wave Propagation
We used the sample size of the far neighbourhood (ra-

diusNh,100 mm) of focus bees to characterise continuity in propa-

gation by the circular distribution of nest mates which had been

active in shimmering before the focus bee herself started to

participate (Fig. 3I2) addressing the transmittance of information

over a distance that was greater than that between immediate

neighbours. The active-neighbours hypothesis is proved in Fig. 6

which displays the respective results of normalized data of four

independent tests (dirWAV = 1-4). The relative numbers of active

neighbours (relnNh) in the far neighbourhood.

relnNh~nNh=maxnNh ð3aÞ

for Nh,100 mm with max relnNh(c BEHAV) = 1.0

DaTRIG D Nh~ 00; aNh~ aTRIG ð3bÞ

ABS DaTRIG D Nh

� �
w 00; aNh= aTRIG ð3cÞ

For a better survey on the intrinsic data structure, we offer three

subsets of diagrams: Fig. 6A refers to the data pool for the wave
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Figure 7. Proof of graduality in the wave strength between focus bees and their neighbours. Abscissa, wave strength levels of the focus bee
(cws [fb] = 1–6). (A) How are the focus bees influenced from their neighbours in the far neighbourhood? Ordinate, the regression coefficients resulting
from the comparison of wave strength values (relXYmov) of focus bees (fb) and those of their nest mates (nb) in the far neighbourhood (r,100 mm);
the data were pooled from all sets of wave directions (dirWAV = 1–4); white columns refer to direct-sector analysis, black columns refer to opposite-
sector analysis (for further definition, see text and equations 4a–d); the white curve refers to the distribution of direct-sector data (polynomial:
a2 = 0.0324, a1 = -0.1763, a0 = 0.2379, R2 = 0.975; n = 5 | cws [fb] = 1–5). (B) How are focus bees influenced from their immediate triggering neighbours?
Ordinate, regression coefficients resulting from the comparison of relXYmov values of focus bees (fb) and those of their triggering neighbours (tn) in
the near neighbourhood (r,40 mm), considering all wave incidences separately per wave direction (dirWAV = 1 to 4); polynomial: a4 = 20.0037,
a3 = 0.0668, a2 = 20.3926, a1 = 0.896, a0 = 0,5691, R2 = 0.9994; n = 6 | cws [fb] = 1–6); means (full circles) and SE (bars). (C) Numbers of wave incidences
selected for B.
doi:10.1371/journal.pone.0036736.g007
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strength levels cws = 1-5, Fig. 6B distinguishes between different

groups of wave strength levels (for details, see Table S2), and the

circular diagrams in Fig. 6C exemplify only data for the specific

wave strength level cws = 3.

In total, 48 sectors of 20 behavioural conditions (cws = 1-5,

dirWAV = 1–4) were evaluated. In all the four data sets the numbers

of active neighbours were found to peak in the trigger directions

(DaTRIG | Nh = 0u). This means that the focus bees were triggered

exactly (P,0.001; t-test) from those directions where most of the

neighbours had been active immediately before. The maxima of

the graphs (Fig. 6A) increased above a level of relnNh = 0.80, which

corresponded to the number of nNh = 16.6360.42 (mean 6 SE)

active neighbours per focus bee. For the angular sectors adjacent to

the peaks, the graphs dropped down to relnNh = 0.60, which

corresponded to 11.8160.087 neighbours per focus bee and 71.97%

of the maximal numbers of active neighbours. The complimentary

value of 28.03%.

sector½ ½dirTRIG wnNh� �sector� �dirnonTRIG�� ð3dÞ

gives a usable estimate of the excess rate of neighbours found in

the trigger directions of the focus bees. With the reference of the

trigger angle of active neighbours (equation 3b) this result delivers

an estimate of continuity in wave propagation which was fourfold

higher than the linearity aspect detected in the context of trigger

direction and near neighbourhood (Fig. 5C).

The curves of the normalized relnNh values were robust

regarding wave strength (Fig. 6B). Interestingly, the preferences

for the wave directions were remarkably dominant (Fig. 6A-C)

which is exemplified in Fig. 6C for focus bees acting at mid-level

wave strengths (cws = 3). Here, the directional dependencies of the

numbers of actively shimmering neighbours are displayed under

two different conditions for the four regimes of wave directions

(dirWAV = 1-4): In the left column, focus bees were selected that

corresponded in trigger direction and wave direction (according to

equation 1a). The angular graphs are oval-shaped with significant

(P,0.001; chi square test) preference for the wave direction. The

values differed between max and min values by DrelnNh = 33%. In

the right columns, the samples refer to focus bees that were triggered

from the direction opposite to the wave direction (according to

equation 1b). These wave incidents showed a much weaker but

still significant (P,0.001; chi square test; DrelnNh = 22.65%)

preference for the wave direction.

Testing Graduality in Propagation
There are several ways how surface bees may participate in a

shimmering wave. It may happen (a) as an all-or-none decision, to

participate, for example, at full wave strength, if the surrounding

activity had exceeded a certain threshold level. The circumstances

of participation may be even more complex, if it were true that (b)

a single focus bee has the freedom to decide whether or not to

participate, and if she does, at which strength level. Finally, (c) it

can also be a matter of graduality whereby focus bees respond with

variable wave strengths dependent on the activity level of the

surrounding neighbours.

If a focus bee receives the signal to start abdominal flipping as a

gradual message from her surrounding neighbours, she has, in

theory, two options: first, she could match the strength of her

abdominal flipping according to the numbers of neighbouring bees

that flipped their abdomens immediately before. This aspect has

already been demonstrated in two independent test sets: we

showed (a) that the rate of shimmering incidents was higher if the

focus bee was triggered in wave direction (Fig. 5B,C), and (b), that

the focus bee must have received stronger mechanical cues from her

neighbours in her trigger direction, because at this angle more

neighbours had been active (Fig. 6). Both findings, although highly

significant, referred only to a minority of focus bees, at a proportion

of less than 10% in Fig. 5B,C or up to a quarter in Fig. 6A,B of the

full number of identified wave incidents.

As a second option, a small number of very active neighbours

may also elicit a strength level that could override smaller activities

of a greater number of neighbours. To address this aspect, we

correlated the wave strengths of focus bees with those of their

neighbours in the far neighbourhood. To simplify this survey, we

concentrated on the neighbours in only two defined directional

sectors of neighbourhood: (a) on the sectors of the trigger direction

(ds: direct-sector analysis), and (b) on the sector opposite to the trigger

direction (os: opposite-sector analysis). We then assessed the

correlations (rds, ros) that referred to the comparison of the wave

strengths of focus bees with those of their neighbours in the selected

sectors. The correlations either delivered proportional effects, if the

wave strengths of focus bees correlated positively with those of their

selected neighbours (with k.0).

rds~ k � ros proportional : kw0; antagonistic : kv0ð Þ ð4aÞ

or they delivered antagonistic effects, if the wave strengths of focus

bees correlated negatively (with k,0 in equation 4a).

In detail, we pooled the data of identified focus bees and their

neighbours under 184 test conditions (nfb = 10911; nnb = 496162;

cBEHAV = 184; dirTRIG = 1–8; dirWAV = 1–4; cws = 1–6) and re-

ceived positive correlations under both (ds, os) conditions

(rds = 0.059460.0174; ros = 0.038160.0175; means 6 SE;

nr = cBEHAV), but the regression coefficient was only slightly higher

for the direct-sector analysis (P = 0.1944, t-test). In a next step, we

assessed the regression data separately for each wave strength level

(Fig. 7A,B; cws = 1–6) and achieved significantly positive values

under weak and higher strength levels (e.g. for cws = 5:

rds = 0.160060.0426) which also delivered significant differences

between ds- and os-analysis (P = 0.0017; t-test; cBEHAV = 24:

dirTRIG = 1-8, dirWAV = 1–4; nfb = 1 203; nnb = 25084), in partic-

ular for the strong participation in shimmering (cws = 5). These

results document that focus bees behave in a gradual and thus, directed

manner if they responded at high wave strengths to the mechanical

cues of those active neighbours from the trigger directions in the

far neighbourhood. Similar responses are documented if the

mechanical cues of the triggering neighbours were considered in

the near neighbourhood (Fig. 7B). Here the correlation between the

relXYmov values of the focus bees and their triggering neighbours

were also higher at higher wave strengths, and there was also a

sink of regression values at mid-strength-levels. However, at

threshold conditions (cws = 1) the correlations were extremely low.

Summarizing, the overall graduality in wave propagation

displayed positive correlations between shimmering activities of

focus bees and those of their neighbours. However, the overall

achieved value with rds,0.06 can be used to estimate the

occurrence of graduality in agents participating in shimmering.

The coefficient of determination R2 = rds
2 is here a measure of the

goodness of the fit. Therefore, only 0.36% of agents participating

in shimmering are controlled by the principle of graduality. If the

wave strength levels were considered separately, the results proved

graduality (Fig. 7A; equations 4a) in particular for focus bees acting

more forcefully (cws = 5). Here, the regression coefficients achieved

values of rds = 0.16 (R2 = 0.0256) representing 2.56% of the

selected agents. These results also differed significantly between

ds- and os-analyses. Such polar conditions preferentially occur at the

very frontline of shimmering waves [14,22]. Conversely, the bees

at mid-level wave strength (cws = 2–3) which constituted up to 85%
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of all agents (Fig. 5A, Fig. 7C), were not identified as candidates

responsible for gradual propagation.

Discussion

Properties of Wave Propagation in Shimmering
Shimmering behaviour is one element of the defence behaviour

in Giant honeybees and has repelling properties upon potential

predators [3-7]. When observed by naked eye, shimmering waves

originate from particular nest areas around the mouth zone

[10,14] and propagate to the periphery in a Mexican-wavelike

[21] way, spreading seemingly linearly and continuously across the

nest, mostly with a clearly visible front line (movie S1). In this

study, we investigated three paradigms of this wave propagation,

which can be assigned as linearity, continuity and graduality

(summarized in Fig. 3H-J), which affect direction, velocity and

gain of the bucket-bridging processes [14] in shimmering.

We applied a set of recording techniques and analytical

approaches that enabled us to investigate the propagation features

of shimmering waves with four single-agent-based concepts (Fig. 3):

(1) the (re-) identification of single agent bees at the nest surface

and tracing them throughout the recorded sessions (Fig. 3B, [16]);

(2) the detection of the participation of agent bees in shimmering,

defining the starting time and the relative time scale of individual

abdominal flipping episodes (termed as wave incidents), enabling

synchronisation of wave incidents in subsequent pooling

(Fig. 3C,D); (3) the measurement of the movement strength to

quantify the participation in a wave (Fig. 3F2); and (4) the

implementation of the concept of the focus bee as the addressee of

the trigger process (see Methods), who receives directional

information from the triggering neighbours in the near neighbourhood

or from other agents in the far neighbourhood (Fig. 3F3). All

directional properties assessed for a focus bee lastly refer to the

partitioning of her neighbourhood into eight angular sectors

(Fig. 3F3,4).

Linearity and continuity in propagation of

shimmering. The directed-trigger hypothesis (Fig. 3H1–J1) as-

sumes linearity in spreading and predicts that focus bees receive

signals to join shimmering predominantly from the direction from

where the wave spread. Confirming slight but reliable tendencies

of directionality of the trigger process (Fig. 5B,C), repeatedly for

four independent data sets of different spreading directions, the

results supported the directed-trigger hypothesis for a small proportion

of 6.15% of focus bees, but also documented a high level (93.75%) of

non-linearity and unpredictability in the directedness of shimmer-

ing.

The paradigm of continuity addresses how the mode of wave

propagation is preserved rather than how the directedness of

spreading is established. For instance, a discontinuous process occurs

in a shimmering wave locally if an agent bee fails to pass on the

information received by an abdomen-flipping neighbour in the

bucket bridging process [14]. Consequently, the spreading of

information will either stop or by-pass to an alternative neighbour

(Fig. 2B,C). Otherwise, discontinuity could also be a group-level

property which is different to bucket bridging. For example, while the

mechanoceptive nature of abdomen flipping is the main driving

cue for bucket bridging, saltatoric events [14,22] are operative only

through external visual cues in the vicinity of the nest which affect

some specific trigger bees [10]. Saltatoric processes forward the

information of jumping-like arousal to neighbouring chains of

agents some bee widths or bee lengths away. These target agents

would then be able to generate daughter waves [22], but

nonetheless, bucket bridging continues further on around such

generator agents.

The aspect of continuity in bucket-bridging was assessed by

proving the active-neighbours hypothesis. It predicts that most of the

energy produced by abdominal flipping arrives at the focus bee from

the trigger direction (Fig. 3J2). This hypothesis is based on two focus

bee-specific definitions, (a) on the trigger process which refers to a

single triggering neighbour selected from 4–6 agents in the near

neighbourhood, and (b) on the sectoral majority of active neighbours

selected from 20–30 agents in the far neighbourhood. Continuity refers

to the proportion of neighbours and their angular positions from

which the wave was propagated towards the focus bee. The results

(Fig. 6) support the active-neighbours hypothesis proving continuity at a

level of 27% of the full scale of identified wave incidents,

confirmed through four independent tests with rich data sets.

Graduality in propagation of shimmering. A gradual

transfer of information occurs if the level of participation of focus

bees correlates with the shimmering activity of their neighbours

(Fig. 3J3), i.e., information transfer was gradual if a focus bee passed

on a signal with the same intensity that she had previously

received. However, gradual information transfer may also deliver

variable results. In particular, in the initial phase of the wave,

agent bees are likely to transmit signals at an even higher energy

level than their predecessors, driving the shimmering episode into

the peaking phase, which usually occurred 200–500 ms after the

start of the wave. In this phase, the shimmering process shows a

positive feedback [11]. In the phase before the shimmering wave dies

away, agents transmit the information in the bucket bridging transfer

weaker than their predecessors, showing negative feedback [11]. In

the course of a single shimmering episode, wave propagation may

switch consecutively between graduality and non-graduality, and

between positive and negative feedback.

We tested graduality among two groups of surface bees with

different memberships in bucket-bridging chains. We investigated

(a) the transfer of information towards a focus bee from her nest

mates in the far neighbourhood (Fig. 7A), and (b) the transfer of

information towards a focus bee from her triggering neighbour in

the near neighbourhood (Fig. 7B,C). These results confirm graduality

and positive feedback in propagation for maximal 15% of the

identified wave incidents, particularly at high wave strength levels.

These conditions usually occur at the climax of the shimmering

waves, but also at the very frontline of the waves, when strong

mechanical cues are transmitted in the bee curtain for some

hundreds of milliseconds.

Hallmarks of bucket bridging summarized. The main

result of this paper is that during shimmering waves only a small

minority of surface bees transmit information through bucket

bridging. Table S3 summarizes the hallmarks of shimmering: Only

53.0660.03% (n = 22 data sets, Table S3,c) of identified surface

bees took part in shimmering; hence, the other half of the surface

bees did hardly pass on any information. 75.72% of the subset of

shimmering bees (corresponding to 40.18% of all surface bees,

Table S3,d) were triggered by their immediate neighbours; 85% of

the latter (34.15% of all surface bees, Table S3,e) responded at

medium wave strengths (Fig. 5A). Only a much smaller proportion

participated in shimmering either weakly (5%) or strongly (10%),

corresponding to only 2.01 % (Table S3,f) or 4.02 % (Table S3,g)

of the total of surface bees.

Regarding the principles of bucket bridging only a small minority

of shimmering bees of 6.15% conformed to the concept of linearity

(2.47% of all surface bees, Table S3,h), and 28.03% of the

shimmering active bees (11.26% of all surface bees) conformed to

the principle of continuity. Proportional transmission of information,

as proposed by the graduality hypothesis was found in 0.36% of the

surface bees, and 1.94% respectively 2.56% (Table S3,j,k) which
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showed strong (cws = 5 ) abdominal flipping (0.124% respectively

0.163% of surface bees).

The compilation of a wave also needs the coordination of single-

agent activities to form group activities in form of semi-

synchronized and cascadic sequences. Refractory processes are here

decisive because they implement latency effects. Theoretically,

without refractory processes, surface bees would hardly be able to

produce any directed visual pattern such as a shimmering wave.

The existence of a refractory phase would preclude that bees at the

nest surface maintain abdomen-flipping activities at high frequen-

cy, after the wave front had already passed by. In shimmering, the

refractory phase can be indirectly estimated by the repetition rate of

waves under high-arousal conditions [17] which is 0.8 - 1.5 Hz; a

typical value of 1.20060.006 Hz (n = 66) was assessed at maximal

arousal which would give a refractory phase of around 800 ms.

Interestingly, Giant honeybee colonies usually produce also

collective motion patterns of abdomen-flipping surface bees, which

are guided conversely to shimmering. It happens in a stochastic

way, thus non-periodic and non-cascadic, and is called flickering

[36,24]. We have observed that flickering has a diurnal rhythm and

happens particularly in the early morning hours. It is likely that a

colony passes through an asynchronous phase of flickering before

it is capable to produce the highly synchronized and cascading

patterns of shimmering [3-7,10,14].

Self Organization in Shimmering
Evidence is emerging that shimmering possesses a series of

properties which categorize this behaviour as a self-organized

process [11]. Two points to consider are, first, the adaptive value

of the signal for external addressees. It is known [7] that

shimmering can change in appearance and goal setting if a single

parameter changes. For example, we found that the distance

between a wasp and a Giant honeybee nest alone causes a

bifurcating [11] situation for the attacking wasp to assess the

shimmering pattern either as defensive or attractive. The second point

to consider is the underlying mechanism of pattern formation. In

this context, this paper gives a series of hallmark data to quantify

the spatial and temporal propagation mechanisms.

Self-organised collectives such as densely clustered surface bees

in Giant honeybees [11,37] guide their actions by simple

behavioural rules. One of the simplest rules that play a role in

wave propagation generally [11] is that agents acquire information

by monitoring their nearest neighbours. Here, this principle has

been addressed for three paradigms of wave propagation in

shimmering, linearity, continuity and graduality. The question was if

and in which way these paradigms concur with the concept of self-

organization [11]. For wider comparison, we consider three

collective animal behaviours, fish schooling [38], bird flocking

[11,39], and fire-fly flashing [11,40–42]. All these behaviours are

supposedly self organized [11] and utilize neighbourhood param-

eters, but differ essentially in their specific design and goals.

Comparison of fish schooling and shimmering. Both fish

schooling (and similarly bird flocking [15]) and shimmering exhibit

the so-called Trafalgar Effect [11,43] by which special group-level

properties allow rapid transfer of information throughout the

collective. In fish schools these properties happen as evasive

manoeuvres [11], whereas shimmering behaviour in Giant

honeybees is meant to deter external addressees [7]. Both fish

schooling and shimmering occur as a wave of collective reactions

that propagate essentially faster than the approaching predator

[11] and group coordination is largely based on individuals which

observe the preceding activity of neighbouring agents. Although

the individuals time their own activities to coincide with the arrival

from their neighbours [11,39], the responses are semi-synchronous

as a consequence of latency and thus resemble bucket-bridging

processes [21]. In addition, both, fish schooling and shimmering

have special group-level properties that allow a variety of tactics

which may lead to striking changes of the collective formations.

For instance, when threatened, fish schools [11] display evasive

reactions known as the flash expansion effect (to rapidly expand the

collective with radial bursts) or the fountain effect (to outmanoeuvre a

predator by splitting into two groups). Similarly, shimmering in

Giant honeybees is highly flexible in its dynamics, although

shimmering bees essentially remain at the same location. The

shape of the virtual motion patterns specifically depends on the

movements of external threatening cues in space and time, such as

scanning predatory wasps. In this case, the visual patterns ‘‘follow’’

the predator as a moving projection at the nest surface until the

threatening object is ‘‘wiped off’’ from the nest area [7,14,35].

Comparison of firefly flashing and shimmering. Fireflies

produce a coordinated rhythm of synchronised flashing [42,11].

Each firefly primarily detects the flashes of immediate neighbours

adjusting the timing of its own flash. The group pattern emerges as

a result of multiple interactions among the individuals achieving

flash synchrony in the collective [42,11]. However, this kind of

synchronisation happens without the concept of latency which

would produce time lags in the reactions of followers. It is a matter

of anticipation of the starting times of flashes which are expected

from the immediate neighbours.

In Giant honeybees shimmering patterns also emerge as a result

of multiple interactions of agents. But in contrast to fireflies, the

primary goal of honeybees in shimmering is not to produce

synchronised events, but a coordinated rhythm of cascades. The

coordination of individual contributions is due to the principles of

information transfer such as bucket-bridging, and can be linear and

non-linear, continuous and discontinuous, gradual and non-gradual, with

positive or negative feedback. Information is transferred from one

neighbour to the next, which is coupled with the latency aspect.

This means that the individuals, which follow others in their

actions, ‘‘wait’’ for the ‘‘right’’ moment to participate in the wave

until they receive a key signal from their neighbourhood. This is a

principle of leader- and followership which generates a cascade of

responses and evolves into wave-like patterns. It cannot achieve

pure synchrony as in fire fly flashing. In fireflies the overall rhythm

is determined by the collective timing and not imposed by any

influence from outside the system, such as a leader or supervisor of

external physical cues [11]. Conversely, shimmering waves depend

on the activity of trigger cohorts generating parental and daughter

waves [10].

The adaptive value of flash synchronization in fireflies is the

production of a joint flash of males to attract females [42,11] more

than single flashes of individuals could achieve. High-level

synchrony generally amplifies flash intensity, increases the range

of coverage for a distant observer, and sharpens the advertence of

females to visit the most attractive leks for mating [44,45]. In

contrast to the females-attracting flashes in fire flies, shimmering in

giant honeybees deters potential predators [7]. The adaptive value

lies in a semi-synchronous, cascading sequence of abdominal

flipping of a significant sample of agents. The short latency of

sequential events fuses into emergent visual patterns. This

increases the range of coverage for a distant observer just by the

virtual moving of the pattern.

The adaptive value of fuzziness in shimmering. The

number of surface bees which expressed undirectedness in

propagation, in the sense of nonlinearity, discontinuity and nongraduality

exceeded 90% of the identified wave incidents (see hallmarks of

bucket bridging). Here, the question arises why shimmering waves

have such a high level of fuzziness regarding their propagation

Wave Propagation in Shimmering of Giant Honeybees

PLoS ONE | www.plosone.org 14 May 2012 | Volume 7 | Issue 5 | e36736



properties. In social networks such as the bee curtain of Giant

honeybees a series of reasons may cause fuzziness in propagation

of information: (a) Refractory processes [17,46] prohibit partici-

pation in shimmering immediately after wave incidents. (b)

Individual surface bees possess different activation levels for

abdominal flipping (Fig. 5A), which establishes a bias in the

responsiveness to sense signals from the neighbours and to deliver

responses towards others. (c) Lastly, Giant honeybees regularly

undergo different group-level properties such as periodic mass

flight activity or quiescence [25], or workloads such as the

membership to the mouth zone or to quiescent areas (Fig. 1).

We propose that a high level of fuzziness in shimmering is

required for rising to the challenging behaviour of scanning wasps.

If this predator is to be repelled by visual patterns through

shimmering, the bees have to respond to rapidly changing

constellations. To follow the wasp, which usually changes the

flight direction abruptly within a fraction of a second [16,35,24],

shimmering needs an adaptive capacity of surface bees to re-direct,

refresh and repeat wave generation and propagate adequate

collective responses. It is known that saltatoric processes [7,14,35]

would accelerate a wave beyond the basic capacities of bucket

bridging [22]. Although surface bees are generally disposed to

receive information via mechanical [16] or visual [14] cues, we

assume that only some individuals, the subordinate generator bees, are

able to effectively integrate both types of information [22]. These

jumping-like abilities of those bees in combination with the high

level of fuzziness in shimmering may provide the required speed of

re-orienting and propagation of an ongoing wave. Thus, fuzziness

in wave propagation may be adaptive for a more flexible

propagation of visually bound signals enabling the bees to respond

to rapidly changing threats.
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Table S1 Equations of the polynomial regressions in Fig. 5C.

(DOC)

Table S2 Specifications of the polynomials in Fig. 6B.

(DOC)

Table S3 Summarization of numbers referring to group

memberships in bucket bridging in Giant honeybee shimmering.

(DOC)

Movie S1 Experimental Giant honeybee (Apis dorsata) nest in

Sauraha (Chitwan, Nepal). The computer-controlled cable-car

device on the bottom right hand side moved a dummy wasp

(L6W6H: 40615615 mm) at constant velocity and direction.

The dummy wasp provoked shimmering waves which spread in a

complex, repetitive pattern. The nest was situated 1 m in front of,

and parallel to the back wall. The black-and-white marker with

double circles on the wall in the back is 6 mm in diameter. Note

the mouth zone on the bottom right hand side of the nest. The

waves were generated on the left side of the mouth zone. A LED

was installed on the left bottom side for triggering additional

cameras and sensors. The film was recorded by a high definition

camera (Panasonic DVCPRO HD) at 50 Hz.

(MOV)

Movie S2 This movie shows the same film session as displayed in

movie 1, but recorded with one of the high resolution black and

white cameras at 60 Hz and from another viewing angle.

(MOV)

Movie S3 This movie shows the same film session as displayed in

movie S2. A single surface bee, identified as focus bee 20 (red closed

circle marking the thorax) was selected for measurement of the

movement strength relXYmov. The red dot in the lower graph

marks the relative observation time, and the relXYmov values

show the motion of the focus bees. Time zero of the wave incident of

the focus bee was defined one frame before the onset of movement

activity. Two wave incidents are displayed in this session. Note

that there are damped oscillations due to the mechanical

resonance effect of the bee curtain. The recording frequency

was 60 Hz.

(MOV)
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