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Abstract

For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an
area S against dynamic pressure, Krv2, where v is the effective velocity of the wing. Because the lift coefficient was
developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying
assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the
standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/
r?S), compared against the total kinetic energy required for generating said lift, Kv2. This reinterpreted coefficient, the
normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a
similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings
with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or
adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in
Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient
for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies
that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating
cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and
micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate
fixed wings.
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Introduction

The lift coefficient, as currently defined for fixed wings, has been

successfully used in aerodynamics for almost a century. Aviation

pioneer Otto Lilienthal was the first to use a form of dimensionless

coefficient in equations for lift and drag, but the lift coefficient in

its standard form was developed by Ludwig Prandtl around the

time of the First World War, and first published in English in 1923

[1]. The lift coefficient, initially applied only to fixed wings,

compares the wing loading—the lift force L distributed over a wing

surface S—against a benchmark, the dynamic pressure, Krv2.

The lift coefficient as used today (hereinafter referred to as the

standard lift coefficient, CL) is given by:

CL~
L

1=2r v2S
ð1Þ

where L is lift, r is air density, v is oncoming or effective air speed,

and S is the wing area. (See Appendix S1 for a list of all symbols

used.) The above definition of lift coefficient is used for steady and

quasi-steady flight analysis. When using this equation for flapping

flight, which involves quasi-steady aerodynamics, the effective

velocity v of the wing relative to the surrounding flow field is

calculated by a time-dependent series of steady state flow cases

over the static wing at appropriate intervals of static angles of

attack. The resultant time-dependent lift is then summed along the

wing area through the wing beat cycle. The mean lift coefficient is

then calculated dividing the resultant lift by the product of an

‘‘effective dynamic pressure’’ and a reference area.

Because the CL was developed initially for fixed wings in steady

flow, its application to other lifting structures (e.g., flapping wings,

rotating seeds) requires either simplifying assumptions or complex

adjustments (e.g., [2]). Recent studies have successfully related

flapping, spinning and translating by using dimensionless coeffi-

cients and using the dynamic pressure as the benchmark pressure

[3]. This paper presents a new interpretation of the standard lift

coefficient that evaluates and compares the ability of dissimilar lift

systems to generate lift.

This paper proposes a dimensionless coefficient that compares

the ability of dissimilar lift systems to generate lift by evaluating

them on a similar footing. We show (1) that the standard lift

coefficient of a fixed wing can be interpreted as the work per unit

mass performed by the fixed wing on the surrounding flow field

(L/r?S) normalized by the specific kinetic energy (or kinetic energy per
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unit mass) of the fixed wing and (2) that this interpretation can be

applied directly to rotating cylinders and spheres and flapping

wings.

Methods

The standard lift coefficient for fixed wings can be interpreted as

a ratio of the cost of generating work per unit mass on the

surrounding flow field, L/r?S, with a benchmark, the total kinetic

energy per unit mass of the wing, Kv2. A typical maximum lift

coefficient of 1.5 measured for a fixed wing without high lift

devices can be interpreted as the specific work exerted on the

surrounding flow field that is 50% higher than the specific kinetic

energy possessed by the fixed wing. This new interpretation of the

lift coefficient as a ratio of the specific work on the flow field over

total specific kinetic energy of the wing breaks down when applied

to rotating cylinders and flapping wings because the denominator,

Kv2, only accounts for the forward speed of these other lift

systems, and does not account for the available specific kinetic

energy due to the rotation of the cylinder or the flapping of wings

that contributes to the generation of lift. In other words, the

product Kv2 represents the total specific kinetic of a fixed wing,

but this same energy benchmark is still used for rotating cylinders

and spheres and flapping wings. For this reason, the standard lift

coefficient overestimates the ability to generate lift by flapping

wings and rotating cylinders. The total specific kinetic energy of a

flapping wing in forward flight or a rotating cylinder in Magnus

effect is higher than Kv2, and so, this term, which is the specific

kinetic energy due to the forward speed of a fixed wing, must be

increased by the specific kinetic energy due to the flapping of the

wings or to the rotation of the cylinder.

Each lifting surface, whether fixed, flapping or rotating, has its

own characteristic energy benchmark. Extending the energy

interpretation of the standard lift coefficient of fixed wings to

flapping and rotating lifting mechanisms, the energy benchmark

for a given lifting surface is then the total specific kinetic energy of

the lifting surface while it generates lift (see Table 1). We suggest

that the best way to evaluate the ability of a lifting system to

generate lift is the ratio of the work done by the lifting surface and

its corresponding total specific kinetic energy. For fixed wings, this

ratio equals the standard lift coefficient, but for rotating or flapping

systems, the denominator should include the specific kinetic energy

available due to rotation for cylinders and spheres or due to

flapping for flapping wings, and we call this ratio the normalized lift.

The derivation of normalized lift is based on the work-energy

theorem in which the energy benchmark is calculated by adding

algebraically each of the scalar, specific energy terms that

contribute to the generation of lift. The term Kv2 from the

denominator of equation 1 is the total specific kinetic energy for a

fixed wing and can be interpreted as either contained in the fluid

moving toward a fixed wing or in the fixed wing moving through

the still fluid. Because specific energy is a scalar value, if a lifting

system differs from a fixed wing and has other sources of kinetic

energy, additional terms for those other sources can simply be

added to form the benchmark.

The work-energy theorem states that the work done on a system

equals the increase in kinetic energy of the system [4]. In an ideal,

no-friction, one-dimensional case, the ratio of work by a constant

force, F, exerted on an object displaced a distance, d, and the

resulting change in total kinetic energy is given by:

Work exerted on object

Total change in kinetic energy
~

F dP
E

~1 ð2Þ

where E equals kinetic energy. Equation 2 assumes that the object

is not self-propelled or experiencing friction when subjected to

external work. If the object is self-propelled or it experiences

friction, equation 2 may take values somewhat lower or higher

than one.

We now apply the work-energy theorem to the lift force, L,

acting on a three-dimensional parcel of inviscid, incompressible

fluid. Substituting L for the force F, and dividing both the

numerator and denominator by the mass of the fluid (rV– gives:

Ld=r�V
e

~
Specific work exerted on fluid

Specific kinetic energy
~1 ð3Þ

This expression of the work-energy theorem states that the specific

work exerted by a lifting surface on a parcel of volume V of

inviscid, incompressible fluid of density r as it is displaced a

distance d, increases the specific kinetic energy e of the fluid around

it. As mentioned above, the interchangeability between the total

specific kinetic energy of the system generating lift and the

surrounding flow field permits us to calculate the total specific

kinetic energy interchangeably with a lifting surface moving

through a fluid or by the fluid flowing over the lifting surface. This

allows calculating the denominator of equation 3 by calculating

the total specific kinetic energy of the rotating cylinder or the

flapping wing, rather than calculating the kinetic energy of the

surrounding flow field. Thus, the energy benchmark used in the

calculation of normalized lift, the total specific kinetic energy of the

lifting surface, is obtained by simply adding algebraically the

various types of specific kinetic energy of the lifting surface under

study.

The inverse of the ratio d/V– in equation 3 represents the

reference area, S. For flapping morphing wings some researchers

use non-dimensional drag and lift coefficients that include the

surface area effect [5]. In this paper, the reference area S is the

planform area of the wing. We define the normalized lift for any

lifting surface as the ratio of specific work on the fluid to this

energy benchmark, the total specific kinetic energy possessed by

that lifting surface. Thus, for a fixed wing,

LN~

L=rS
1=2v2

~
L

1=2v2rS
ð4Þ

Table 1. Normalized lift LN equations for different lift-
generating systems.

Type of Lift Generation Normalized Lift (LN)

Fixed wing LN~ L

rS 1=2v?2ð Þ
Rotating cylinder (Flettner
rotor)

LN~ L

rS½1=2v?2z1=2
Ix=m

� �
v2 )�

Flapping wing, hovering LN~ L

rS 1=2
Ix=m

� �
v2

f ave

h i

Flapping wing in forward
flight

LN~ L

rS 1=2v2
?z1=2

Ix=m

� �
v2

f ave

h i

Flapping wing in forward
flight, with pronation and
supination

LN~ L

rS 1=2v?2z1=2
Ix=m

� �
v2

f ave
z1=2

Iy=m

� �
v2

ps ave

h i

doi:10.1371/journal.pone.0036732.t001

Energy Interpretation of Lift Coefficient
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which is mathematically the same as the standard lift coefficient.

As the flyer may be self- propelled and is immersed in a viscous

fluid, the ratio in equation 4 may no longer be exactly 1 as stated

by the work-energy theorem. The term ‘‘normalized’’ makes

explicit the fact that the comparison of the cost of generating lift by

fixed wings, rotating cylinders and flapping wings are now

compared with respect to the corresponding total specific kinetic

energy, instead of using a common benchmark, that of the fixed

wing. The derivation of the normalized lift using the work-energy

theorem gives this coefficient a direct connection to its physical

basis.

The normalized lift of a wide variety of lifting surfaces can be

calculated by adding a summation to the denominator of equation

4 that contains as many n terms as sources of kinetic energies

possessed by the lifting surface (e.g., translational, rotational,

flapping, flutter, pronation and supination). For example, a

cylinder experiencing the Magnus effect (such as a Flettner rotor)

has a kinetic energy term dependent on the translational speed

equivalent to the far field speed v‘ that is not perturbed by the

cylinder’s rotation. The cylinder also has a kinetic energy term

dependent on the rotational speed that defines the cylinder’s near

flow field speed unf, thus giving the cylinder a second source of

kinetic energy that contributes to the generation of lift. To capture

the effects of these various types of specific kinetic energy, we can

rewrite equation 4 to define the general form of the normalized lift,

LN, as:

LN~
L

rS
Pn
i~1

ei

ð5Þ

To calculate the normalized lift of a flapping bird with forward

speed, we calculate the total specific kinetic energy of the wings by

simply adding the specific kinetic energy due to the translational

speed v‘ of the lifting surface, and the intrinsic specific kinetic

energy due to flapping. These terms are shown in brackets below:

LN~
L

rS½ei(v?)zei(unf )� ð6Þ

The terms in brackets in the denominator of eq. 6 represent the

sum of the specific kinetic energy, ei(v‘), a function of the far field

speed v‘ due to forward velocity, and the specific kinetic energy,

ei(unf), a function of the near field unf due to the lifting surface’s

flapping, rotation, etc. The difference between the standard lift

coefficient, CL, and the normalized lift LN, is that the normalized

lift accounts for all the specific kinetic energies involved in the

generation of lift, whereas the standard CL only considers the

kinetic energy due to forward speed and does not account for the

energy sources due to flapping, rotation, etc. For this reason, the

maximum lift coefficient of a rotating cylinder can be nearly 7

times greater than for a fixed wing. We believe that it is at this

point that the lift coefficient breaks down in its task of comparing

the ability of dissimilar lift systems to generate lift. We note that

some recent authors have used the standard lift coefficient with a

more precise effective velocity for the flapping wing that have

yielded less extreme lift coefficient values [6].

When equation 6 is applied to a fixed wing aircraft flying

straight and level with only translational kinetic energy, the ei(v‘)

term in the denominator is Kv‘
2 and the ei(unf) term is zero as the

wing does not flap or rotate; thus, the normalized lift, LN, equals

the standard lift coefficient CL. If the lifting surface flaps or rotates,

equation 6 can be applied directly by adding the appropriate ei(unf)

terms, whereas the traditional lift coefficient will need extensive

modification to account for the complex effective velocity [2,7,8].

Thus, the normalized lift for hovering insects and birds finds only

the term ei(unf) in the brackets of equation 6 whereas ei(v‘) is zero.

See the case for flapping wing, hovering in Table 1.

This lift normalization allows the comparison of lifting

capabilities of a large variety of lifting systems on the same energy

terms. A rotating cylinder moving through a fluid at right angles to

its long axis (a Flettner rotor) produces lift via the Magnus effect

[9], and the standard lift coefficient for such a cylinder can exceed

9.0 [10]. Similarly, CL values for the flapping wings of flying

animals have been reported ranging from .4.0 for true flies [7] to

.5.0 for a small bird [8]. Such high standard lift coefficients seem

to indicate that a flapping wing or a rotating cylinder is many

times more effective at producing lift than a simple fixed wing.

While these very high maximum lift coefficients may indicate

differences in how these devices produce lift, the values of the

coefficients themselves may be misleading when comparing the

costs of lift production.

Results

We illustrate the concept of normalized lift by calculating it for a

gliding wing, a rotating cylinder, and a variety of flapping wings.

Unlike the standard lift coefficient, the equation for normalized lift

LN does not require any modification in order to be applied to

more complex lifting systems than fixed wings.

Application to a glider
The total specific kinetic energy of a glider that has two

velocities defined at infinity, namely a horizontal speed component

vh, and a vertical speed component vv (or sink speed), is

ei(v?)~
1

2
vh

2z
1

2
vv

2~
1

2
v2 ð7Þ

Adding the horizontal and vertical speed components results in the

absolute velocity of the glider v. Substituting the results of this

summation into eq. 6, we obtain the normalized lift, LN:

LN~
L

rS 1=2v2ð Þ ð8Þ

Note that the normalized lift in this case (eq. 8) equals the

traditional lift coefficient CL (eq. 1), which we interpret as the ratio

of the work done by the fixed wing on the surrounding flow field to

the energy benchmark, its total specific kinetic energy. This

benchmark is the sum of the all the specific energies contributing

to the generation of lift. The normalized lift coefficient, as is stated

in eq. 8, illustrates the interchangeability between the kinetic

energy Kv2 of the moving air flowing over an inert glider in a wind

tunnel—a Lagrangian viewpoint—or the kinetic energy Kv2 of the

glider flying through static air—an Eulerian viewpoint.

Application to a rotating cylinder (Flettner rotor)
A number of samaras (winged seeds) produce lift using the

Magnus effect, operating as Flettner rotors [9,11]. For a rotating

cylinder with forward velocity v‘ and angular velocity v, the total

kinetic energy of the cylinder equals

ei(v?)zei(unf )~1=2v
2z1=2

I

m
v2~1=2v

2z1=2(
1

2
r2v2) ð9Þ

We obtain the last term by replacing the moment of inertia I of the

Energy Interpretation of Lift Coefficient
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cylinder by Kmr2. (See eq. S2.1 in Appendix S2 for detailed

derivation.) Substituting this sum into eq. 6 and entering the

experimental values of lift generated by a rotating cylinder [10],

we can calculate the cylinder’s normalized lift LN and compare

them with the cylinder’s standard CL. The reference area S of the

cylinder is the same as the reference area for its standard lift

coefficient, that is, the cross section perpendicular to the flow

[10,12]. Figure 1 shows the standard lift coefficient, CL, the

normalized lift, LN, and lift to drag ratio, L/D, calculated from

experimental lift values. They are plotted, as customary for

Flettner rotors, against the spin parameter, which equals the ratio

of tangential velocity to incoming (horizontal) velocity, uT/v. The

behavior of the standard lift coefficient and normalized lift are

quite different. The standard lift coefficient increases continuously

over the whole range of measured spin parameters, reaching

values over 9.0, even though the L/D peaks at uT/v = 2.5 and

decreases at higher spin parameter values. In contrast, the LN

never exceeds a value of 1.5, and like the L/D, it shows a peak

very near uT/v = 2.5. The decrease in L/D at uT/v.2.5 probably

indicates stall and large separation. This condition is not captured

by the standard CL.

Flapping example 1: Hovering bat
Hovering flight is particularly interesting for purposes of

comparing the standard lift coefficient and the normalized lift

for at least two reasons. First, the lack of horizontal airspeed in

hovering actually simplifies the equation for LN, whereas using the

standard CL requires extensive modification and additional

complexity to obtain the effective velocity, v [2,13]. Second,

anomalously high values for lift coefficients compared to fixed

wings have been reported for hovering animals, in some cases

exceeding 5 or 6 (e.g., [8]).

To calculate the normalized lift LN for a flapping flyer, we

determine the total kinetic energy due to flapping as shown for the

case of flapping wing, hovering in Table 1. Because the animal is

hovering, the kinetic energy term due to translation, Kv‘
2, is zero,

so the total kinetic energy is due entirely to the wing’s angular

motion. In this case, we will only consider the angular dorsoventral

movements of flapping (see eq. S2.2 in Appendix S2 for detailed

derivation).

Using morphometric data and average values for flapping

frequency and stroke angles given by Norberg [8] for a hovering

long-eared bat, Plecotus auritus (Linnaeus), and using the total

kinetic energy for flapping wings, we calculate LN = 1.03 (Table 2).

This LN value is in marked contrast to the standard CL values of 3.1

to 6.4 originally reported. In contrast to the scalar simplicity of

specifying the kinetic energy of the flapping wing, the standard lift

coefficient deals with the three-dimensional vectorial complexity of

the wing’s effective velocity, including the instantaneous resultant

of the speed of the flapping wing and the induced velocity by the

wing on the surrounding air flow with its accompanying

simplifying assumptions, such as a constant and uniform down-

ward acceleration distributed around a 360u disc with the wing

span as its diameter.

Flapping example 2: Bat in forward flight
Wolf et al. [14] describe the kinematics and vortex wake of two

specimens of the long-tongued bat, Glossophaga soricina, over a

range of flight speeds. They estimated the standard lift coefficient

based on total circulation, and reported standard CL of approx-

imately 10 at 1.0 m s21 and standard CL = 1.7 at a flight speed of

6.5 m s21. Based on the morphological and kinematic data of the

bat specimens of Wolf et al. [14], we calculate a mean LN of 2.36 at

a flight speed of 1.0 m s21 and LN = 0.38 at 6.5 m s21 (Table 2).

Thus, both the high speed and low speed LN values are

substantially lower than the standard CL values.

Flapping example 3: Hovering dipteran
In the preceding examples, we accounted for the intrinsic

kinetic energy due to the angular motion of flapping. We did not,

however, take into consideration kinetic energy due to pronation

and supination (i.e., changes in wing incidence relative to the

animal’s longitudinal axis). Smaller animals or animals flying

slowly tend to have larger changes in this pronation-supination (p-

s) angle [15], so we now look at how p-s movements affect the LN

for a hovering insect.

We have calculated LN for a hovering march fly (Bibio marci

Linnaeus) based on dimensions and flight data from Ennos [7].

Using a modified form of the standard CL, Ennos calculated

CL = 4.42 for this fly. Because the fly was hovering, the kinetic

energy due to translation Kv‘
2 again goes to zero, and we are left

with terms due to dorsoventral flapping and p-s movements (see

eq. S2.3 in Appendix S2 for detailed derivation). In Table 2, we

give three LN values for this fly, the first using only the flapping

term, and two others using both the flapping term and the p-s

term. The second LN value includes the p-s term assuming an

angle between maximum pronation and supination, Qps, of 60u,
and the third value assumes Qps equals 120u. We chose these angles

mainly to demonstrate the magnitude of the p-s angle contribution

to LN, but we estimate that the former angle might represent

inclined stroke plane hovering whereas the latter might represent

horizontal stroke plane hovering; the actual value of Qps for this fly

was not specified and was probably somewhere in between these

values. While the difference between the first value of LN using

only the flapping term (1.473) and those using the p-s term (1.467

at 60u; 1.449 at 120u) was not large, all are much lower than the

standard CL value of 4.42 calculated by Ennos [7].

Discussion

This paper does not offer any new explanation for how a wing

generates lift, nor does it challenge use of the standard lift

Figure 1. Coefficients for a rotating cylinder. Lift to drag ratio, L/
D, standard lift coefficient, CL, and normalized lift, LN, (all dimensionless
ratios), plotted against spin parameter (uT/v‘) for a rotating cylinder in
Magnus effect. Data from Reid (1924).
doi:10.1371/journal.pone.0036732.g001
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coefficient for fixed wings or its use for flapping wings along with a

realistic estimation of the effective velocity. Instead, it proposes the

application of the energy interpretation of the standard lift

coefficient by adopting the total specific kinetic energy of the

lifting system as the energy benchmark to compare lift generation

by dissimilar lifting systems. Normalized lift equations for various

lift-generating systems are presented in Table 1.

Two problems are seen when using the standard lift coefficient.

First, when the standard CL—originally defined for fixed airplane

wings—is applied to flapping wings, it must be heavily modified

based on complex three-dimensional vectorial interactions of

effective wing velocities and accompanying induced flow velocities

with their corresponding simplifying flow field assumptions.

Second, the maximum standard lift coefficient for a fixed wing

without flaps in steady flow is around 1.5, yet for a rotating

cylinder may exceed 9. This value implies that, at the same

forward speed, a rotating cylinder generates nearly 6 times the

maximum lift of a wing with the same planform area as the

cylinder’s cross section. These lift coefficient values are misleading,

because the work done by the cylinder on the surrounding flow

field while generating lift should be compared to the total specific

kinetic energy possessed by the cylinder, and not by that of a static

wing of the same planform area and forward speed.

The normalized lift is a non-dimensional lift parameter that

evaluates the ability of a lifting surface to generate lift, and its

usefulness depends on the inclusion of all important variables

involved during the production of lift. We propose that an

adequate lift parameter for a lifting surface should include the

significant kinetic energy sources involved in the generation of lift

and because kinetic energies are scalar in nature, these can be

algebraically added together and used as the energy benchmark

against which the work on the surrounding flow is measured.

In contrast to the standard lift coefficient, the normalized lift,

LN, can be applied explicitly, without modification, even in very

complicated situations, as long as all the sources of kinetic energy

(e.g., forward speed, flapping frequency, rotational speed, flapping

amplitude) affecting the generation of lift are considered.

Normalized lift is derived from the work-energy theorem, and it

explicitly connects a Lagrangian description, following the fluid

elements, with an Eulerian description, following the flow past the

object [16]. It does not require detailed measurements of the flow

patterns and wakes around the lifting surface. It does not yield

anomalously high values for animal flight or rotating cylinders,

instead producing values in a range that allow direct comparison

with fixed wings. Because it is focused on work and energy, the

normalized lift is more appropriate for evaluating the costs of lift

production of a large number of lifting systems. Finally and

conveniently, the definition of the normalized lift is the same as the

standard lift coefficient for fixed wings but can be expanded to

other more complex lifting systems, and places all these on the

same energy footing.

As described above, considering or neglecting a component of

the specific kinetic energy available to the lifting surface, (e.g., the

wing p-s during flapping), may give a slightly different normalized

lift and so, the specific kinetic energies considered must be

explicitly stated. The case of two rotating spheres moving through

a fluid, one hollow and one solid, provides an instructive example

of the difference between the standard lift coefficient and the

normalized lift, and highlights the importance of explicitly stating

the specific kinetic energies of the lifting surface considered in the

normalized lift calculation. Assume that both spheres have the

same diameter and mass, but the hollow sphere consists of a thin,

dense shell whereas the solid sphere is made of an equal mass of a

less dense material. At the same rotational and translational

speeds, both spheres will have identical standard lift coefficients

and will generate the same lift. Their normalized lift values,

however, will not be the same. The hollow sphere will have a

higher moment of inertia and hence, a higher total specific kinetic

energy. Since both spheres are doing the same work on the fluid,

the hollow sphere will have a slightly lower normalized lift.

Consider this counterintuitive difference in the context of spinning

spheres in Magnus effect in a wind tunnel: if accelerated by the

same electric motor, the hollow sphere will require more energy to

achieve the same angular velocity of the solid sphere, so in energy

terms, the hollow sphere requires more energy input to get the

same lift output. In other words, for the same energy input, the

hollow sphere would produce less lift, which is reflected by its

lower normalized lift. The apparently counterintuitive result of the

Table 2. Morphometric data, reported standard lift coefficients, and calculated normalized lift values (air density is assumed to be
1.2 kg m23).

Species Weight (N) S (m2) v (m s21) r (m) Qf (6) ff (s21) cave
* Qps (6)* CL LN

Plecotus auritus1 (long-eared
bat, hovering)

0.0883 0.0123 0 0.1240 120 11.4 3.1–6.4 1.03

Glossophaga soricina (bat 1)2

(long-tongued bat, forward
flight)

0.104 0.00884 1 0.1185 65 16.7 <10 2.55

6.5 87 13.4 1.7 0.369

G. soricina (bat 2)2 0.107 0.00936 1 0.1215 65 17.6 <10 2.17

6.5 87 14.3 1.7 0.369

Bibio marci (march fly,
hovering)3

0.00064 0.0000752 0 0.0112 139 99 4.42 1.473

0.00335 60 4.42 1.467

0.00335 120 4.42 1.449

*Note that cave and Qps values are only needed when pronation and supination are included in the normalized lift calculation.
Sources:
1[8];
2[14];
3[7].
doi:10.1371/journal.pone.0036732.t002

Energy Interpretation of Lift Coefficient
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normalized lift linked to the moment of inertia of the spheres is

also reflected in the standard lift coefficient as it is linked to the

specific kinetic energy of the airplane, namely, a higher specific

kinetic energy will involve a lower lift coefficient.

Our second example, the long-tongued bat (G. soricina) in

forward flight, demonstrates both very low and very high LN

values. We interpret the low LN (,0.4) to indicate that the bat is

flying with a very low mean angle of attack and camber. In

contrast, at 1.0 m s21, the bat is nearly hovering and we calculate

a very high mean LN of approximately 2.4. Although this LN value

is higher than the LN value for the hovering long-eared bat (P.

auritus) of the first example, the G. soricina specimens had more than

60% greater wing loading. Thus, G. soricina appears to require

more aerodynamic enhancement (e.g., extreme angles of attack,

possible vertical flow) than the hovering long-eared bat.

The normalized lift evaluates fixed, flapping and rotating lift

devices by placing them on an equal energy footing, giving a more

logical comparison of their ability to generate lift. This concept can

be directly applied to the lift of rotating rotors and flapping wings,

thrust of propellers, flapping wings of both animals and micro air

vehicles, and undulating bodies and fins. One important benefit of

the LN is that by casting the coefficient in work-energy terms, it

provides a valuable index of the energetic cost of producing lift. As

a corollary, the normalized lift shows that generating lift by means

of flapping wings and rotating cylinders is not as cheap as may be

implied by their standard lift coefficients.
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