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Abstract

Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS) domain have been
particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL) class and
the other is the CC-NBS-LRR (CNL) class. It is seldom known, however, what kind of NBS-encoding genes are mainly present
in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in
this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia
polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered.
The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK)
domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL),
reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical
member of this class possesses an a/b-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus
(Hydrolase-NBS-LRR, HNL). Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as
reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-
encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more
divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL
genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.
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Introduction

Plant disease resistance (R) genes are a set of genes that confer

resistance to various invading pathogens. For example, the

tobacco N gene can prevent invasion by the Tobacco Mosaic Virus

[1,2,3,4], the RPW8 gene in Arabidopsis thaliana provides resistance

to mildew caused by Erysiphe cruciferarum infection [5] and the Pik

gene confers resistance to rice blast, which is caused byMagnaporthe

grisea [6]. Owing to the potential connection between disease

resistance and economic crop production, many efforts have been

devoted to the functional study of R genes. Meanwhile, in-

vestigating the origin and evolution of R genes has attracted the

attention of evolutionists [7,8,9,10,11,12]. Among all types of R

genes in plants, genes encoding the nucleotide-binding site (NBS)

domain form the largest group. Genome-wide analyses have been

performed on many angiosperms, including Arabidopsis thaliana,

Brachypodium distachyon, Brassica rapa, Glycine max, Medicago truncatula,

Oryza sativa, Populus trichocarpa, Sorghum bicolor, Vitis vinifera and Zea

mays [13,14,15,16,17,18,19]. All these surveyed genomes were

found to contain a large number of NBS-encoding genes, offering

invaluable information on the evolutionary dynamics of these

disease-defending genes in angiosperms.

With a chimerical structure, a typical NBS-encoding gene

consists of an amino (N)-terminal domain, an NBS domain in the

middle and a leucine-rich repeat (LRR) domain near the

carboxy(C)-terminus. However, truncated NBS-encoding genes

lacking LRR domain are not rare. It has been estimated that less

than 80% of NBS-encoding genes in angiosperm genomes exist in

intact NBS-LRR form [13,14,15,17,18,19]. Within the NBS

domain, a number of small motifs with 10–30 amino acids in

length are recognized [20]. From the N-terminus to C-terminus,

they appear in the order of P-loops, RNBS-A, Kinase-2, RNBS-B,

RNBS-C, GLPL, RNBS-D and MHDV [19]. Functionally, the

NBS domain converts ADPs into ATPs after the recognition of

alien pathogen signals, and thus activates the downstream

hypersensitive resistance reaction [21,22,23,24,25]. Based on the

identity of N-terminal domain, NBS-LRR genes can be further

divided into different classes: a typical one is the TIR-NBS-LRR

(TNL) class, which has an N-terminal domain sharing high

similarity to known Toll/Interleukin-1 Receptor protein. The rest

are grouped into nonTIR-NBS-LRR (nonTNL) class, with most

members owning a coiled-coil domain (CC). For this reason,

nonTNL class are often regarded as CC-NBS-LRR (or CNL)

class, although in a strict way, CNL only represents a part of

nonTNL class in angiosperms.

Almost all current knowledge on NBS-encoding genes came

from investigations on angiosperm genomes, with very little

attention paid to other clades of land plants. In particular, the lack

of knowledge regarding NBS-encoding genes in early-diverging

lineages of land plants, such as bryophytes, has to a large extent
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hampered our understanding of the origin and evolutionary

history of this important type of R genes. Our previous

investigations into the genomes of bacteria, archaea, protists,

and algae have shown that the NBS domain had not combined

with the LRR domain yet [26]. The origin of NBS-LRR genes are

therefore hypothesized to coincide with the process of plants

colonizing the land.

To test the hypothesis, one good entry point can be the recently

published genome of the moss Physcomitrella patens [27]. In land

plant phylogeny, the mosses emerged far earlier than angiosperms

(about 450 million years ago for mosses and 100 million years ago

for angiosperms). Thus the P. patens genome offered us a great

opportunity to investigate whether mosses have harbored an

ancestral status of NBS-LRR genes and to see what these genes

look like. Besides the moss P. patens, data from the earliest-

diverging lineage of land plants liverworts [28,29], would further

help to elucidate the issue. Therefore, we also focused on

a liverwort, Marchantia polymorpha, to experimentally isolate NBS-

encoding genes from this complex thalloid liverwort. Surprisingly,

the obtained results demonstrated that a diversity of NBS-

encoding genes existed in early land plants, including two novel

classes.

Results

Surveying of the NBS-encoding Genes in the Moss
P. Patens Genome
Through BLAST and HMM (Hidden Markov Model) searches,

a total number of 65 NBS-encoding genes were identified from the

P. patens genome. These NBS-encoding genes, however, are not

unanimous in structure (Table 1). Only 18 of them are intact, with

N-terminal domain, NBS domain, and LRR domain all present,

while the remaining 47 NBS-encoding genes either lack an N-

terminal domain (7), a LRR domain (20), or lack both (20).

Among the 18 intact ones, three belong to the TNLs; nine

belong to the CNLs; and the remaining six, each possess a protein

kinase (PK) domain at the N-terminus. By using a similar naming

system for TNL and CNL classes, for convenience, we call the new

type of PK-NBS-LRR genes as PNL class. Among the 47

shortened NBS-encoding genes, 39 were found to share high

sequence similarities to the six PNL genes at NBS domain, making

the total member of this new class 45, about two-thirds of all the

identified NBS-encoding genes in this moss genome. In addition,

six shortened NBS-encoding genes were classified with TNLs and

two were with CNLs (Table 1).

Isolation of NBS-encoding Genes from the Liverwort M.
Polymorpha
To investigate whether liverwort (another bryophyte lineage

diverged earlier than mosses in land plant phylogeny, [29]) also

had a large number of PNLs in their genomes, we focused on

a common liverwort species M. polymorpha to amplify its NBS-

encoding gene fragments using a combination of primers (Table

S1). Gel-purified PCR products were further cloned. Collectively,

416 clones were picked up and sequenced. 389 obtained sequences

are homologous to NBS domain. After assembly and editing,

a total of 43 non-redundant NBS-encoding genes were identified.

42 of them have normal reading frames while only one possesses

an internal stop codon, indicating a pseudolization event. Seven of

the obtained NBS sequences share high sequence similarity with

the P. patens CNLs; however, the remaining 36 genes did not seem

to belong to any of the three known classes (TNL, CNL, or PNL).

Careful comparison of the small motifs within the NBS domain

found that the RNBS-A, RNBS-B and RNBS-C motifs of the 36

genes show lower sequence similarity to the corresponding motifs

of the TNL, CNL and PNL classes than the other motifs like P-

loop, Kinase 2, GLPL and RNBS-D, which seem more conserved

among all classes (Figure 1).

RACE Helped to Identify the N-terminal Domains and the
LRR Domain of M. Polymorpha NBS-encoding Genes
To aid in the classification of the 36 unique NBS homologs in

M. polymorpha, we carried out rapid amplification of 59 cDNA ends

(59-RACE) to identify their N-terminal domains and successfully

obtained the N-terminal domain sequences for nine selected NBS-

encoding genes. The obtained N-terminal sequences share

moderate (.40% at amino acid level) to high (.80% at amino

acid level) similarities with each other and are highly conserved at

specific regions, which might be important functional motifs. Pfam

analyses attribute these N-terminal regions as homologs of a/b-
hydrolase domain. Meanwhile, the 39-RACE identified C-terminal

LRRs from three of the nine selected NBS-encoding genes.

Together these findings suggested that the nine genes tested all

belong to a same, previously unknown class of NBS-encoding

genes, with at least three members maintaining complete

structures with N-terminal domain, NBS domain, and LRR

domain all present. To be distinguished from the TNL, CNL and

PNL classes, we named this new type of NBS-encoding genes in

the liverwort M. polymorpha as a/b-hydrolase-NBS-LRR (HNL)

class. All the 36 NBS-encoding genes can be reasonably grouped

into this HNL class due to their highly similar sequences at NBS

domain, although some members may be actually truncated NBS-

encoding genes lacking either the LRR domain or the a/b-
hydrolase domain, or even both.

39-RACE experiments were also carried out for the seven NBS

fragments homologous to CNLs. Full length sequence of C-

terminus was obtained for one gene and the LRR domain was also

characterized. This result proved the actual existence of CNL-like

NBS-LRR gene in M. polymorpha.

Table 1. Number of NBS-encoding genes identified from the
Physcomitrella patens genome and their domain
compositions.

Class Domain Number Total

TNL TNL 3 9

TN 0

NL 5

N 1

PNL PNL 6 45

PN 18

NL 2

N 19

CNL CNL 9 11

CN 2

NL 0

N 0

doi:10.1371/journal.pone.0036700.t001

Novel NBS-Encoding Genes in Bryophytes
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Analyzing the Intron Positions and Phases of NBS-
encoding Genes can Help to Distinguish their Belonged
Classes
To further confirm that the PNLs and the HNLs are indeed two

novel classes of NBS-encoding genes different from the TNLs and

the CNLs, we tried to investigate their intron characteristics. Due

to a narrow coverage for only NBS domain, most of the isolated

M. polymorpha NBS sequences contain no introns. However, a few

NBS-encoding genes with longer sequences obtained via RACE

do cover the N-terminal hydrolase domain region and even the C-

terminal LRR region. Thus their coding sequence information

could be used to design specific primers and to amplify their

genomic sequences containing introns.

Interestingly, the intron positions and phases were found to be

distinctive among different classes of NBS-encoding genes. The

term ‘intron phase’ refers to the position of an intron within

a codon: phase 0, 1 or 2 corresponds to an intron lying before the

first base, after the first base and after the second base of a codon,

respectively. As shown in Figure 2, TNL/TN genes have

a conserved intron position between the TIR domain and NBS

domain, and the phase of this intron is 2. PNL/PN class (named in

this study, see above) also have a conserved intron location

separating the PK domain and the NBS domain, but its phase is 0.

CNL/CN genes do not have conserved intron between CC

domain and NBS domain, whereas the HNL class (also named in

this study) contains introns at three conserved locations: two lie

before the NBS domain and one lies behind it. Of the two introns

located before the NBS domain, one is between the a/b-hydrolase
domain and the NBS domain and the other is within the a/b-
hydrolase domain, separating it into two exons. Both the positions

and phases (0) of the two introns are conserved within HNL

members. In addition, we further surveyed more angiosperm

NBS-encoding genes, mainly those TNL and CNL members. The

results are consistent with observations in bryophytes described

above. Intron positions and phases could be therefore taken as

distinguishing characteristics to classify NBS-encoding genes.

Phylogenetic Analysis of P. Patens and M. Polymorpha
NBS-encoding Genes
In order to understand the evolutionary relationships between

and within each class of NBS-encoding genes, phylogenetic trees

were constructed using the NBS domain regions of 59 P. patens and

43 M. polymorpha NBS-encoding genes. Six P. patens NBS-encoding

genes were excluded from the matrix because they were either too

short or too divergent in a fine alignment. Additionally, an

unrooted phylogenetic tree was built with 7 more angiosperm

NBS-LRR genes of known function included. Collectively, the 102

bryophyte NBS sequences were found to form four clusters

(Figure 3A & B). Among the major clusters, all the CNL sequences

from liverwort and moss species form a monophyletic group with

strong support (bootstrap value 89, Figure 3B). The 4 angiosperm

CNLs also fall within the monophyletic group with a high

bootstrap value of 99 (Figure 3A). Within this group, the P. patens

CNL genes could be further classified into two subgroups, and all

seven obtained M. polymorpha CNL genes were closer to one CNL

subgroup of P. patens than the other. Besides of CNLs, the

remaining HNL, PNL and TNL genes also formed a monophyletic

group sister to the CNL genes with a good bootstrap value (89,

Figure 3B). Within this large group, both the PNL class from the

moss P. patens and the HNL class from the liverwort M. polymorpha

form monophyletic group on their own, suggesting independent

expanding processes. Differently, the moss TNL genes seem to be

paraphyletic (Figure 3A & B), and the 3 angiosperm TNLs locate

within the T/P/HNL superclass and near all other TNLs

(Figure 3A).

Discussion

When did the NBS Domain and LRR Domain Fuse
Together?
Almost all our current knowledge on NBS-LRR genes came

from studies on angiosperm species, leaving questions about the

status and evolutionary dynamics of these genes in other major

groups of land plants largely unexplored. For example, a basic but

Figure 1. Conserved motifs of the NBS domains of the four classes of NBS-encoding genes. The four motifs are separated by dots and are
in the following order: P-loop, kinase 2, GLPL and RNBS-D.
doi:10.1371/journal.pone.0036700.g001

Figure 2. The intron positions and phases of the four classes of
land plant NBS-encoding genes.
doi:10.1371/journal.pone.0036700.g002

Novel NBS-Encoding Genes in Bryophytes
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important question is when the NBS domain and LRR domain

became fused together. Our efforts in searching genomes of

bacteria, archaea, protists, and algae only detected independent

NBS or LRR domains [26]. Such fact prompted us to speculate

that the origin of NBS-LRR genes may accompany the period of

land plant evolution. However, the direct evidence supporting this

idea is lacking.

From the moss P. patens, Akita and Valkonen had isolated 3

NBS-encoding genes before and found that they are all

homologous to the TNL class members in angiosperms [30]. This

result lends support to the idea that the NBS-LRR genes have

already appeared in plant genome back to the diverging time of

the moss lineage (450 million years ago). Further, as liverwort

lineage diverged .30 million years earlier than mosses, it is critical

to know whether NBS-LRR gene had already shown up and been

maintained in the liverworts.

To investigate these specific questions, in this study, we focused

on two bryophyte species (one the liverwort M. polymorpha and the

other the moss P. patens) to survey their genomes for possibly

harbored NBS-LRR genes. As showed in the results, a total of 25

genes covering both NBS and LRR domains were identified from

the P. patens genome (Table 1) and at least four NBS-LRR genes

were amplified from the liverwort M. polymorpha. These data

provide clear evidence to support the idea that the NBS and LRR

domains have already fused together in the two earliest diverging

lineages of land plants. In future, it will be interesting to explore

Charophyta species to see whether NBS-LRR gene had originated

even before the colonization of land by plants.

Two Novel Classes of NBS-encoding Genes in Bryophytes:
PNL and HNL
Previous studies on angiosperms have identified two major

classes of NBS-encoding genes: the TNL class and the CNL class.

The finding of 3 TNL genes in the moss P. patens [30] had

suggested that at least the TNL class is very ancient. It is unknown,

however, whether more NBS-LRR genes are harbored in the moss

P. patens genome and what classes they belong to. Here, our

investigations into the two bryophyte species not only revealed that

the CNL class is also ancient, with members presented in both the

P. patens and M. polymorpha, but also unexpectedly discovered two

novel classes of NBS-LRR genes, as represented by six intact PNL

genes in P. patens genome and at least three intact HNL genes

amplified from M. polymorpha. ESTs have been found for both

PNLs (FC330793.1, FC356926.1, FC370257.1) in P. patens and

HNLs (BJ861543.1, BJ865527.1, BJ861316.1) in M. polymorpha

from GenBank, and our RACE results also proved that some

HNLs in M. polymorpha were transcribed, which means these novel

genes are not errors of genomes assembly or non-functional

pseudogenes.

For those identified NBS-encoding genes lacking a complete

structure, classification mainly relied on the sequence similarity

tests and phylogenetic analysis using NBS domain (see next

section). Previously, Meyers and his colleagues had found that the

sequences of NBS domain can be effectively used to distinguish the

TNL and the CNL classes in angiosperms [8]. Here we found that

this strategy can also be applied on the PNL and the HNL classes

in bryophytes, with 39 more PNL-like shortened sequences

identified in P. patens and 36 HNL-like sequences in M. polymorpha.

Thus, the PNL class becomes the most dominant class in P. patens

(45/65) and the HNL the major class in M. polymorpha (36/43).

Such dominant status seems also hold true in other liverwort

and moss species (unpublished data). Primary data obtained from

other bryophyte species, including Treubia lacunose and Polytrichum

juniperinum (the very basal taxa of liverworts and mosses, re-

spectively), consistently support the dominance of the HNL class in

liverworts and the PNL class in mosses. We neither amplified any

PNL members from liverwort species nor obtained any HNL-like

sequences from moss species. Moreover, neither the PK domain

nor the a/b-hydrolase domain has ever been discovered together

with an NBS domain in angiosperm genomes. This suggests that

the HNL is a liverwort lineage-specific class and the PNL is a moss-

lineage specific class. Future studies covering a diverse group of

taxa could supply more convincing results on this issue.

So far, little is known about why and how the PK domain and

the hydrolase domain became fused with NBS-LRR genes in

bryophytes. PK domain is found in various other proteins,

including receptor-like kinases and receptor-like proteins, both of

which contain LRRs. The a/b-hydrolase domain also belongs to

a super-family, which consists of dozens of proteins sharing lower

sequence conservation. It is logical to speculate that during the

early evolution of bryophytes, the PK domain and the hydrolase

domain, likely via exon-shuffling events, became associated with

NBS-LRR gene respectively in liverwort and moss lineages. The

fused genes could then replicate, experience structural changes,

and have at least some members armed with new functions,

otherwise they would not have been retained over such a long

evolutionary period.

Intron Characteristics and Phylogenetic Analyses
Revealed a Closer Relationship among HNL, PNL and TNL
Classes
Intron characteristics have been recognized as an important aid

in resolving difficult relationships of land plant lineages [28,31,32].

The present/absent status, position and phase of introns can

provide useful, sometimes critical, information on gene evolution

as well. On the case of NBS-LRR genes, Meyers and his colleagues

had discussed the intron characteristics when surveying the

Arabidopsis thaliana genome [19]. Since then, no further intron

analyses were conducted although many other plant genomes had

also been surveyed for their NBS-LRR genes. Here in this study,

we performed the intron position and phase analyses on obtained

NBS-encoding genes from P. patens and M. polymorpha genomes, as

well as on NBS-encoding genes from five angiosperm genomes (A.

thaliana, M. truncatula, O. sativa, P. trichocarpa, and S. bicolor). Our

results showed that NBS-encoding genes of HNL, PNL, and TNL

classes all maintain their class-specific intron characteristics. As

Figure 2 shows, conserved introns are found within the N-terminal

domain (HNL class; phase 0), between the N-terminal domain and

the NBS domain (HNL, PNL and TNL classes; phase 0 for HNL

and PNL, but phase 2 for TNL), and between the NBS domain

and the LRR domain (HNL, PNL and TNL classes, all phase 0).

These intron characteristics can be efficiently used to distinguish

NBS-encoding genes from different classes. For example, a few

divergent NBS-encoding genes in P. patens were difficult to classify

at first by homology test and the phylogenetic method, but their

intron characteristics later provided clear clues for their final

Figure 3. A. Unrooted phylogenetic tree of the NBS domain sequences of Physcomitrella patens, Marchantia polymorpha and seven functional
angiosperm NBS-encoding genes. B. Phylogenetic tree of the NBS domain sequences of Physcomitrella patens and Marchantia polymorpha NBS-
encoding genes. Lu, Linum usitatissimum; At, Arabidopsis thaliana; Le, Lycopersicon esculentum; Hs, Homo sapiens; Ce, Caenorhabditis elegans. The
abbreviated species names are followed by the names of functional genes.
doi:10.1371/journal.pone.0036700.g003
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classification within TNL class. The facts of these introns located

between the TIR/PK/a/b-hydrolase, NBS and LRR domains are

in line with the exon/domain shuffling theory of modular proteins.

This theory advocates that ancient chimerical genes could have

evolved by exon/domain shuffling through the transposable

elements in their flanking introns. The formation of multi-domain

proteins was the consequence of some more ancient single-domain

proteins being brought together. This model seems to explain the

origin of these three classes of NBS-encoding genes, although

more direct evidence needs to be discovered.

Different from the other three classes, the CNL class is the only

class of NBS-encoding genes showing no conserved domain-

boundary introns, which is a key character to identifying a CNL

class member. Considering such obvious differences, it is not

surprising when the phylogenetic analysis (Figure 3B) found that

the three intron-containing classes (HNL, PNL and TNL) showed

a closer relationship and form a monophyletic super-class (with

support value of 91), while the CNL class is sister to the super-

class. The constructed phylogeny also suggests that the CNL class

had originated at least in the common ancestor of land plants, as

the liverwort M. polymorpha CNL genes and some of the moss P.

patens CNL genes can form a strongly supported monophyletic

group, reflecting at least one CNL gene present in their common

ancestor and vertically inherited into both the liverwort and the

moss lineages. The emergence of the other three classes of NBS-

encoding genes seem to have coincided with the divergence of

major lineages, and have resulted in the lineage-specificity

observed for HNL in liverworts and PNL in mosses. The TNL

class is more widespread, since they have been reported in mosses,

gymnosperms and angiosperms. Nonetheless, the TNL class also

shows sort of lineage specificity, as indicated by the yet

unexplained absence of this class of genes in monocots [33].

Traditionally, NBS-encoding genes are divided into TNL and

non-TNL classes, mainly based on the knowledge of angiosperm

species. The CNL class is regarded as a major type of the non-

TNL class. If this traditional way is followed, the newly discovered

HNL and PNL classes in this study should be considered as two

other non-TNL classes. However, both the constructed phylogeny

and the intron analyses, as demonstrated above, have revealed

a clear relationship among the HNL, PNL and TNL classes.

CNL class doesn’t have conserved introns, and has been found

in all sequenced land plant species, including M. polymorpha we

investigated in this study, suggesting an ancient origin as well as

the necessity of its function by wide land plant groups. Differently,

the two novel classes we found seem to present specifically in

certain groups and reflected their functional restrictions. Further

functional study on the genes of the two classes will help to explore

their lineage-specificity.

Materials and Methods

Genome-wide Analysis of NBS-encoding Genes in
P. Patens
P. patens assembly and gene models were obtained from the Joint

Genome Institute data repository (ftp://ftp.jgi-psf.org/pub/

JGI_data/phytozome/v7.0/Ppatens). To identify NBS-encoding

genes in this moss genome, both BLAST and hidden Markov

model searches were performed following the same procedures

used before [13,15,34] First, possible homologs encoded in plant

genomes were searched using BLASTp with the amino acid

sequence of the NBS/NB-ARC domain (Pfam: PF00931) as

a query. Second, the amino acid sequence of the first hit was

checked and its NBS domain sequence was used as a modified

query to conduct a second search. This second step was required

because the standard amino acid sequence of the NBS/NB-ARC

domain (Pfam: PF00931) was too divergent for searches in

a bryophyte genome like P. patens, although it worked well within

angiosperms. The expectation value threshold was set to 1.0,

a value determined empirically to filter out most of the spurious

hits. The Multiple Expectation Maximization for Motif Elicitation

tool was used to analyze motif structures among NBS-encoding

genes [35]. CC domains were detected using COILS with

a threshold of 0.9 [36].

NBS Fragment Amplification by PCR Using Degenerate
Primers
Fresh M. polymorpha tissue samples were collected from field in

Yangzhou, Jiangsu Province, China. Total cellular DNA was

extracted by the CTAB method [37] and purified by phenol

extraction to remove proteins. Genomic DNA fragments spanning

conserved NBS sequences were amplified from the extracted DNA

using a total of 25 oligonucleotide primers (Table S1). All primers

were designed using P. patens NBS-encoding genes as references.

Different primers pairs were designed to amplify different types of

NBS-encoding genes. Most of the primers were designed to

amplify 700 bp fragments from the P-loop to the RNBS-D motif

covering ,80% of the NBS domain. The Takara LA taq (Takara,

Dalian, China) is a proof reading polymerase, and it was used for

amplification to avoid PCR errors. The standard PCR methods

were used: 3 min of DNA denaturation at 94uC, followed by 35

cycles of 30 s at 94uC, 30 s at 52uC, and 60 s at 70uC for each

cycle. The last cycle was followed by 10 min of extension at 70uC.
The amplified PCR products were further extracted using the gel

extraction kit (Qiagen, Valencia, CA, USA) and cloned using the

TOPO TA cloning kit (Invitrogen, Carlsbad, CA, USA). The

selected clones were sequenced on an ABI3730XL using ABI Big-

Dye technology (Applied Biosystems, Carlsbad, CA, USA). To

guarantee saturated sequencing, 10–40 clones were picked for

sequencing as needed for each cloning product. All unique genes

were the products of three independent PCRs.

Reverse Transcriptase–polymerase Chain Reaction and
Rapid Amplification of 59- & 39-cDNA Ends
The first strand cDNA was synthesized from 5 mg of RNA with

Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA,

USA) in a volume of 20 ml with oligo-dT primers. With the first

strand cDNA as a template, the target gene fragments were

amplified using gene specific RACE primers (Table S2), then

cloned and sequenced as described above. The sequenced data

from cDNAs were used to determine candidates for the specific

amplification of their N- or C-terminal regions via 59- or 39-

RACE. This method was used to obtain the full-length coding

sequence of a gene. RNA was treated as per the protocol of the

GeneRacer kit (Invitrogen, Carlsbad, CA, USA) and reverse

transcribed into first strand cDNA. With the synthesized cDNA as

a template, the 59- or 39-cDNA ends of the gene were amplified,

cloned and sequenced.

Sequence Alignment and Phylogenetic Analysis
Sequences were assembled and edited using Sequencher 4.2

(Gene Codes Corp., Ann Arbor, MI, USA), and were deposited in

the NCBI under accession numbers JQ764686–JQ764728.

Multiple alignments of amino acid sequences were performed by

MUSCLE [38] with default options [39] and then by MEGA 5.0

for manual corrections of the alignments [40]. The resulting

amino acid sequence alignments were used to guide the alignments

of the nucleotide coding sequences. Phylogenetic analysis was
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conducted using maximum likelihood method with the RAxML

7.0.4 program. The GTR+I+G model was used to establish the

best tree and a total of 100 rapid bootstrap replicates were

performed [41].

Supporting Information

Table S1 PCR primers for the amplification of the NBS-

encoding genes in Marchantia polymorpha.

(DOC)

Table S2 59- and 39-RACE Primers for the NBS-encoding genes

in Marchantia polymorpha.

(DOC)
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