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Abstract

The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the
neurotransmitter acetylcholine, but can also exert ‘non-classical’, morpho-regulatory effects on developing neurons such as
stimulation of neurite outgrowth. Here, we investigated the role of AChE binding to laminin-1 on the regulation of neurite
outgrowth by using cell culture, immunocytochemistry, and molecular biological approaches. To explore the role of AChE,
we examined fiber growth of cells overexpressing different forms of AChE, and/or during their growth on laminin-1. A
significant increase of neuritic growth as compared with controls was observed for neurons over-expressing AChE.
Accordingly, addition of globular AChE to the medium increased total length of neurites. Co-transfection with PRIMA,
a membrane anchor of AChE, led to an increase in fiber length similar to AChE overexpressing cells. Transfection with an
AChE mutant that leads to the retention of AChE within cells had no stimulatory effect on neurite length. Noticeably, the
longest neurites were produced by neurons overexpressing AChE and growing on laminin-1, suggesting that the AChE/
laminin interaction is involved in regulating neurite outgrowth. Our findings demonstrate that binding of AChE to laminin-1
alters AChE activity and leads to increased neurite growth in culture. A possible mechanism of the AChE effect on neurite
outgrowth is proposed due to the interaction of AChE with laminin-1.
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Introduction

Acetylcholinesterase (AChE) is the enzyme that terminates

neurotransmission at cholinergic synapses in central and periph-

eral nervous systems. Several other potential functions have been

associated to AChE, as for example stimulation of neurite

outgrowth, adhesion, regulation of cell differentiation, apoptosis,

hematopoiesis and thrombopoiesis [1–8]. Most prominent among

the morphogenic functions is facilitation of neurite growth. There

are many documented examples where neurite growth is preceded

by or associated with cholinesterase expression, occurring long

before the onset of cholinergic neurotransmission [9,10], as shown

by our laboratory [5] and others [11–14]. Various mechanisms

have been proposed for this function of AChE. One of them would

be that expression of the enzyme during development may

regulate the levels of acetylcholine (ACh), establishing permissive

pathways for the axonal elongation. However, the increased

neurite growth cannot be, or not only, the result of the esteratic

activity, since at least one compound was found that inhibits

AChE activity but not neurite outgrowth [5,15]. Also indicating

a non-catalytic mechanism, treatment of cell cultures with an anti-

AChE monoclonal antibody, which did not affect AChE activity,

led to a detachment of neurites [16]. Noticeably, forms of AChE

that hydrolyzed ACh, but lacked the C-terminal domain, failed to

enhance neurite growth, again demonstrating the independence of

the catalytic and neuritogenic activity from each other [1].These in

vitro findings were complemented by in vivo results from an AChE

knock-out mouse, where formation of neural networks in the inner

retina was distorted [17]. However, transgenic mice overexpres-

sing the human synaptic AChE in central cholinergic neurons

exhibited diminished dendritic branching and reduced numbers of

spines in cortical neurons [18].

To explain this on a structural basis, AChE is highly

homologous to a class of cell adhesion molecules named

‘cholinesterase-like cell adhesion molecules’ [19,20]. Moreover,

AChE is also able to interact with other proteins [21–23]; e.g. its

interaction with laminin-beta 1 [23] supports the hypothesis that

AChE can exert cell adhesion properties. Therefore, we propose

that AChE can act morphogenically through its binding to

laminin-1. An outgrowth promoting activity of laminin-1 has been

established for many neuronal cells and cell lines, acting in the

nanomolar range [24–27], clearly reflecting an important function

during neuronal development in vivo. Laminin occurs in at least

eleven isoforms [28], some of which are expressed in developing

axon tracts in a spatio-temporally order, further supporting its

significance for the developing brain.

The neurite growth promoting capability of AChE was found

on various molecular forms of AChE. However, the precise site on

AChE responsible for the neuritogenic activity has not yet been

clearly defined. In general, the non-catalytic structural functions of

AChE were mainly attributed to a few distinct sites on AChE, e.g.,
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the peripheral anionic site (PAS), the C-terminal tail (t)-peptide of

the synaptic form of AChE [29], or, the C-terminal ARP peptide

of the stress-associated AChE-R form. The PAS lies at the

entrance of the active site gorge of AChE, and it is probably

involved in protein-protein interactions [4,23,30–34], as well as in

cell-substrate adhesion [32,35], including deposition of beta-

amyloid in Alzheimer’s disease [36,37]. The C-terminal t-peptide

appears to increase apoptosis [38] and is interacting with ColQ

and PRiMA [39]. The ARP peptide promotes neuronal de-

velopment and plasticity [40].

To further clarify which form of AChE influences neurite

growth, and to determine the significance of the AChE/laminin-1

interaction for neurite outgrowth, we reconstituted the interaction

in vitro using the R28 neuronal cell line [41] by over-expressing the

synaptic AChE and cultivating these cells on laminin-1-coated

culture dishes. The following questions were addressed: 1) does

binding of AChE to laminin-1 have a neurite growth promoting

function; and 2) which variant of AChE (secreted or membrane-

bound) promotes process extension by binding to laminin-1. This

study demonstrates a direct correlation between AChE expression

and neurite outgrowth; the membrane-anchored form seems to

have the strongest effect on neurite outgrowth when compared

with the soluble extracellular form. We also consistently show that

AChE and laminin-1 in combination more than additively

increased neurite growth.

Results

We analyzed the efficacy of promoting neurite outgrowth of

three different AChE forms: the tetrameric secreted AChE form

(E6-AChE or S-AChE), the PRiMA membrane-anchored S-AChE

form and the R395C-AChE mutant, which is retained within the

cell, therefore not being available for the interaction with laminin-

1. A series of controls was used, including cells treated only with

the transfection reagent, cells transfected with the empty vector

and GFP-overexpressing cells.

Generation of stably transfected cells and analysis of
AChE enzymatic activity in different cellular
compartments in the absence or presence of laminin-1
To explore a structural role of AChE in neurite outgrowth

involving its binding to laminin-1, we generated different cell lines

overexpressing AChE. First, the rat retinal R28 cell line was stably

transfected with plasmids encoding either the exon 6 containing

form of AChE (E6-AChE), the R395C AChE-548 mutant, GFP or

the empty vector (Fig. 1C). However, overexpression of E6-AChE

in R28 cells will lead to both membrane-bound and secreted

AChE. Therefore, transient transfections with PRiMA of the R28-

E6-AChE stably expressing cells were performed, in order to

achieve increased anchoring of the enzyme to the cell membrane

and avoid secretion (see Fig. 1 for overview). Additionally, R395C

AChE mutant overexpressing cells were obtained. These cells

served as a negative control of the binding to laminin-1, since

mutant AChE is not secreted and therefore not able to interact

with laminin-1. The best G418-resistant clones were selected by

screening for increased AChE activity or green fluorescence

(transfection efficiency was: 33% E6-AChE positive cells, 81%

GFP positive cells and 5% R395C AChE positive cells).

AChE enzymatic activity measurements in cell lysates and

media of E6-AChE, R395C AChE-transfected and control cells

revealed activity in all probes (Fig. 2). Control cells express

moderate amounts of AChE, which is mostly secreted (Fig. 2B).

The cell-associated activity of E6-AChE overexpressing cells was

6.7-fold higher than of control-GFP cells. As expected, the

R395C-AChE cells show much lower activity than E6-AChE,

with only 2.7-fold increase over control cells (see Fig. 2A) and

secrete no AChE when compared to control (Fig. 2B). Predictably,

the cell-associated activity of PRiMA-transfected E6-AChE cells

was highest (Fig. 2A). On the other hand, the secreted activity of

these cells remained comparable to that of E6-AChE cells, which

can be explained by low efficiency of the transient transfection

with PRiMA.

Interestingly, all cells cultivated on laminin-1 showed reduced

AChE activity when compared to cultures without laminin-1,

suggesting that the interaction might affect the catalytic site of the

enzyme. Noticeably, a most pronounced difference was observed

in the case of PRiMA-AChE cell associated activity (Fig. 2A)

indicating that the membrane-bound AChE is the AChE form

that interacts with laminin-1. Additional measurements pointed to

the fact that culture on laminin-1 influences AChE, but not

butyrylcholinesterase (BChE) activity (not shown).

Cellular distribution of AChE in control and transfected
cells
Since the AChE localisation at the cell surface is important for

the physical interaction with laminin-1, we first investigated AChE

distribution using the Karnovsky and Roots histochemical staining

(Fig. 1B). Cells were fixed with paraformaldehyde and stained for

AChE activity and DAPI to facilitate microscopy of unstained

cells. Control cells did not show any staining for the incubation

time used (,1.5 hours). In E6-AChE cells the activity is evenly

distributed over the entire cell body, being high in the perinuclear

region with small patches on the axon and neurites (Fig. 1B, up

right). Transfection of E6-AChE overexpressing cells with PRiMA

leads to a diffuse intracellular staining and high concentration of

the activity on the cell membrane (Fig. 1B, down left). Here is to

note also the modification of membrane appearance with the

formation of numerous sprouting spike-like extensions (Fig. 1 and

Fig. 6). Intracellular AChE was present throughout the soma and

neurites, surface AChE was selectively found on growth cones and

discrete patches along neurites, including at many branch points.

AChE R395C cells show an AChE distribution similar to E6-

AChE cells, but the staining was much weaker, while the

incubation time was increased to up to 8 hours.

Cell morphology is altered as a result of AChE
overexpression and/or culture on laminin-1
Noticeably, as soon as the cells were overexpressing AChE, or

were cultivated on laminin-1, the cell morphology changed. As

shown in Figure 3, the morphology of AChE-transfected or/and

on laminin-1 cultivated cells is noticeably different from the

parental cell line. Typically, under AChE over-expression three

different morphologies appear, arbitrarily called type I, II and III.

Type I shows no neurites and a much increased cell surface

(Fig. 3D, G and H), type II shows also an increased cell body with

up to 2 neurites (Fig. 3E, H and K), the bipolar morphology of

type III cells is similar to that of control cells (Fig. 3F, I and L).

Interestingly, AChE overexpression led preferentially to the

formation of type III cells (neuronal-like), while laminin-1

culturing led to formation of type I cells (see Table Fig. 4).

Double staining of the tubulin cytoskeleton and AChE activity

showed the intracellular localization of AChE in these three cell

types (Fig. 4). In type I and II cells, AChE is localized perinuclearly

(Fig. 3A–D). Type III cells show AChE activity distributed on

soma and neurites (Fig. 4E, F). While type I cells have no neurites

and type II cells express AChE only perinuclearly, only type III

cells were chosen for the neurite length measurements.

AChE and Laminin-1 Enhance Neurite Growth
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Effects of expressing the synaptic form of AChE on
neurite growth – The E6-derived C-terminus is essential
for growth promotion
We next evaluated the neurite growth of various cell-substrate

combinations. As mentioned above, only neurites of type III cells

were measured. Cells were cultured alternatively either on plastic

or on laminin-1 coated dishes. As expected, R28 cells over-

expressing E6-AChE had longer neurites than control cells

(Fig. 5A). Laminin-1 had a strong and significant neurite length-

increasing effect, which was potentiated by overexpression of E6-

AChE. AChE overexpressing cells cultured on laminin-1 showed

the longest neurites (Fig. 5A). To rule out the fact that the strong

effect of AChE and laminin-1 on neurite growth was not only

additive, but due to AChE-laminin-1 interactions, a series of

different types of controls was run in parallel.

Effects of the intracellular AChE retention on neurite
growth
An R395C AChE mutant was overexpressed in R28 cells and

employed as a further control to establish the relevance of AChE-

laminin-1 interaction for neurite outgrowth. These cells showed

lower transfection efficiency, fact that is probably due to our

detection limits or to the fact that the mutant protein is rapidly

degraded. For estimating the transfection efficiency we counted the

cells that show AChE activity. However, the R395C AChE mutant

shows only about 13% enzymatic activity when compared to wild

type AChE [42], a fact that makes the detection of the transfected

cells more difficult. R395C AChE transfected cells do not undergo

apoptosis (results not shown). Retention of AChE in the cell led to

a slight increase in neurite growth, as well as culturing on laminin-1

of these cells. However, the R28 cells stably expressing the AChE

mutant form grown on laminin-1 did not show significantly longer

neurites as control cells (Fig. 5A, dark bars).

Addition of soluble AChE in culture
First, different concentrations of recombinant mouse AChE

were added to the culture medium of control cells (Fig. 5B). An

increase in neurite growth was observed, an increase that was not

concentration-dependent. Importantly, no significant neurite

length increase was observed on cells treated with AChE and

cultured on laminin-1 when compared with single treatments. This

supports the idea that the effect is related to a cell-ECM

interaction. Since soluble AChE was reported by others [43] to

have robust effects on neurite growth, we tested whether the added

enzyme penetrated the cell (Fig. 5C). Only in about 0.5% of cells

we could detect cell-associated recombinant AChE, mostly to the

cell body (Fig. 5C). This may be the reason why we see no

significant increase in neurite length.

PRiMA overexpression in a stably AChE-transfected R28
cell line localizes AChE to cell membrane and changes
cell morphology
R28 cells transfected with E6-AChE show homogeneous

distribution of AChE throughout the cell body and neurites. To

ensure that most of the AChE is membrane anchored and

therefore able to interact with laminin-1, we employed PRiMA

transient transfections of R28 E6-AChE overexpressing cells. Due

to their CNS origin, it was likely that the cells express the neuronal

AChE-anchor PRiMA. We performed RT-PCR on total RNA

isolated from R28 cells and investigated the expression of PRiMA

and AChE. The experiment was repeated several times and

a representative gel is shown in Figure 6 (lower). Control cells

constitutively express PRiMA; AChE expression is barely detect-

Figure 1. Distribution of AChE activity in transfected R28 cells. (A) Cartoon showing the distribution of AChE based on activity stainings. (B)
Distribution of AChE activity in the cell as shown by Karnovsky and Roots staining. AChE activity was detected by enzymatic staining on
paraformaldehyde fixed cells after 24 hours in culture. Representative images of control R28 cells and cells expressing wild type AChE, the 395Arg to
Cys mutation and PRiMA. Pictures show merged view of Karnovsky Roots (brown) and the cell nucleus (DAPI). Control cells show no staining (upper
left); wild type AChE staining is diffusely distributed in the cytoplasm and punctate along neurites and on the plasma membrane (upper right);
staining intensity of mutated AChE is weaker when compared with wild type and is not localized on the plasma membrane (left). Scale bar, 50 mm. (C)
Scheme of the transfected plasmids and plasmids used for expression of recombinant AChE.
doi:10.1371/journal.pone.0036683.g001

AChE and Laminin-1 Enhance Neurite Growth
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able. The transfection with E6-AChE leads to a strong increase in

the PRiMA transcripts, suggesting a regulation of PRiMA

transcript level by AChE levels. Laminin-1 did not affect the

amount of AChE and PRiMA mRNA, although the AChE

activity of cells on laminin-1 is significantly reduced.

A Karnovsky and Roots staining was used to investigate the

distribution of AChE in PRiMA overexpressing cells. As expected,

most of the AChE appears located to the cell membrane, sometimes

in a patch-like distribution. Butmost strikingly was the fact that these

cells undergo morphological changes (Fig. 6C, D). Figure 6 shows

AChE + PRiMA-overexpressing cells (C and D) that present

numerous dendrites sprouting from multiple membrane sites.

Neurite lengths of PRiMA- and AChE-overexpressing cells were

measured in the presence or absence of laminin-1 and compared

with the control and E6-AChE overexpressing cells (Fig. 7). No

significant differences between neurite length of AChE on laminin-1

and AChE and PRiMA on laminin-1 cells were observed.

Several trends emerged from these experiments. Either the

overexpression of AChE, or the treatment with laminin-1 led to

the formation of the same three distinct morphological cell types.

While AChE seems to promote neurite growth both in membrane

bound and soluble form, culturing on laminin-1 also promotes

neurite growth of R28 cells. Retention of AChE in the intracellular

compartments had no significant effect on neurite length; addition

of recombinant AChE to the culture medium had a slight

increasing effect of neurite growth. PRiMA overexpression led to

a solid localization of AChE to the cell membrane and to

a membrane budding (sprouting). However, the effects on neurite

growth were comparable with the effects of E6-AChE over-

expression. The culture on laminin-1 of the E6-AChE expressing

cells led to a solid and strong increase in fiber growth.

Discussion

We and others have previously shown that AChE is able to bind

to laminin-1 [23,31]. Here we could demonstrate that the

interaction between AChE and laminin-1 might have a role in

neurite growth. Numerous studies have documented AChE’s

ability to promote neurite outgrowth, using both addition of AChE

to cell cultures and transfection of cells with AChE cDNA

[12,25,44,45]. AChE may exert this effect by three ways, by using

catalytic or non-catalytic mechanisms, or a combination of both.

This paper suggests that neurite growth promoting functions can

be explained by a non-catalytic, adhesive mechanism, through an

interaction with the extracellular matrix protein laminin-1.

AChE and laminin-1 change cell morphologies
A first interesting finding of this study is the fact that both AChE

and laminin-1 lead to similar morphological changes of R28 cells.

These changes were not seen by transfection with other genes

(results from our laboratory, not shown) or by cultivating the cells

on other substrates.

One cell type generated by the treatment shows no neurites, but

a large cell body, a second cell type has also a large cell body, but

presents neurites and a third cell type resembles the neuronal

morphology with a small body and two long neurites. That implies

that AChE and laminin-1 in different cell types lead to different

size/shape/neurite building patterns.

R28 cells are proliferative retinal progenitor cells that express

neuronal characteristics [46]. Immunocytochemical results [46]

illustrate that despite the clonal (single cell) origin of R28 cells, they

are a heterogeneous population which most likely cannot be further

purified by additional serial dilutions. A heterogeneous population

derived from a single cell supports the concept of R28 cells as retinal

precursor cells. In addition, double-immunolabelling has identified

dual glial-neuronal marker expression within individual R28 cells.

This cellular heterogeneity might explain why overexpression of

AChE or growth on laminin-1 leads to the appearance of different

cellular morphologies. R28 are neural precursor cells; in this study

these cells are overexpressing proteins that have roles in neurite

growth and adhesion, hallmarks of neuronal differentiation;

therefore the morphological changes observed can be linked to the

differentiation process. Further studies are necessary in order to see

whether changes in expression patterns of neural-precursor/

neuronal/glia markers accompany these morphological changes,

implying that different morphologies reflect different cell types. It is

also possible that these distinct morphologies do not reflect different

cell types but different time-frames during the differentiation of

a single cell type. Similar morphologies were observed during

neuritogenesis of cortical neurons [47].

Figure 2. Secreted and cell-associated AChE activity in control
and transfected cells. Increase of AChE activities following AChE-
transfection is diminished by cultivation on laminin-1, in particular so if
the PRiMA anchor is co-transfected. R28 cells were transfected with E6-
AChE, R395C AChE, PRiMA and GFP, and AChE activity in cell lysates (A)
and medium (B) was determined. Control clones produced by
transfecting with empty vector or GFP showed activity levels similar
to those of untransfected cells. Therefore, the GFP expressing cell line
was used as control for further experiments. Results are given as means
6 standard deviation for at least five separate experiments. * p,0.05;
*** p,0.001. All activities were significant increased when compared
with control cells.
doi:10.1371/journal.pone.0036683.g002
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Intriguing is the fact that two different molecules alone and in

combination lead to formation of same morphological types. This

can be a hint that these two molecules use the same signaling

mechanism, probably linked to cytoskeletal changes. The

cytoskeleton plays a fundamental role and is instrumental for the

reorganization of morphological structures during neurite growth.

The process of forming of neurites implies F-actin and microtubule

dynamics. Connections between the cytoskeleton and cholinergic

components were proposed by others [48]. Woolf proposed that

acetylcholine may direct consciousness through a cascade of effects

leading to a momentary phosphorylation of MAP-2 that interrupts

the binding of MAP-2 to microtubules and promotes a process

such as microtubular coherence [48]. Besides microtubuli, another

candidate would be the actin cytoskeleton, since events as growth

cone motility are mediated by changes in actin dynamics. It was

documented that the laminin receptor connectin is linked to the

actin cytoskeleton [49].

Not only laminin-1 is connected to the cytoskeleton, but also

AChE seems to have morphoregulatory effects on neurons,

fibroblasts and astrocytes [50]. Fibroblasts and astrocytes express

AChE with little catalytic activity that is functionally important for

polarized migration. The distribution of AChE at sites of

membrane protrusion in neurons, fibroblasts and astrocytes

reflects this role. In cortical neurons AChE is in the motile growth

cones and neurite branch points; migrating fibroblasts and

astrocytes show AChE specifically at sites of membrane protrusion.

The presence of AChE at neurite branch points indicates a possible

role in stabilising adhesion of a potentially fragile region, or in the

branching process itself [50].

Figure 3. Altered neurite lengths and cell morphology as a result of AChE overexpression or/and culture on laminin-1. Pictures show
immunostaining with an anti-a tubulin antibody. Low density culturing of cells led to the formation of three distinct morphologies, arbitrarily named
type I, II and III. Type I is characterized by the absence of neurites and a round cell body (A, D, G. J), type II has 1–2 neurites (B, E, H, K) and type III
resembles presents a bipolar neuronal morphology (C, F, I, L). Cultivation of cells on gelatine or poly-L-lysine coated surface had no effect on cell
morphology. Note that the cells on laminin-1 and AChE overexpressing cells on laminin-1 are bigger than AChE overexpressing cells only. Scale bar
(A–F) 50 mm, (G–L) 100 mm.
doi:10.1371/journal.pone.0036683.g003
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Interaction of AChE with laminin-1 reduces its catalytic
activity
Unexpectedly for such a rapid enzyme as AChE, its active site is

located at the bottom of a deep and narrow cleft, named the

active-site gorge, lined by 14 conserved amino acid residues [51].

A second site, the PAS, surrounds the entrance to the active- site

gorge, and is thought to play a role in the attraction and

channeling of acetylcholine towards the active site [52]. The PAS

has also been proposed to be involved in heterologous protein

associations occurring during synaptogenesis or upon neurode-

generation [32,53]. Two of the PAS residues, Tyr72 and Asp74, lie

on a large omega loop; part of the loop forms a section of the wall

of the active-site gorge, so that binding of the substrate on the

AChE surface is able to influence the conformation of the gorge.

Johnson and Moore [30] could demonstrate that laminin-1 binds

to this surface loop adjacent to the peripheral anionic site. Binding

of laminin-1 to this loop near to the entrance of the active site

could affect the AChE activity by blocking the access of the

substrate to the catalytic site. Laminin-1 is a large protein that

simply by binding to AChE can obstruct the entrance of ACh into

the gorge. However, if this is not the case, binding to this loop

might cause conformational changes of the protein, which are

shown to affect the catalytic activity of the enzyme. It was

confirmed that ligand binding to PAS at the enzyme surface leads

to a modulation of its catalytic activity [54,55].

AChE and laminin-1 together exert a more than additive
effect on neurite growth
With this work we could confirm that the synaptic form of

AChE including exon 6 has a neurite growth promoting function.

We could also identify that the membrane- anchored form of

AChE is more efficient in promoting neurite growth than the

soluble secreted form. As expected, laminin-1 had also an effect in

promoting neurite growth. But the novelty of this study is the fact

that both molecules have together a more than additive effect on

neurite growth. This suggests that the interaction of the two

molecules is involved in regulation of neurite length in neural

precursor cells.

There is clear evidence indicating a non-cholinergic involve-

ment in fiber growth: De Jaco et al. [12] observed AChE-mediated

neurite outgrowth in a cell line lacking acetylcholine, AChE

inhibitors would not affect neurite growth in chick retinal neurons,

but AChE overexpression will increase it [5]. Unfortunately, not

much is known about the mechanism of AChE action. For

example, it was demonstrated that exogenous application of

acetylcholinesterase enhances neurite length by inducing an influx

of calcium in a non-hydrolytic manner [56]. Another possible

mechanism of regulation by micro RNAs (miRNAs) was reported.

AChE expression can be regulated by different microRNAs, with

one of the most prominent being miR132 [57]. miR132 is

expressed in neurons, and is involved in processes of neurogenesis,

regulating for example dendritic growth and arborisation in

newborn neurons of adult hippocampus [58].

Laminin-1 itself controls neurite growth by interacting with

integrins in both vivo and vitro [59]. A crucial role for integrin

signaling was revealed by Gupton and Gertler [47]. Laminin

activated integrin signaling which triggered the concomitant

switch in cytoskeletal (FAK and src) and exocytic (Arp2/3 and

VAMP7) machinery driving neuritogenesis [47]. It was postulated

that laminin exerts a context-dependent influence over cell shape

and behavior by inducing a coordinated switch in the cytoskeletal

and exocytic machinery used to initiate neurite formation.

We may speculate that AChE binds to laminin-1, produces

a signal that can enhance the affinity of laminin-1 for the a6b1
integrin receptor. The AChE binding site on laminin-1 is known

for its role in mediating cell adhesion, neurite outgrowth and

metastasis [60,61].

Mouse AChE was observed to bind to a discontinuous, largely

basic structure on the mouse laminin a1 G4 domain [61]. Other

studies [23] showed that the binding site on laminin-1 is located on

the N-terminal region of the b-chain and includes the G4 domain

and a part of the cysteine-rich domain G3. Integrin binding to

laminin requires three laminin globular domains, G1–3 in the

alpha chains [62]. However, laminin alpha chain monomers do

not show any significant activities for binding to integrins and

require heterotrimerization with beta and gamma chains to fully

exert their activities. The C-terminal region of laminin gamma

chains is critically involved in laminin recognition by integrins

[63]. It seems that both AChE and integrin bind to the same alpha

chain of laminin, but to different globular domains. We can only

Figure 4. Intracellular distribution of AChE activity in the 3
types of cellular morphology. Cell morphology, particularly so
neurite lengths are altered as a result of AChE overexpression and
culture on laminin-1. Pictures show merged view of Karnovsky Roots
(brown), immunostaining with an anti-alpha tubulin antibody (green)
and cell nuclei stained with DAPI (blue). Scale bar 50 mm. Table: AChE
overexpression stimulates the formation of type III morphology
(neuronal-like). Laminin-1 leads to a strong shift to the type I and type
II cells.
doi:10.1371/journal.pone.0036683.g004
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speculate that the interaction of both molecules at the same time is

structurally possible, or, if not, is a sequential one.

This study demonstrates that AChE-laminin interactions can

affect neurite (out)growth tremendously, rendering their in vivo

significance(s) highly likely.

Materials and Methods

Plasmids, proteins
The following plasmids were used during this study: pcDNA3-

AChE mouse (includes part of exon 1 and exons 2, 3, 4, and 6),

encoding the catalytic subunit of mouse tetrameric and asymmet-

ric form of acetylcholinesterase, pcDNA3-AChE R395C [42]

encodes a mutated form of AChE that leads to the retention of the

protein within the cell (both plasmids were a generous gift of Dr. P.

Taylor); pCMS-EGFP (Clontech, Germany) encodes the en-

hanced green fluorescent protein; pcDNA3-PRiMA [64] encoding

the mouse PRiMA (proline-rich membrane anchor), encoding the

acetylcholinesterase anchor in the mouse brain, which was

a generous gift of Dr. Krejci.

RecombinantmouseAChEwas purified on affinity columns from

HEK293 cells overexpressing pcDNA3-AChE mouse with exon 6,

and was a generous gift of Prof. Palmer Tayor. Alternatively, E6-

AChE with a (his)6 tag was purchased from Sino Biological Inc.

Laminin-1 was purchased from Sigma, Germany. A scheme of used

plasmids is shown in Fig. 1C.

Figure 5. Measurements of neurite length in control and with AChE transfected or treated cells. (A) Neurites of type III cells (neuron-like)
are longer in AChE-transfected R28 than in control cells (open bars), and even much longer when they are grown on laminin-1 (dark bars). Note
drastic increase of neurite lengths in AChE-overexpressing cells grown on laminin-1 (upper, right). (B) Supplementation of cultures with recombinant
AChE leads to similar results; note, however increase in presence of AChE is more pronounced than in AChE-overexpressing cells (cf. upper). Neurites
of a-tubulin-labelled cells were measured using specific software. At least 100 cells from three different passages were measured and averaged. In the
case of stably transfected clones, only AChE-positive cells were included in the measurements. Values are mean 6 SEM from 5 different experiments,
*p,0.05, **p,0.01, ***p,0.001. (C) Immunostaining with an anti (His)6 Tag antibody (green) of R28 cells treated with (His)6 Tag E6-AChE. Cell nuclei
are stained with DAPI (blue). Scale bar 200 mm.
doi:10.1371/journal.pone.0036683.g005
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Plasmid purification, RT-PCR
For transfection, plasmid DNA was purified using the alkaline

lysis method. RNA was isolated using the RNeasy kit (Qiagen,

Germany) or TRI-ReagentH (Sigma, Gemany), following the

manufacturers protocol without modifications. 1 mg RNA per

sample was used to generate cDNA using AMV-reverse

transcriptase and oligo(dT)15 primer from Promega (Reverse

Transcription Kit, Promega). Primers used to amplify were for

GAPDH 59 TGT TCC TAC CCC CAA TGT GT 39, 59 TGT

GAG GGA GAT GCT CAG TG 39 (396 bp); AChE mouse 59

CAG CAA TAC GTG AGC CTG AA 39, 59 ATA CAG CTA

GGG GCT CGG GC 39 (414 bp); PRiMA mouse 59 ACA AGC

TTA TGC TAC TCC GG 39, 59 CAG AAT TCG CTCATG

TCC AC 39 (550 bp), integrin a6 59 CGG GAA CTT CCT GAA

AAA CA 39, 59 TTG TGG TAG GTG GCA TCG TA 39

(464 bp), integrin ß1 59 GAA CAG CAA GGG TGA AGC TC 39,

59 TTT CCA AAC CGT CAT GTG AA 39(390 bp) and

synthesized by Carl-Roth or Biomers.net (Germany). Cycle

parameters were 1 min at 95uC, 1 min at 55uC, 1.5 min at

72uC; PCR was run for 30–35 cycles.

Cell culture and transfections
R28, a rat retinal precursor cell line was generously provided by

Dr. G. Seigel [41]. The cells were cultured in Dulbecco’s Modified

Figure 6. PRiMA overexpression in a stably AChE-transfected R28 cell line localizes AChE to cell membrane and changes cell
morphology. Note strong AChE activity on membrane of PRiMA transfected cells, with multiple emanating short side processes (C, D), as compared
with more diffuse, but still localized AChE expression in control cells (A, B). (A–D) Karnovsky-Roots staining; all cells were grown on laminin-1. Scale
bar 50 mm. Fig. 6 (lower). Expression of PRiMA is strongly increased in cells overexpressing AChE, and more so in AChE plus PRiMA co-transfected
cells, as detected by RT-PCR. Total RNA of control, of AChE transfected, and of AChE plus PRiMA transfected cells was used for the analyses. Note:
GAPDH primers were used as internal control.
doi:10.1371/journal.pone.0036683.g006
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Eagle’s Medium (DMEM, Gibco) supplemented with 10% fetal

calf serum (FCS, Gibco), 1% L-glutamin, 20 units/ml penicillin

and 20 mg/ml streptomycin at 37uC and 5% CO2. Stably

transfected cells were cultured in the medium described above

supplemented with 400 mg/ml G418 (geneticin, Sigma, Germany).

The cells were seeded on 25 cm2 culture flasks or on glass cover

slips. For laminin culturing, the flasks and coverslips were

incubated for one hour with 5 mg/ml laminin-1 (Sigma) at

37uC. Parallel controls were run with flasks coated with poly-L-

lysine or gelatin to avoid unspecific effects of the coating.

AChE, AChE R395C and PRiMA cDNAs were cloned in

pcDNA3 which contains the neomycin gene under the control of

the SV40 promoter for selection of stable transfectants. R28 cells

were transfected at 60% confluence with 12 mg plasmid DNA,

using RotiHfect and following the manufacturer protocol (Carl

Roth, Germany). Neomycin resistant clones were selected by

incubation for up to 1 month in the presence of 1 mg/ml G418,

and isolated clones screened by cholinesterase activity test for

elevated AChE. Stably transfected GFP clones were selected by

control of the fluorescence and further subculturing of the green

fluorescent colonies.

Cell extracts and acetylcholinesterase activity
measurements
Cells cultured in flasks were rinsed once with phosphate

buffered saline and collected by mechanical dislodging. The cells

were centrifuged and the proteins were extracted in Tris-HCl,

pH7.5, containing 0.1% Triton X-100 and 1 ml/ml protease

inhibitors (Protease inhibitor cocktail, Sigma). Cells were in-

cubated 10 min on ice and sonicated for 2 times 30 seconds,

followed by centrifugation for 10 min at 14000 rpm and 4uC. The
supernatants were used for activity measurements.

Supernatants and media were collected and assayed for AChE

activity using of 3 mM acetylthiocholine, plus 0.1 M Ellman

buffer pH 8.0, and 0.6 mM DTNB in 500 ml final volume at

412 nm and 25uC [65]. Where iso-OMPA was used to inhibit

activity, lysates were incubated in the presence of iso-OMPA for

6 min prior to substrate addition. OD was measured using

a BioMate3 Spectrophotometer (Thermo Electronic, Germany)

and activity was calculated with the help of the VISIONlite

program Version 2.1 under the Quant Modus. Both media and

cell-associated AChE activity were then normalized to the total

cell protein content measured by Bradford [66]. All assays were

carried out at least in triplicates. Possible interference of the lysis

buffer and substrate autolysis was eliminated using different

combinations of blank measurements.

Immunohistochemistry, Karnovsky and Roots staining
and microscopy
Parental R28 and AChE stably expressing cells were plated on

glass coverslips, either not treated or coated with laminin-1and

grown overnight in Dulbecco’s modified Eagle’s medium. Cells

were fixed in 4% paraformaldehyde-PBS for 30 min at room

temperature, washed and labeled for immunofluorescence. Briefly,

anti-alpha tubulin monoclonal antibody (Sigma, Germany) was

diluted at 1:300 in phosphate buffered saline containing 5%

bovine serum albumin (incubation for three hours at room

temperature). Anti mouse (His)6 Tag antibody (Dianova) was

diluted at 1:100 in PBS or PBST and incubated for 3 h at room

temperature. Cy2- or Cy3-conjugated rabbit anti-mouse second-

ary antibodies (Dianova, Hamburg) were diluted 1:500 (incubation

for one hour at room temperature). Finally, the sections were

washed three times in PBS and the cell nuclei were stained with

DAPI (0.1 mg/ml 49,6-diamidine-2-phenylindol-dihydrochloride

in PBS) for 1 min at room temperature. AChE histochemistry

was used in order to follow the cholinesterase expression at the

cellular level [67]. The glass coverslips were incubated for 10 min

in 0.1 M Tris-maleate buffer, pH 6. After the equilibration step,

the sections were incubated for up to 60 min in 0.1%

acetylthiocholine, 0.1 M C6H5Na3O7X2H2O, 30 mM CuSO4,

5 mM K3Fe(CN)6 in Tris-maleate buffer. For cells transfected with

AChE R395C, incubation time was extended to 6 hours.

The stainings were documented using a Zeiss Axiophot

microscope with DIC (Nomarski) and fluorescence optics. Photo-

micrographs were taken using an Intas camera and a computer

program (Diskus 1280,CHHilgers,Königswinter). The figures were

produced using Adobe Photoshop 7.

Quantitative morphological analysis of neurite
outgrowth and statistics
At the end of each incubation, cells plated on coverslips were

fixed in 4% formaldehyde, permeabilized in 0.2% Triton X- 100,

labeled with an anti-alpha-tubulin antibody (Sigma Aldrich,

Germany) and mounted on microscope slides. The analysis was

carried out blind; neurons whose processes were intermingled with

those of neighboring cells were excluded from the analysis. Neurite

length was measured from the point of emergence at the cell body

to the tip of each segment. In each experiment, three coverslips per

treatment were analyzed.

The total length of each neurite was calculated by Diskus 1280.

Statistical analyses were performed with the aid of GraphPad

Software. Values are presented as means6 standard error (SE) of at

least triplicate experiments. Statistical analyses for all experiments

were performed by one-wayANOVA, followed byTukeyHSD tests

or by Students t-test. Values of p,0.05 were considered statistically

significant.
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Figure 7. Comparison of neurite length of AChE and AChE+-
PRiMA overexpressing cells grown in presence (dark bars) or
absence (white bars) of laminin-1. Note that there are no
significant differences in neurite length of AChE and AChE+PRiMA
overexpressing cells.
doi:10.1371/journal.pone.0036683.g007
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