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Abstract

Are extant proteins the exquisite result of natural selection or are they random sequences slightly edited by evolution? This
question has puzzled biochemists for long time and several groups have addressed this issue comparing natural protein
sequences to completely random ones coming to contradicting conclusions. Previous works in literature focused on the
analysis of primary structure in an attempt to identify possible signature of evolutionary editing. Conversely, in this work we
compare a set of 762 natural proteins with an average length of 70 amino acids and an equal number of completely random
ones of comparable length on the basis of their structural features. We use an ad hoc Evolutionary Neural Network
Algorithm (ENNA) in order to assess whether and to what extent natural proteins are edited from random polypeptides
employing 11 different structure-related variables (i.e. net charge, volume, surface area, coil, alpha helix, beta sheet,
percentage of coil, percentage of alpha helix, percentage of beta sheet, percentage of secondary structure and surface
hydrophobicity). The ENNA algorithm is capable to correctly distinguish natural proteins from random ones with an
accuracy of 94.36%. Furthermore, we study the structural features of 32 random polypeptides misclassified as natural ones
to unveil any structural similarity to natural proteins. Results show that random proteins misclassified by the ENNA
algorithm exhibit a significant fold similarity to portions or subdomains of extant proteins at atomic resolution. Altogether,
our results suggest that natural proteins are significantly edited from random polypeptides and evolutionary editing can be
readily detected analyzing structural features. Furthermore, we also show that the ENNA, employing simple structural
descriptors, can predict whether a protein chain is natural or random.
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Introduction

The question whether extant proteins are the exquisite result of

natural selection or rather they represent random co-polymers

slightly edited by evolution has stirred an intense discussion for the

last twenty years for its implications in origin of Life [1],

macromolecule aetiology [2,3] and evolution at large [3–5].

From the molecular point of view, protein evolution can be

viewed as a search and optimization process in the sequence space

to identify suitable sequences capable to fulfill a functional

requirement. In addition, any biological requirement (i.e. catalysis,

binding, structure) must be viewed as a multi-objective problem so

that any functional protein is a trade-off solution to different

problems such as function, solubility, stability and cellular

environment (i.e. interaction with other proteins). Thus, extant

proteins can be considered as a highly specific output of a long and

intricate evolutionary history and accordingly they are as unique

as the evolutionary pathway that produced them.

This perspective has been challenged by several authors who

raised the problem of whether and to what extent proteins are the

unique product of evolution or a sheer accident [4]. The rational

beyond this argument relies on the vastness of the sequence space

which grows exponentially with the length of the protein. This

space is so astronomically big that an exhaustive search and

optimization is impossible [5,6] and therefore some randomness

seems inevitable during the evolutionary process. Furthermore,

some authors put forward the notion that extant proteins are the

mere output of a contingent process dictated by the simultaneous

interplay of several independent causes so that extant proteins can

be regarded as simply a frozen accident [1].

Ptitsyn was the first to argue against the common tenet that

proteins are the result of a directed selection in the course of

biological evolution. In his work he suggested that typical three-

dimensional structures of globular proteins are intrinsic features of

random sequences of amino acid residues. Therefore, Ptitsyn

concluded that primary structures of proteins are ‘‘mainly

examples of random amino acid sequences slightly edited in the

course of biological evolution to impart them some additional

(functional) meaning’’ [7–9]. This hypothesis was corroborated by

Weiss and Herzel who investigated possible correlation functions

in large sets of non-homologous protein sequences. They found

that correlation in protein primary sequences are weak and do not

significantly differ from those found in random surrogates [10]. In
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a later work the two authors studied the complexity of large sets of

non-redundant proteins and a dataset of randomly generated

surrogates by a number of different estimators to measure the

Shannon entropy and the algorithmic complexity. Their results

show that proteins are fairly close to random sequences, indeed

natural proteins have approximately 99% of complexity of

random surrogates with the same amino acids composition. These

results support the idea that protein primary sequences can be

regarded as slightly edited random strings [11]. The same general

conclusions were drawn by other authors who approached the

same problem from a different prospective. Crooks and Brenner

attempted to unveil correlation between protein secondary

structure and amino acids content in primary sequences. Results

supported the conclusion that correlations at primary sequence

level were essentially uninformative and that the protein sequence

information content could be effectively explained assuming

a random model of protein generation [12]. Lavelle and Pearson

investigated whether folding constraints and secondary structure

preferences significantly bias amino acid composition and usage in

proteins. Authors compared the frequencies of four- and five-

amino acid stretches in a non-redundant proteins dataset to the

frequencies expected for random sequences generated with four

independent models. Their results showed that amino acid

stretches do not appear to be significantly biased, indeed primary

sequences appear to be ‘‘under very few constrains, for most part,

they appear random’’ [13].

These results support the conclusion that primary structures of

extant proteins are basically random amino acid sequences which

have only been ‘‘edited’’ and ‘‘refined’’ during biological evolution

in order to acquire stability and function.

In despite of these results, other authors came exactly to the

opposite conclusion. Panke and co-workers attempted to highlight

subtle deviations of extant protein sequences from pure random-

ness by mapping protein sequences onto a one-dimensional space

by decoding proteins primary sequences using chemico-physical

descriptors such as Coulomb interaction, hydrophobic/hydrophil-

ic interaction and hydrogen bonding [6]. Using these three

different descriptors, authors found pronounced deviations from

pure randomness. Authors reasoned that these deviations are

evidence for a physically driven stage of evolution. In particular,

authors advocate that these deviations seem directed toward

minimization of the energy-frustration of the three-dimensional

structure which witnesses a clear evolutionary fingerprint.

Munteanu and co-workers [14] used a Randic’s star network to

convert protein primary structure into topological indices which

describe a real protein as a network of amino acids (nodes)

connected by peptide bonds (arches). Authors compared two sets

of proteins: a set of 1046 natural protein chains derived from the

CulledPDB [15] and a second dataset with the same size of

random amino acid sequences. Authors developed for the first

time a simple classification model based on statistical linear

methodologies capable to effectively classify natural/random

proteins with a remarkable predictive ability of 90.77%. Thus,

the works by Pande and Munteanu suggest that extant proteins are

indeed significantly different from random co-polymers and

natural sequences do display a clear evolutionary signatures.

By and large there is a robust body of literature specifically

addressing the question of whether extant proteins are significantly

edited from random polypeptides or rather they ‘‘represent

memorized random sequences’’, however these works come to

contradicting conclusions and fail to provide a conclusive answer.

Despite the different findings, all these works share a common

feature: they attempt to tackle the question by investigating

proteins primary sequences.

Conversely, in this work we extend and refine a previous study

[16] by comparing a set of 762 natural proteins with an average

length of 70 amino acids and an equal number of completely

random ones of comparable length on the basis of their structural

features. The rationale beyond is that, in the vast majority of cases,

proteins exert their physiological functions by virtue of their 3D

shape, thus any possible signature of evolutionary editing should

be searched at the level of the tertiary structure rather than at the

level of the primary one. Toward this goal, we employed 11

different structure-related variables to develop an Evolutionary

Neural Network Algorithm (ENNA) capable to correctly distin-

guish natural proteins from random ones with an accuracy of

94.36%. Besides, the analysis of the structural and functional

features of some random polypeptides misclassified by the ENNA

algorithm as natural ones revealed a significant structural

homology to extant proteins.

All together, our results suggest that natural proteins are

significantly edited from random polypeptides and evolutionary

editing can be readily detected analyzing structural features.

Furthermore, we also show that the Evolutionary Neural Network

Algorithm employing simple structural descriptors can predict

whether a protein chain is natural or random.

Results

We initially investigated a set of 902 natural proteins (Nat)

whose tertiary structure was experimentally resolved (either by

NMR or X-ray) and a set of 20494 completely random protein

(Rnd) sequences generated using a uniform amino acid frequency

distribution with no significant homology to natural ones. The Nat

dataset was derived from the Protein Data Bank [17] and

composed of natural proteins with experimentally resolved 3D-

structure and an average length of 70 amino acids (within a range

of 55 to 95 amino acids) comparable to the length of Rnd (70

amino acids long sequences). The dataset was cleaned up to

eliminate protein fragments and proteins involved in the ribosomal

complex. The analysis of the Nat dataset showed that there is

a comprehensive representation of proteins fold types, even though

proteins with extended beta-sheet are under-represented due to

length constraints.

Eleven different structure-related variables were calculated for

both data sets: net charge, volume, surface area, coil, alpha helix,

beta sheet, percentage of coil, percentage of alpha helix,

percentage of beta sheet, percentage of secondary structure and

surface hydrophobicity. The structure-related variables were

calculated directly from the PDB file for the Nat dataset, whereas

the same variables were computed from tertiary structure models

for the Rnd dataset.

First, we performed a pre-processing of the data to remove the

outliers that could affect subsequent analysis. Outliers were

identified as those proteins with one or more structure-related

variables markedly deviating from the average. In our case, we

considered as outlier any protein with one or more structure-

related variables falling in the tail of estimated probability

distribution (i.e. p,0.005 and p.0.995). In our sample, we

detected 140 natural proteins and 2029 random proteins with one

or more structure-related variables markedly deviating from the

estimated average. These proteins were removed reducing the

number of the observations to 18465 for the set of random

proteins and to 762 for the set of natural proteins. The two dataset

were considerably different in size, with random proteins largely

outnumbering the natural ones; thus in order to avoid any possible

bias we performed the analyses using a random sample of

Natural vs. Random Proteins Classification
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observations drawn from the random proteins equal to the size of

the Nat dataset (i.e. 762).

A first exploratory data analysis was carried out to assess

whether there were any significant difference in the structure-

related variables observed in the two data-sets. First, we performed

a Gaussian distribution test for every individual variable which led

to reject the hypothesis of Gaussianity with a test significance level

of 0.01 for all variables except for percentage of secondary

structure and surface hydrophobicity for the natural dataset and

surface hydrophobicity and surface area for the random protein

dataset. For all variables we derived measures of location, index of

dispersions, correlations matrix, in addition boxplots and scatter

plots were built to compare the two data sets. Statistical analyses

highlighted that both mean and variance were significantly

different for all variables with a test significance level of 0.01

except for variables coil, percentage coil and surface area (Table 1).

The first striking outcome is that in general natural proteins show

a broader distribution with respect to random ones for most of the

variables investigated (Figure 1 and 2). This general feature can be

explained considering that random proteins represent statistical

copolymers and therefore their structural features are centered

around the mean with a variance equal to the one expected by the

correspondent probability density function. Conversely, natural

proteins structure-related variables significantly depart from

expected values due to the tuning effect of natural selection. We

computed scatter plots for the two classes of proteins for each

variables pair (Figure 3). The scatter plots’ centroids generally

overlap for the two datasets. Conversely, their distributions in the

2D plot are remarkably different, with natural proteins more

broadly dispersed. This observation supports the idea that natural

evolution has extensively refined proteins’ structural and chemo-

physical properties to meet functional requirements.

The significant differences of the structural features between the

two datasets prompted us to develop a classification method

capable of distinguish the natural proteins from random ones. In

this work we employed a Evolutionary-based Neural Network

classification Algorithm referred as ENNA [18], which evolves

populations of neural networks where the inputs are the structure-

related variables and the output is the class of the protein (Nat or

Rnd). Briefly, ENNA generates a first random population of

networks with the topology of a 2-hidden layers neural networks.

This population is formally described as a set of sequences with

dichotomic variables (each sequence is a vector of zeros - ones

values) representing the input of each network. Each element of

the sequence describes the presence or the absence of a particular

structure-related variable. The topology of these networks, in-

volving different variable compositions, was selected in a random

way (first generation of networks), and the response of each

network was derived with a two classes structure: natural and

random proteins. The process then builds a genetic algorithm to

evolve the population of networks in a number of generations to

identify a precise classification rule. We evaluated the response of

each network deriving a net misclassification rate by 10-fold cross

validation procedure: the sequences with smaller values are

identified as the more promising solutions. Then we applied to

the network population the classical genetic operators, such as

natural selection, crossover and mutation, in order to achieve the

next generation of promising sequences. At the end of the

evolutionary process we achieved the population of Neural

Networks with the smaller misclassification rates. The analysis of

the last population of Neural Networks revealed that only a limited

number of structure-related variables were required to correctly

classify the two dataset, namely: Volume, Coil, Alpha, and Surface

hydrophobicity. These variables had a probability close to 1 to

occur in the last population, thus they can be considered robust in

correctly classifying the response (i.e. the Nat-Rnd class). Using

these variables, we built a Neural Network to process the whole

data by achieving a rate of correct classification of 94.36%.

The analysis of structure-related variables employed by the

Neural Network is coherent with the descriptive statistical

characteristics of variables distributions. In particular, alpha helix

content (Figure 1a) and volume (Figure 2b) follow a bell-like

distribution in the Rnd dataset. Conversely, the two structural

features have a uniform-like distribution in the Nat ensemble. Two

important insight emerged from this classification. First, it is

possible to effectively identify the two different classes of proteins

with a high degree of confidence. Second, a number of random

proteins, 32 sequences, are erroneously classified as natural ones.

Table 1. Average values of the structure-related parameters.

Variable Name Mean Standard deviation

Natural Artificial p-value1 Natural Artificial p-value2

Net charge 0,7100 0,0591 0,0023 5,335634 3,753989 < 0

Volume 8706,4310 9279,6090 < 0 1067,166 356,8877 < 0

Surface 3952,0580 3951,5030 0,0383 603,5493 237,2047 < 0

Coil 18,0276 17,7349 0,7493 9,03813 6,887919 < 0

Beta 14,7192 7,4567 < 0 12,33831 4,236918 < 0

Alpha 23,3032 34,5538 < 0 17,71133 7,646621 < 0

% Alpha 33,8530 49,3625 < 0 25,9784 10,92395 < 0

% Beta 21,3976 10,6532 < 0 17,86945 6,052317 < 0

% Coil 26,0394 25,3356 0,3870 12,77989 9,839893 < 0

% Secondary structure 55,2100 60,0151 < 0 17,92994 10,10049 < 0

Surface hydrophobicity 0,3568 0,3738 < 0 0,0695038 0,05349438 < 0

1evaluated by Wilcoxon test.
2evaluated by Fligner-Killeen test.
Average values of the structure-related parameters were calculated for natural proteins and random ones. Both mean and variance were significantly different for all
variables with a test significance level of 0.01 except for variables Coil, % Coil and surface area.
doi:10.1371/journal.pone.0036634.t001

Natural vs. Random Proteins Classification

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36634



Natural vs. Random Proteins Classification

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e36634



This observation prompted an in-depth investigation of the

structure of those random proteins misclassified as natural ones.

The fold analysis of random proteins misclassified by the ENNA

algorithm showed that random polypeptides can adopt a great

variety of conformations spanning from all-alpha to all-beta

through complex mixed-folds. However the most representative

fold we found was by far the all-alpha motif in approximately 32%

of the proteins analyzed. Interestingly, the all beta fold was

scarcely present accounting only for 3%. This result can be

explained assuming that the average length (70 amino acids) of the

random polypeptides does not suffice to construct a complete all-

beta structure. On the other hand, one could advocate that the

structural requirements for a beta-sheet formation (such as flatness,

rigidity and pairing of beta strands far away from each other along

the amino acid sequence) poses a number of constrains that cannot

be met in completely random sequences, as already suggested in

a previous study [16].

We also investigated whether misclassified random proteins

assumed well-defined three-dimensional folds that show any

resemblance to natural ones by assessing structural similarity

using the DALI server [19] (http://ekhidna.biocenter.helsinki.fi/

dali_server/).

We identified 29 random proteins among the 32 misclassified by

ENNA, which showed a general fold similarity, if not almost equal,

to portion or sub-domains of natural proteins. In some cases the

whole proteins were considerably similar to known natural

proteins. The average RMSD obtained between the target protein

and the query was characterized by a low value, equal to 3 Å. In

addition, DALI ranked the results through the utilization of a Z-

score which quantifies the ‘‘significant similarities’’ between two

proteins. This value is an estimation of A) structural homology and

B) sequence homology, and in general it strictly depends on the

size of the query protein. As a reference point a Z-score value

lower than 2 must be considered as a spurious result [19]. The

obtained RMSD and Z-score values, in general good, should be

perceived as exceptional if we consider the completely random

nature of these proteins. In the entire misclassified subset, 22

proteins have a Z-score greater than 2; a value greater than 4 was

found for the proteins A00927 and A00084. The protein A00927

is characterized by having the highest Z-score associated, equal to

4.4. The protein, is a large anti parallel beta-sheet, structurally

related to the uracil-DNA glycosylase inhibitor protein (PDB code

1UUG chain B) with which it shares 9% sequence identity. The

superposition (Figure 4a) reveals a high degree of structural

homology on the central beta sheet spanning amino acids (W38-

R68 of the random protein and I41-L84 of the natural one), good

confidence was found also for a short alpha-helix present in the

model and in the natural protein over amino acids (F16-L21 of the

random protein and N3-G13 of the natural one) (Figure 4b). Due

the diversity in the amino acid sequences is reasonable to assume

that the synthetic protein A00927 does not show inhibitory

activity. Similar results were obtained for the protein A00084

(Figure 5). The model appears to be structurally related to

Pyrobaculum aerophilum splicing endonuclease (PDB code 2ZYZ

chain A) (Z-score 4.3 and 5% of sequence identity). Also in this

case DALI was able to identify a significant structural similarity. In

general we can affirm that the biggest differences observed

between our models and the natural proteins selected by DALI,

could be attributed to the relative short length of the synthetic

random polypeptides studied. As for the A00927 protein, the

different amino acid sequence does not allow to conclude that

protein A00084 has any endonuclease activitiy. Further investiga-

tions are necessary to clarify this aspect.

In order to corroborate these results we also verified that

random proteins properly classified as non-natural did not show

any significant structural similarity to natural ones. We analyzed

32 random proteins correctly classified as non-natural and

analyzed their structural features using the same procedure

employed for the misclassified subset. Properly classified random

proteins display to lesser extent folds similar to natural proteins

with an average Z-score of 1.7, significantly different from the

average Z-score of random proteins misclassified as natural

(Table 2).

All together, these results show that our algorithm is capable of

effectively discriminate random protein from natural ones and that

random proteins misclassified as natural by the ENNA algorithm

display structural features strikingly similar to natural proteins.

Discussion

Are extant proteins the exquisite result of natural selection or

are they random sequences slightly edited by evolution? We

address this question for the first time by comparing a set of 762

natural proteins and an equal number of completely random ones

on the basis of their structural features. The first striking results is

that random proteins do possess structural features comparable to

those of natural proteins. However, the statistical indicators, such

as mean and variance, of these structural-related variables

significantly differ from those of naturally evolved polypeptides.

In particular, random proteins show a narrower distribution with

respect to natural ones. This can be regarded as a general feature

of random amino acid polymers and it can be explained

considering that random proteins represent statistical copolymers

and therefore their structural features are centered around the

mean with a variance equal to the one expected by the

correspondent probability density function. Conversely, natural

proteins display different mean and variance values, the latter

being generally broader than the one of random proteins, due the

result of the selective pressure that shaped natural protein

structural features, leading to a deviation from expected values

typical of statistical copolymers. This observation supports the idea

that natural evolution has extensively refined proteins structural

and chemo-physical properties to meet structural/functional

requirements. In this regard, extant proteins cannot be regarded

as simple edited random polypeptides, rather they clearly show the

signature of selective pressure.

The differences are so remarkable that we were able to build

a classification algorithm which effectively distinguishes natural

proteins from random ones with an accuracy of 94.36%. In

addition, random proteins misclassified as natural ones are

characterized by structural similarity to natural proteins. In

particular, misclassified random proteins exhibit a significant fold

similarity to portions or subdomains of extant proteins at atomic

resolution.

These results support the idea that random polypeptides do

possess intrinsic structural features that render them particularly

suitable for natural selection. In particular, secondary structure

elements and well-defined folds are readily detected among

Figure 1. Descriptive statistics of the structural properties of random and natural proteins. Descriptive comparison of natural and
random proteins by means of: boxplot of the variables distribution in the two classes (top) and histogram of the variables distribution with the
corresponding Kernel density estimate (bottom).
doi:10.1371/journal.pone.0036634.g001
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completely random proteins. These intrinsic structural character-

istics are then systematically tuned and shaped by the action of

evolutionary optimization. This scenario is consistent with

experimental results which show that compact and thermody-

namically stable proteins can be easily found screening small

libraries of completely random sequences by phage display [20]

and functional proteins can be selected in vitro [21,22] or in vivo

[23] from random sequences libraries in relatively few evolution-

ary cycles. A similar scenario has been proposed also for other

biopolymers such as single-stranded RNA [24,25].

Our results suggest that random proteins are significantly

different from extant ones, yet they display inherent conforma-

tional order which derives from chemico-physical constrains rather

than from natural selection. This intrinsic order represents a ‘‘free-

ticket’’ to start the adaptation process to specific functions and

environments.

Materials and Methods

Random Protein Sequence Generation
Random sequences employed for this study were generated

using the RandomBlast algorithm described elsewhere [26]. The

RandomBlast algorithm consists of two main modules: a pseudo

random sequence generation module and a Blast software

interface module. The first module uses the Mersenne Twister

1973 pseudo-random number generation algorithm [27] to

generate pseudo-random numbers between 0 and 19. To each

amino acid is assigned a fixed number and single amino acids are

then concatenated to reach the sequence length of 70 amino acids

used in this work. Each generated sequence is then given in input

to the second RandomBlast module, an interface to the Blast

blastall program which invokes the following command:

blastall -m 8 -p blastp -d database -b 1;

where database in our case stands for the NR database [28,29],

and the parameters –m 8 and –b 1 indicate the alignment format

(tabular form) and the number of sequences to be returned (just

the first hit), respectively. In our case we regard as valid only the

protein sequences that do not display significant similarity to any

natural protein present in the database. In other words, contrary

to the normal Blast usage, Randomblast consider as valid only

completely random sequences. The sequence length of 70 amino

acids was chosen as a good compromise between the computa-

tional requirements and the scientific investigation.

In silico Random Proteins Structure Prediction and Fold
Analysis

The three-dimensional model structures of random proteins

were predicted using Rosetta Abinitio, an ab initio protein

structure prediction software based on the assumption that in

a polypeptide chain local interactions bias the conformation of

sequence fragments, while global interactions determine the three-

dimensional structure with minimal energy [30]. For each

sequence 20.000 decoys were predicted. The decoys were

clustered using the Rosetta clustering integrated module. Only

the first model proposed for each sequence was taken into

consideration. Detailed fold analysis was conducted only for the 32

proteins misclassified by ENNA. The DALI protein structure

database searching web server was used [31]. The output of DALI

Figure 2. Descriptive statistics of the structural properties of random and natural proteins. Descriptive comparison of natural and
random proteins by means of: boxplot of the variables distribution in the two classes (top) and histogram of the variables distribution with the
corresponding Kernel density estimate (bottom).
doi:10.1371/journal.pone.0036634.g002

Figure 3. Scatter plot of the structural properties. Overlap of the scatterplots for the two classes of proteins for each variable pairs. Random
proteins are represented in green, Natural ones are represented in red.
doi:10.1371/journal.pone.0036634.g003
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is characterized by a long list of putative results, ranked by RMSD

and Z-score. Only the best candidate ranked by Z-score was

considered.

Statistical Analysis of the Data
The statistical analyses were performed using the R-project free

software environment for statistical computing and graphics (www.

r-project.org), version R 2.10.1 GUI 1.31 Leopard build 32-bit.

We performed the explorative analyses by using the standard stats

package. We tested the Gaussianity assumption for the variables

by calculating the Shapiro test. We compared the mean and the

variance of each variable distributions in the two classes of the

proteins by using non parametric tests, namely the Wilkoxon test

for the mean and the Fligner-Killen test for the variance.

The Evolutionary Neural Network Algorithm
ENNA is built in R environment by combining functions of the

package RWeka [32], version 0.4–1, and of the package genalg,

version 0.1.1. More specifically, we generated a first random

population of networks with the topology of a 2-hidden layers

neural networks by using the function make_Weka_classifier [32]

fixing a MultilayerPerceptron interface function. The nodes in the

Figure 4. Superimposition of model A00927 and 1UUG. Schematic representation of the superposition of model A00927 (light blue) and the
uracil-DNA glycosylase inhibitor protein (red) (PDB code 1UUG chain B). a) Front view, b) back view.
doi:10.1371/journal.pone.0036634.g004

Figure 5. Superimposition of model A00084 and 2ZYZ. Schematic representation of the superposition of model A00084 (orange) and the
Pyrobaculum aerophilum splicing endonuclease (light blue) (PDB code 2ZYZ chain A). a) front view, b) top view.
doi:10.1371/journal.pone.0036634.g005
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network are sigmoid and learning rate for the parameters updates

was fixed to 0.3. The population was formally described as a set of

sequences with dichotomic variables (each sequence is a vector of

zeros - ones values), representing the input of each network. Each

element of the sequence described the presence or the absence of

a particular structural component of a protein in terms of the

variables considered in the analysis. The topology of these

networks, involving different variable compositions, was selected

in a random way (first generation of networks), and the response of

each network was derived with a two classes structure: natural and

random proteins. We then built a genetic algorithm by using the

function rbga.bin{genalg} to evolve the population of networks in

a number of generations to identify a precise classification rule. We

evaluated the response of each network deriving a net mis-

classification rate by 10-fold cross validation procedure: the

sequences with smaller values were identified as the more

promising solutions. Then we applied to the network population

the classical genetic operators, such as natural selection, crossover

and mutation, in order to achieve the next generation of promising

sequences. In particular we adopted a roulette wheel selection

method, where the probability that each sequence (representing

a specific neural network topology) to be selected is proportional to

its fitness score, namely its misclassification rate. The next

population was achieved by applying a single point crossover

method and a mutation operator. In particular, the crossover

method was used in a way that a point of exchange was randomly

Table 2. Overview of the structural analysis of classified random proteins.

Random proteins misclassified as natural Random proteins correctly classified as non-natural

Random Protein ID Natural Protein Hit RMSD (Å) Z-score Random Protein ID Natural Protein Hit RMSD (Å) Z-score

00927 1ugg-B 2,5 4,4 00060 2fu2-A 2,9 3,5

00084 2zyz-A 2,9 4,3 00145 2zrr-A 3,6 3,5

00707 1w36-F 1,8 4,1 00070 1utx-A 2,7 2,8

00637 2it3-B 3,0 4,0 00080 1zgh-A 3,4 2,8

00905 21ah-A 3,8 4,0 00001 1bgw-A 3,9 2,6

00198 2ugi-B 2,9 3,8 00090 2zkm-X 2,7 2,6

00403 3kii-A 2,8 3,8 00095 2zlm-A 3,1 2,6

00135 3gtd-D 3,0 3,6 00130 2vlg-C 3,2 2,6

00229 3rk6-A 2,8 3,5 00055 2c41-B 3,3 2,5

00282 3qwh-A 3,4 3,5 00025 1sfu-A 4,2 2,3

00727 2waq-E 3,2 3,3 00030 1f7u-A 3,4 2,2

00585 3qnm-A 2,8 3,2 00045 3oee-N 3,9 2,2

00612 3icy-A 3,1 3,1 00115 2ld7-B 4,6 2,2

00892 3p1v-A 3,2 3,1 00050 3e26-A 2,9 2,1

00165 1n61-B 3,5 2,6 00065 2i5u-A 4,0 2,1

00301 1wlz-D 2,9 2,6 00015 3tl2-A 3,5 1,8

00746 1th5-A 2,8 2,6 00136 3pe3-A 3,2 1,5

00514 1qyz 3,0 2,4 00150 1vfg-B 3,2 1,4

00766 3ef6-A 3,1 2,4 00010 3so8-A 2,9 1,3

00296 3sbl-B 3,1 2,3 00040 2vhv2-B 3,2 1,1

00797 1kh0-B 3,0 2,2 00110 2jvg-A 3,9 1,0

00906 3kcn-B 3,0 2,1 00005 1lol-A 2,9 0,9

00398 3bxj-B 2,8 1,6 00035 3kgo-B 3,8 0,9

00083 1lsh-A 4,0 1,5 00085 3p9x-A 3,3 0,8

00687 3n2o-A 3,3 1,5 00125 2lc0-A 2,8 0,8

00391 1s7o-C 3,1 1,4 00155 3nnq-A 3,8 0,3

00708 2ooy-A 3,4 1,4 00020 no chain n.a. n.a.

00343 2jge-A 3,4 1,3 00100 no chain n.a. n.a.

00499 1zql-C 4,0 1,2 00105 no chain n.a. n.a.

00174 no chain n.a. n.a. 00120 no chain n.a. n.a.

00236 no chain n.a. n.a. 00140 no chain n.a. n.a.

00102 no chain n.a. n.a. 00075 no chain n.a. n.a.

Mean 3,2 2,6 Mean 3,4 1,7

Dev Std 0,3 0,9 Dev Std 0,5 0,7

Fold recognition of classified and misclassified random proteins. Both mean and variance were significantly different for Z-score and RMSD variables with a test
significance level of 0.01.
doi:10.1371/journal.pone.0036634.t002

Natural vs. Random Proteins Classification

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e36634



set in the two individual sequences. Then, the mutation operator

was applied changing each element of the sequence with

a probability fixed to 0.01. Each population was composed of 30

sequences which evolve across 10 generations.
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