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Abstract

Secreted reporter molecules offer a means to evaluate biological processes in real time without the need to sacrifice
samples at pre-determined endpoints. Here we have adapted the secreted bioluminescent reporter gene, Metridia
luciferase, for use in a real-time viability assay for mammalian cells. The coding region of the marine copepod gene has been
codon optimized for expression in human cells (hMLuc) and placed under the control of the human b-actin promoter and
enhancer. Metridia luciferase activity of stably transfected cell models corresponded linearly with cell number over a 4-log
dynamic range, detecting as few as 40 cells. When compared to standard endpoint viability assays, which measure the
mitochondrial dehydrogenase reduction of tetrazolium salts, the hMLuc viability assay had a broader linear range of
detection, was applicable to large tissue culture vessels, and allowed the same sample to be repeatedly measured over
several days. Additional studies confirmed that MLuc activity was inhibited by serum, but demonstrated that assay activity
remained linear and was measurable in the serum of mice bearing subcutaneous hMLuc-expressing tumors. In summary,
these comparative studies demonstrate the value of humanized Metridia luciferase as an inexpensive and non-invasive
method for analyzing viable cell number, growth, tumor volume, and therapeutic response in real time.
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Introduction

High throughput cell viability and cytotoxicity assays are a

mainstay for the biologic and therapeutic community. Standard

cell viability assays quantify metabolically active cells through

dehydrogenase activity, which converts tetrazolium salts into

measurable colorimetric products [1,2]. Cell proliferation can also

be quantified by genomic incorporation of radiolabeled Thymi-

dine or 5-bromo-2-deoxyuridine [3]. These standard viability and

cell proliferation assays require cell lysis and therefore a

predetermined and optimized endpoint for each specific condition;

plus additional materials and steps for signal quantification. The

cost of these assays grows with the evaluation of temporal events,

where separate samples and controls are requiredre of these assays

grow with the ps for signal quantificationn of radiolabeled

thymidine ime basis and overcome the need for r for each

measured time point. Cytotoxicity assays can overcome the need

for cell lysis by measuring leaky dehydrogenase activity in the

supernatant, which escapes through the damaged membranes of

dead or dying cells [4,5]. However, the sensitivity of these assays is

generally limited to over 1,000 cells per multiwell plate and the

dynamic range of spectrophotometers. Given the limitations of

these cell viability and cytotoxicity assays, the application of stably

expressed reporters becomes practical for commonly used cell lines

and tumor models [6].

Secreted reporters provide a means to evaluate biologic events

in real time, thus allowing a flexible endpoint and overcoming the

need for multiple replicates of plates in time course studies.

Recently a naturally secreted luciferase was identified and cloned

from the marine copepod Metridia longa [7]. This 23 kilodalton

enzyme, Metridia Luciferase (MLuc), is attractive as a reporter

because it catalyzes a simple bioluminescent reaction which only

requires coelenterazine and oxygen. The product is a blue

bioluminescent signal (lmax = 480 nm) which is detected with

high sensitivity over a broad dynamic range in conventional

luminometers [7]. Since this discovery additional secreted

luciferase genes have been cloned, including MpLuc1 and

MpLuc2 from the related Metridia pacifica copepod and Gaussia

luciferase (GLuc) from the Gaussia princeps copepod [8,9]. All of

these secreted proteins have great promise as reporters for high

throughput and non-endpoint monitoring of biologic processes.

Here we have applied codon optimization of the reported MLuc

coding region [7] to generate a humanized version of Metridia

Luciferase, hMLuc. We then created a mammalian cell viability

reporter by placing the hMLuc gene downstream of the

constitutively expressed human b-actin promoter and enhancer,

incorporating the native first intron of the b-actin gene to facilitate

high level expression and efficient processing. The reporter system

was assessed in human and mouse cancer and cell line models.

The results support that the assay is inexpensive, highly sensitive,
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linear over a range of several logs, and applicable to a variety of

cell culture vessels. In addition, we studied the application of b-

actin driven hMLuc as an ex vivo reporter in tumor bearing mouse

models. The results confirm that serum does inhibit MLuc activity

but, contrary to previous reports [10], we reveal that hMLuc can

be detected as an ex vivo reporter in mouse tumor model systems.

Results

Metridia Luciferase Viability Vector
The human b-actin gene is one of the most highly active genes

in non-muscle mammalian cells and is a standard reference gene

for many biological assays. promoter for b-actin is well charac-

terized and consists of a core promoter and downstream enhancer,

which resides in the first intron [11,12]. strong promoter/

enhancer was applied to generate constitutive expression of the

secreted Metridia longa luciferase reporter. To ensure optimal

expression and translation, the MLuc coding region was human-

ized by codon optimization and engineered with a Kozak

consensus sequence and SV40 polyadenylation signal (Figure 1A).

The humanized coding sequence, hMLuc, has 75.3% sequence

identity with the copepod MLuc. The vector was designed to

produce a spliced transcript, where the b-actin intron 1 and

enhancer are removed, leaving only the coding region of the

bioluminescent reporter.

The resulting reporter vector, pDonor-hb-Actin-hMLuc, was

used to generate stable transfectants in several human (C4-2,

LNCaP, PC-3, HCT-116) and mouse (Tramp-C2) cell lines.

blasticidin selection and clonal isolation, individual clones were

evaluated for MLuc activity in cellular lysates and in the

conditioned media. Figure 1B reveals that the majority of the

MLuc activity was detected in the conditioned media, with little to

no detectible activity in the cell lysate. This demonstrates that the

humanized MLuc is efficiently transcribed, translated, and that

nearly 100% of the reporter is secreted into the media of

transfected mouse and human cell models.

Correlation of reporter activity with cell number
Two cell lines, LNCaP-hMLuc and TC2-hMLuc, were serially

diluted into multiwell tissue culture plates to determine the

correlation of MLuc activity to plated cell number. MLuc activity

was detectable in cell culture media containing as few as 40 cells

and the MLuc activity correlated linearly with cell number to the

highest concentration of cells tested (Figure 2A & B). A correlation

coefficient of 0.991 and 0.983 were obtained over a 4-log range for

LNCaP-hMLuc and TC2-hMLuc, respectively. Further studies

with stable HCT-116-hMLuc colon cancer cells and transiently

transfected HEK293 human embryonic kidney cells support the

sensitivity and linearity of this reporter assay (Figure S1;

Methods S1). This indicates that b-actin-driven hMLuc activity

may be a robust and highly sensitive real time assay for viable cells

number.

hMLuc Viability Assays
To directly compare the hMLuc viability assay to standard

tetrazolium salt based viability assays, LNCaP-hMLuc and TC2-

hMLuc cells were serially diluted over a range of 4-logs and plated

on standard 96-well tissue culture plates. Twenty four hours after

plating, cell viability of the same sample was evaluated by both 5-

(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazoly)-3-(4-sulfophe-

nyl)tetrazolium, inner salt (MTS) reduction, and by hMLuc

Viability Assay. Specifically, a fraction of the conditioned media

was acquired from each plate and quantified for MLuc activity,

while the remaining cells were quantified by MTS assay. Figure 3A

demonstrates that MLuc activity correlated linearly with TC-2-

hMLuc cell number (R2 = 0.998) over the full dilution range. The

MTS Assay signal was similarly linear for a portion of the dilution,

but lost linearity at the dilution extremes. When compared to

MLuc, the MTS assay did not show as broad a dynamic range as

the bioluminescent reporter assay. Similarly, in Figure 3B,

LNCaP-hMLuc cell number correlated linearly with MLuc

activity over the full dilution range tested (R2 = 0.998), whereas

the linear range of the MTS assay was limited to approximately

5,000 cells. It is important to note that these results do not indicate

that the MTS assay is not functional over a broad range of cell

densities; it merely demonstrates a limitation to the dynamic range

of MTS in a single assay. MTS substrate concentration and

incubation time may be modified for optimum linearity in a lower

or higher cells density samples; however, this will require multiple

plates and optimization at each cell density extreme.

Another limitation of standard viability assays is the format in

which it can be applied. For example, it would be difficult and

expensive to quantify the number of viable cells in a large tissue

culture flask or roller bottle by MTS reduction. Here we assessed

the accuracy of secreted hMLuc to quantify cell number in larger

tissue culture vessels by serially diluting LNCaP-hMLuc cells into

25 cm2 screw top tissue culture flasks. Media and cells were then

harvested after 24 hours. Viable cell numbers were counted on a

standard hemocytometer by trypan blue exclusion and correlative

hMLuc levels were measured by MLuc assay. The results confirm

a direct linear correlation (R2 = 0.998) of MLuc activity with viable

cell number (Figure 3C). Thus, the hMLuc viability assay could be

applied to assess long term cell growth and viability in a variety of

cell vessels.

Real time quantification of cell growth and therapeutic
effect

We next applied the hMLuc viability assay to follow cell growth

and therapeutic effect in an androgen receptor (AR) targeted

therapeutic model. Both LNCaP and TC-2 cell lines are AR

positive and sensitive to androgen deprivation therapy by the

steroidal anti-androgen Bicalutamide.

TC-2-hMLuc and LNCaP-hMLuc cells were grown for several

days in the presence or absence of 10 mM Casodex (Bicalutamide).

Cell viability and therapeutic effect were assessed continuously

over a five day period by measuring aliquots of cellular media for

secreted MLuc activity. The results demonstrate cell growth over

time in both controls; with a significant reduction in growth of the

Bicalutamide treated cells at the last measured time point

(Figure 4). The therapeutic effect was confirmed by MTS assay.

This study reveals the benefits of real time measurements (growth

and therapeutic effect) in a single vessel without the need to first

determine an optimized endpoint.

Secreted MLuc as an ex vivo Reporter Molecule
We completed a pilot study to determine if MLuc activity was

quantifiable ex vivo, in the blood of mice bearing subcutaneous

LNCaP-hMLuc tumors. Blood was collected via tail vein bleed at

the time of tumor measurement and the MLuc activity measured

in the serum over a period of several weeks. The ratio of tumor

volume to MLuc activity per microliter of serum was combined

from several animals and time points to determine their

correlation. Our results indicate that MLuc activity correlated

linearly with measurable tumor volume (Figure 5). These results

were surprising because it had been previously reported that

MLuc activity was undetectable in rat serum and urine [10]. In

that study, Hiramatsu and colleagues identified serum albumin as

a strong inhibitor of MLuc activity. We therefore completed

b-actin hMLuc Viability and Cytotoxicity Assay
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Figure 1. Humanized Metridia Luciferase and its cellular partitioning. (A) Sequence Alignment of the codon optimized Metridia Luciferase
(hMLuc) and the Metridia longa Luciferase (MLuc). The engineered Kozak sequence is underlined and the arrow points to the start codons. matches
are indicated by (*) below. Overall similarity of 75.3%. (B) MLuc is secreted from human cells. Various clones of stably expressing hMLuc prostate

b-actin hMLuc Viability and Cytotoxicity Assay
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similar studies and confirmed that all types of serum tested

quenched hMLuc activity in a dose dependent manner; nonethe-

less, the signals were above background (Figure 6A). Even at high

serum concentrations, the dynamic range of the assay was retained

and MLuc activity correlated linearly with cell number (Figure 6B).

Therefore we confirm that MLuc activity is sensitive to serum

inhibition, but that it retains sufficient activity to be applicable as

an ex vivo serum reporter in nude mouse tumor models.

Discussion

Bioluminescent reporters provide a method to quantify biologic

processes in real time. From firefly luciferase glowing tumors to

high throughput pharmaceutical screens, the strong signal and

broad dynamic detection range have made bioluminescence

invaluable. Secreted bioluminescent reporters, such as MLuc

and GLuc, provide new means to quantify biological processes

without the need to harvest or lyse cells. Importantly, real time

assessment saves reagents, time, and overcomes the need for a

predetermined endpoint. While bioluminescent activity of non-

secreted reporters can be quantified in intact cells, such as with in

vivo bioluminescent imaging, the reaction is reliant upon efficient

diffusion and retention of the substrate. It is notable that some

bioluminescent substrates, such as firefly luciferin, can be

substrates for multidrug resistant pumps and therefore partitioned

away from the reporter enzyme [13]. In addition, real time

luciferase imaging can be affected by the biodistribution of the

substrate following intravenous or intraperitoneal injection [14].

Therefore, secreted biolouminescent reporters offer a new

mechanism to overcome some of the limitations associated with

cytoplasmic bioluminescent reporters.

While secreted bioluminescent reporters are relatively new, they

have been successfully applied to a variety or studies. MLuc has

been applied to evaluate biological signaling processes in vitro [7],

where GLuc has been used for in vivo imaging [9], ex vivo

quantification of tumor bourdon [15], and cell viability in drug

screens using CMV-promoter driven expression [16]. Here we

provide new evidence that hMLuc, when combined with the b-

actin promoter/enhancer, can efficiently quantify cell viability and

cytotoxicity over a broad dynamic range. Human b-actin is

constitutively expressed at high levels in most cell types and is a

well accepted reference gene or protein in most biologic assays

[17]. However, it is know that b-actin is not a suitable internal

control for every assay [18]; therefore, it may not be applicable to

every mammalian cell type or growth condition. In our studies, b-

actin promoter activity correlated with cell number over a broad

range and proved to be a sensitive reporter for detecting cell

number in vitro in a variety of human and mouse cell lines, different

culture vessels, and experimental conditions.

Currently, there are three commonly applied secreted luciferase

reporters: MLuc, GLuc, and Cypridina Luciferase (CLuc) [19]. The

primary advantage of MLuc, versus GLuc and CLuc, may be in

the efficiency of secretion. In a direct comparison of these three

reporters in HEK293 cells, only 0.86% of hMLuc was retained in

the cells, compared to 2.97% and 7.10% for GLuc and CLuc,

respectively (Figure S2A; Methods S1). Therefore, MLuc may be

more effectively combined with other non-secreted luciferase

enzyme reporters, such as Firefly Luciferase and Renilla Luciferase

(RLuc), in multi-reporter assays. On the other hand, the

advantages of GLuc and CLuc reporters may be in their quantum

yield (Figure S2B). GLuc and CLuc demonstrated 2.6 and 4.7 fold

greater activity, respectively, than MLuc in this study. Other

differences between these three reporters include size (,20 kD for

MLuc and GLuc, versus 61 kD for CLuc) and pH sensitivity. In

addition, modifications of these reporters can dramatically affect

activity. For example, amino truncation of the MLuc enzyme

resulted in greater bioluminescent activity [20].

Recently Hiramatsu and colleagues published a study which

directly compared the activity of MLuc and Secreted alkaline

phosphatase (SEAP) as ex vivo reporters [10]. The study

demonstrated that SEAP was a highly sensitive ex vivo reporter,

whereas MLuc activity was undetectable in the serum or urine of

the applied rat model. Moreover, they revealed the MLuc activity

was significantly inhibited by serum albumin. Here we confirm

that MLuc activity is significantly repressed by serum proteins;

however, we found that MLuc activity was still detectable in high

serum concentrations and that hMLuc activity retained linearity

over the same dynamic range. These results indicate that MLuc is

applicable as an ex vivo reporter; however, its full potential is

cancer cell lines were evaluated for MLuc activity from conditioned medium and cell lysates. The percent value of total MLuc activity per clone is
reported. Error bars represent standard error of the mean from 12 samples. *P,0.05 relative to Media, (t-student test).
doi:10.1371/journal.pone.0036535.g001

Figure 2. Linear quantification of MLuc Activity with cell
number. Serially diluted samples of (A) TC-2-hMLuc and (B) LNCaP-
hMLuc were plated in 96 well plates. Twenty four hours after plating,
100 microliters of conditioned media was taken from each well and
evaluated for MLuc activity. Error bars represent standard error of the
mean from 8 samples. The X-axis represents plated cell number and the
Y-axis represents MLuc Activity (Relative Light Units or RLU) for each
sample. Linear regression analysis indicates an R2 value of 0.983 for (A)
TC-2-hMLuc cells and 0.991 for (B) LNCaP-hMLuc cells.
doi:10.1371/journal.pone.0036535.g002

b-actin hMLuc Viability and Cytotoxicity Assay
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Figure 3. Comparison of MLuc and MTS viability Assays. Serially
diluted samples of (A) TC-2-hMLuc and (B) LNCaP-hMLuc were plated in
96 well plates. Twenty four hours after plating cell supernatants were
evaluated for MLuc Activity and the remaining cells by MTS viability
assay. The Y-Axis to the left quantifies MLuc activity (RLU) where the Y-
Axis to the right quantifies MTS signal (absorbance of 590 nm light after
four hours of incubation with MTS reagents). The X-axis represents
plated cell number. N = 8. Error bars represent standard error of the
mean. Trendlines were fitted for linear regression (MLuc) or Power
curves (MTS) over the given range: (A) TC-2-hMLuc linear regression,
R2 = 0.998. (B) LNCaP-hMLuc linear regression R2 = 0.998. (C) Serially
diluted LNCaP-hMLuc were plated in 25 cm2 culture flasks (N = 2).
Twenty four hours after plating cell supernatants were evaluated for
MLuc Activity and the remaining cells were counted by trypan blue
exclusions. The Y-axis represents MLuc Activity (RLU) and vertical error
bars represent standard error between samples. The X-axis represents
counted viable cell and horizontal error bars represent standard error
between samples. Linear regression, R2 = 0.998.
doi:10.1371/journal.pone.0036535.g003

Figure 4. Evaluation of growth and therapeutic effect by MLuc
Viability Assay. (A) TC2-hMLuc cells and (B) LNCaP-MLuc cells were
treated with a 10 micromolar dose of the anti-androgen Bicalutamide
(Casodex) or vehicle and viable cell numbers over a given time were
evaluated by MTS Assays (N = 8). Y-Axis represents fold MLuc activity
relative to time zero. Statistical significance was determine by
student’st-test (*p,0.05). Error bars represent the standard error of
the mean.
doi:10.1371/journal.pone.0036535.g004

Figure 5. Ex vivo quantification of MLuc activity. LNCaP-hMLuc
cells were subcutaneously established in a group of four nude mice.
Once palpable tumors were established, tumor volume was measured
approximately every ten days over several weeks. Blood was
simultaneously drawn at the time of measurement for reference MLuc
activity. The data was grouped into different tumor volume groups. In
all cases, the average serum MLuc activity correlated well with the
average tumor volume (R2 = 0.981). Error bars represent standard error
of the mean for each measurement per group.
doi:10.1371/journal.pone.0036535.g005

b-actin hMLuc Viability and Cytotoxicity Assay
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limited by serum. Nonetheless, we found that hMLuc was

detectable as an ex vivo reporter in nude mice bearing subcutaneous

LNCaP-hMLuc tumors. The level of hMLuc activity correlated

with tumor volume in this small study set (Figure 5). Several factors

may have resulted in the greater level of MLuc detection over the

previous study, including the application of different promoters

(CMV versus b-actin promoter/enhancer), animal models (Spra-

gue-Dawley rat versus nude mouse), cellular location (intraperito-

neal versus subcutaneous), codon usage (native versus humanized),

or reporter and cell dose (mesangial cells versus established

tumors).

In summary, these studies validate secreted Metridia Luciferase

as a noninvasive reporter for mammalian cell and tumor models.

Through the use of the b-actin promoter and enhancer, hMLuc

expression was detected with high sensitivity and correlated with

over a broad linear range with viable cell number. This in vitro

viability assay system provides a new mechanism to assess cell

viability and cytotoxicity in real time. Finally these studies reveal

that hMLuc is applicable as an ex vivo reporter, but that detection

can be limited by serum inhibition.

Materials and Methods

Vectors and Cloning
A custom expression vector, pDonor, was generated from

pCMV/Bsd. A Lox71 recombination site was subcloned into

BamHI/HindIII sites using linkers (59-GATCTACCGTTCGTA-

TAGCATACATTATACGAAGTTAT and 39-AGCTA-

TAACTTCGTATAATGTATGCTATACGAACGGTA), fol-

lowed by a second Loxm2/66 site inserted into NheI/Apa sites

using linkers (59- ATAACTTCGTATATGGTTTCTTATAC-

GAACGGTA and CTAGTACCGTTCGTATAAGAAACCA-

TATACGAAGTTATGGCC). These lox site offer a means for

Figure 6. Effect of Serum on MLuc Activity. MLuc conditioned media from TC2-hMLuc was spiked with varying amounts of different serum and
bioluminescence activity was quantified. (A) Various serum used in standard culture medium demonstrated a dose dependent quenching of MLuc
activity. (B) Despite the quenching, the hMLuc viability assay correlated linearly with TC-2-hMLuc cell number over a broad dynamic range in the
presence of ,80% serum. Error bars represent the standard error of the mean. N = 8. R2 = 0.9894.
doi:10.1371/journal.pone.0036535.g006

b-actin hMLuc Viability and Cytotoxicity Assay
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unidirectional cre/lox recombination [21,22]; although they were

not applied to this project. The Metridia longa luciferase gene was

codon optimized for human expression (referred to herein as

hMLuc) using Vector NTI software (Invitrogen Corporation,

Carlsbad, CA) and custom synthesized, with Kozak sequence and

SV40 polyadenylation signal (Bioclon Inc. San Diego, CA), and

subcloned into the EcoRI/PacI site of pDonor, generating

pDonor-hMLuc. A small fragment of hMLuc was subcloned into

pGL3 using NheI/BsrGI. The human b-actin promoter and

intron-1-enhancer was PCR amplified from genomic DNA

(Primers: R0444: AGACCCAGGCTGTGTAGACCCA and

R0445 CATCATCCATGGTGAGCTGCG) and the resulting

PCR product was subcloned upstream of hMLuc fragments using

NheI/NcoI, generating pGL3-Temp2. The promoter and hMLuc

fragment were then subcloned back into pDonor-hMLuc using

NheI/BsrGI, replacing the CMV promoter, and generating

pDonor-hb-Actin-hMLuc.

Cell Culture
LNCaP, C4–2, and PC-3 human prostate cancer cells and

HEK293 human embryonic kidney cells were obtained from

ATCC. HCT116 colon cancer cells were obtained from Bert

Vogelstein (Johns Hopkins). Tramp-C2 murine prostate cancer

cells were obtained from Norman Greenberg (Baylor College of

Medicine). Stable pDonor- hb-Actin-hMLuc transfectants were

established through Blasticidin selection (Invitrogen Corporation).

Clones were isolated by limited dilution and confirmed by MLuc

assay and genomic PCR. LNCaP-hMLuc, C4-2-hMLuc, and

PC3-hMLuc were grown in RPMI 1640 containing 10% FBS and

5 ug/mL Blasticidin. Tramp-C2-hMLuc (referred to herein as

TC2-hMLuc) was grown in DMEM containing 5% FBS, 5%

NuSerum, 5 ug/mL Blasticidin, 5 mg/mL Insulin, and 0.01 nM

R1881.

Analysis of cellular fractions
16106 TC2-hMLuc, LNCaP-hMLuc, C4-2-hMLuc, and PC3-

hMLuc cells in 100 ml of media were plated (minimum of

quadruplets) in 96 well solid white flat bottom polystyrene

microplates (Corning, Cat#3917, Lowell, MA). After 24 hours,

conditioned media was harvested and remaining cells were lysed

with 20 ml passive lysis buffer (Promega, Cat#E194A, Madison,

WI). Media and cell lysate were assayed for MLuc activity using

100 ml of a previously described Renilla buffer [23], consisting of

1.1 M NaCl, 2.2 mM Na2EDTA, 0.22 M KxPO4 (pH 5.1),

0.44 mg/mL BSA, 1.3 mM NaN3, 1.43 mM coelenterazine, with

the final pH = 5.0. Assays were read in a Perkin Elmer Micro Beta

luminometer.

Cellular dilution studies
16104 TC2-hMLuc and LNCaP-hMLuc cells were serially

diluted 2-fold (10,000–39 cells) and plated in a minimum of

quadruplets in Falcon 96 multiwell plates. After 24 hours 100 ml of

the conditioned media was transferred to a Corning multiwell

plate and MLuc activity measured as described above. For larger

vessel studies, LNCaP-hMLuc cells were diluted in 25 cm2 culture

flasks (2.56106216106 cells). After 24 hours 100 ml of the

conditioned media was transferred to a Corning multiwall plate

for MLuc quantification. The remaining cells were harvested by

tryspinization and viable cells counted by trypan blue exclusion.

Correlation coefficients were determined by linear regression

analysis.

MTS and b-actin-hMLuc viability assay comparisons
A 2-fold serial dilution of TC2-hMLuc and LnCaP-hMLuc cells

were plated (minimum of quadruplet) in Falcon 96 well tissue

culture plates (20,000–78 cells). After 24 hours half of the media

(100 ml) was transferred to a Corning multiwell plate for MLuc

Activity assessment. Standard MTS assays (4 hr development)

were performed according to manufacturer9s protocol (Promega

CellTiter96 Non radioactive Cell Proliferation Assay) on the cells

remaining on the plates. Best line fit for MTS assays were obtained

by generating polynomial trendlines while linear regression was

applied for MLuc.

Assay of growth and therapeutic response
500 TC2-hMLuc cells and 1250 LNCaP-hMLuc cells were

plated in two Falcon 96 well tissue culture plates. 24 hrs after

plating samples were quantified by MTS or MLuc (as described

above) to obtain a baseline value. Samples were treated with

vehicle or 10 mM Casodex (Bicalutamide, LKT Laboratories, St

Paul, MN) for the duration of the experiment. Media (50–100 ml)

was collected at 24, 48 & 120 hr intervals for MLuc activity. In

time course assays, cell media was refreshed 24 hours prior to each

time point to establish a fresh background. At 120 hrs a standard

MTS assays was performed.

In Vivo Studies
Studies were performed according to protocols approved by the

Animal Care and Use Committee at Johns Hopkins University.

Subcutaneous tumors were established in male nude mice (nu/nu,

Harlan Laboratories, Inc) with 200 ml of 1:1 matrigel:PBS

containing 16106 LnCaP-hMLuc cells. Once measurable, the

tumors and serum MLuc activity were measured weekly. Two

healthy mice were used for background references. In brief, 100 ml

of blood was collected into a serum tube (Sarstedt, Cat#
Microvette 200Z, Newton, NC) via tail vein bleed and tumor

volumes were measured (volume = L x H x W) approximately

every 10 days. 5 ml of serum was diluted into 100 ml of DMEM

media & 100 ml Renilla buffer was added to measure MLuc

activity. The data from four mice were pooled and plotted to

determine the correlation between tumor size and MLuc activity.

Serum Inhibition Assays
MLuc conditioned media was spiked with FBS, cFBS or

NuSerum to a final concentration of 50% or 90%. MLuc Activity

was then measured as described above. To determine assay

linearity, LnCaP-hMLuc cell dilutions were plated on multiwell

plates. The next day 20 ml media from each well was transferred to

a Corning multiwell plate & spiked with 80 ml FBS. 100 ml Renilla

buffer was added to measure the MLuc activity.

Supporting Information

Methods S1 Supplementary Materials and Methods.

(PDF)

Figure S1 Linear quantification of MLuc Activity with
cell number. Serially diluted samples of (A) stable HCT116-

hMLuc and (B) transiently transfected HEK293 cells (pDonor-

hbactin-hMLuc) were plated in 96 well plates (n = 5). Twenty four

hours after plating, 100 microliters of conditioned media was taken

from each well and evaluated for MLuc activity. Error bars

represent standard error of the mean. The X-axis represents

plated cell number and the Y-axis represents MLuc Activity

(Relative Light Units or RLU) for each sample. Linear regression
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analysis indicates an R2 value of 0.998 for (A) HCT116-hMLuc

cells and 0.987 for (B) HEK293 cells.

(PDF)

Figure S2 Comparison of secreted luciferase con-
structs. HEK293 cells were transiently transfected with RpF-

GFP and pCDNA-3.1-hMLuc, pCDNA-3.1-GLuc, or pCDNA-

3.1-CLuc. Forty eight hours after transfection luciferase activity

was measured from conditioned medium and cell lysates and RLU

activity normalized to GFP expression. the (A) percent activity of

cell fractions as well as the (B) total activity as reported as Relative

Light Units (RLU) are plotted. Error bars represent standard error

of the mean. N = 8.

(PDF)
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