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Abstract

Shoc2 is the putative scaffold protein that interacts with RAS and RAF, and positively regulates signaling to extracellular
signal-regulated protein kinases 1 and 2 (ERK1/2). To elucidate the mechanism by which Shoc2 regulates ERK1/2 activation
by the epidermal growth factor (EGF) receptor (EGFR), we studied subcellular localization of Shoc2. Upon EGFR activation,
endogenous Shoc2 and red fluorescent protein tagged Shoc2 were translocated from the cytosol to a subset of late
endosomes containing Rab7. The endosomal recruitment of Shoc2 was blocked by overexpression of a GDP-bound H-RAS
(N17S) mutant and RNAi knockdown of clathrin, suggesting the requirement of RAS activity and clathrin-dependent
endocytosis. RNAi depletion of Shoc2 strongly inhibited activation of ERK1/2 by low, physiological EGF concentrations,
which was rescued by expression of wild-type recombinant Shoc2. In contrast, the Shoc2 (S2G) mutant, that is myristoylated
and found in patients with the Noonan-like syndrome, did not rescue ERK1/2 activation in Shoc2-depleted cells. Shoc2 (S2G)
was not located in late endosomes but was present on the plasma membrane and early endosomes. These data suggest
that targeting of Shoc2 to late endosomes may facilitate EGFR-induced ERK activation under physiological conditions of cell
stimulation by EGF, and therefore, may be involved in the spatiotemporal regulation of signaling through the RAS-RAF
module.
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Introduction

Organization of signaling modules in macromolecular complexes

by scaffold proteins has an important role in regulating intracellular

signaling in time and space and defining its input/output strength

[1,2,3]. Scaffold proteins tether signaling components and localize

themto specificareasof thecell, providingmicroenvironments where

the concentration of interacting partners is greatly increased [4]. In

addition, scaffolds regulate signal transduction by coordinating

positive and negative feedback signals, and by shielding correct

signaling proteins from irrelevant stimuli [1].

The signaling cascade leading to activation of mitogen-activated

protein kinase/extracellular stimulus-regulated kinase 1 and 2

(MAPK/ERK1/2) is an intricate system that is regulated at

multiple cellular sites [5]. The ERK1/2 activation cascade is

initiated by various extracellular stimuli leading to GTP loading of

RAS, recruitment of the RAF kinase to GTP-RAS, phosphory-

lation and activation of the MAPK kinase (MEK1 and 2) by RAF,

and finally activating phosphorylation of ERK1/2 by MEK1/2

[6]. The outcome of ERK1/2 activation ultimately depends on the

set of substrates that ERK1/2 phosphorylates at specific cellular

locations. In many instances, this complex pathway is regulated by

a number of accessory proteins and, in particular, scaffold proteins

[7]. Scaffolds bind the components of the ERK1/2 signaling

cascade, bring them together and target multi-protein signaling

modules to different cellular locations, thus enhancing phosphor-

ylation of specific substrates [8]. Overexpression of scaffold

proteins often results in the sequestration of their interaction

partners to non-specific complexes, which disturbs the ERK

activation process and its regulation [9].

Several scaffold proteins have been shown to localize compo-

nents of the ERK1/2 cascade to specific cellular locations. Kinase

suppressor of RAS (KSR) is the best-studied scaffold of the ERK1/

2 pathway that is conserved from C. elegans to humans [10]. KSR

forms multi-component complexes at the plasma membrane,

bringing together RAF, MEK and ERK [11]. MEK Partner 1

(MP-1) was identified originally as a MEK1 binding protein and

later was reported to have scaffolding properties [12,13]. MP-1

interacts specifically with MEK1 and ERK1, enhances their

interaction and recruits these complexes to late endosomes. MP-1

complex is anchored to the endosomal membrane by means of

binding to the late-endosomal resident proteins, p14 and p18 [14].

Loss of individual components of the MP-1/p14/p18 complex

reduces duration of the ERK1/2 activity, thus implicating late

endosomes as an important platform for the ERK1/2 signaling

[15]. Furthermore, endoplasmic reticulum and Golgi apparatus

serve as platforms for the scaffold complex formed by BIT1 (Bcl-2

inhibitor of transcription) [16]. It has been suggested that this

complex provides a negative feedback to ERK1/2 signaling and

impacts cell adaptation to stress and resistance to death [16].
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In the present study, we analyzed how a putative scaffold

protein Shoc2 contributes to the regulation of the ERK1/2

pathway. This leucine-repeat rich protein was first identified in C.

elegans (named SOC-2/SUR-8), and demonstrated to interact

differentially with various RAS proteins and positively regulate

RAS-mediated signaling [17]. The human homolog of SOC2/

SUR-8 (Shoc2) was also shown to facilitate ERK1/2 signaling and

interact with RAS and RAF, forming a ternary complex with these

two proteins [17,18]. Moreover, it has been recently demonstrated

that Shoc2 regulates the rate of RAS-RAF interaction [19,20]. In

addition, Shoc2 was proposed to regulate ERK1/2 activity as part

of a holoenzyme comprised of the catalytic subunit of protein

phosphatase PP1C and Shoc2 [21]. PP1C is recruited to RAF-1

via Shoc2 where it dephosphorylates an inhibitory residue Ser259

allowing for activation of RAF-1 by phosphorylation. Further-

more, Shoc2 was shown to modulate Ca2+- and calmodulin-

dependent regulation of RAF-1 activation [19,20]. Recent studies

reported that the S2G mutation in Shoc2 is associated with

Noonan-like (NL) syndrome, a genetically inherited disease

manifested in loose anagen hair [22]. The latter study demon-

strated that this mutation results in Shoc2 N-myristoylation and,

therefore, mistargeting of Shoc2 to the plasma membrane.

To elucidate the mechanisms of regulation of the ERK1/2

activation cascade by Shoc2, we analyzed subcellular localization

of Shoc2 and found that upon stimulation of cells with epidermal

growth factor (EGF), Shoc2 rapidly accumulated on a subset of

late endosomes. RNAi knockdown and complementation exper-

iments demonstrated that Shoc2 is required for the efficient

ERK1/2 activation by EGF, and suggested that translocation to

late endosomes may be a part of the regulatory mechanism which

underlies Shoc2-dependent ERK1/2 activation.

Results

EGFR Activation Triggers Recruitment of Shoc2 to
Endosomes

To elucidate the mechanisms by which Shoc2 regulates the

EGFR-RAS-ERK1/2 signaling cascade, sub-cellular localization

of Shoc2 was studied using fluorescence microscopy. For studies in

living cells, tagRFP (tRFP)-fusion protein of Shoc2 was prepared,

in which tRFP was attached to the C- terminus of Shoc2. The

ability of Shoc2-tRFP to associate with its interaction partner,

RAS, was demonstrated by co-immunoprecipitation of Shoc2-

tRFP with HA-tagged H-RAS and M-RAS expressed in 293FT

cells (Figure S1). Shoc2-tRFP interaction with RAS proteins was

abolished by a D175N mutation, previously shown to interfere

with RAS binding [17,18] (Figure S1). Therefore, based on the

demonstrated functionality of Shoc2-tRFP, we used this fusion

protein in subsequent experiments.

Analysis of the subcellular localization of the transiently

expressed Shoc2-tRFP in Cos1 cells by fluorescence microscopy

revealed that Shoc2-tRFP displayed a cytosolic distribution in

serum-starved cells (Figure 1A). Shoc2-tRFP was also localized in

the nucleus, and a small pool of the fusion protein was occasionally

seen in intracellular vesicular structures. Upon activation of EGFR

at 37uC, Shoc2-tRFP was found to be accumulated in the

intracellular compartments (Figure 1B and C). Such vesicular

accumulation of Shoc2-tRFP reached a maximum level within 12–

15 min following EGF stimulation and was maintained for an

additional 20–30 min. Shoc2-tRFP containing vesicles were

situated mostly in the perinuclear area of the cells. Some vesicles

were relatively static, while most of the vesicles showed rapid

lateral and directed movement over short distances, characteristic

of microtubule-dependent endosome motility (Movie S1).

To define Shoc2-tRFP containing vesicular compartments,

Cos1 cells were transiently co-transfected with Shoc2-tRFP and

either GFP-Rab5 or CFP-Rab7, resident proteins of early and late

endosomes, respectively. Shoc2-tRFP was found in some CFP-

Rab7 positive compartments (Figure 1B) and very rarely present in

early endosomes labeled with GFP-Rab5 (Figure 1C). Shoc2-tRFP

was not co-localized with internalized fluorescent transferrin, a

marker of early and recycling endosomes (data not shown). These

data suggest that Shoc2-tRFP containing compartments are likely

to be late endosomes.

To confirm the finding of Shoc2 localization on endosomes, the

distribution of endogenous Shoc2 was examined by immunoflu-

orescence microscopy. In serum-starved HeLa or Cos1 (not

shown) cells Shoc2 was found diffusely distributed throughout the

cell (Figure 2A). EGF treatment resulted in accumulation of a pool

of Shoc2 in intracellular vesicular compartments in both cell types

(Figure 2A). The accumulation of endogenous Shoc2 in intracel-

lular vesicles was more pronounced in HeLa cells, and therefore,

majority of the following immunofluorescence experiments was

carried in these cells. As in experiments in living cells, the

subcellular distribution and shapes of individual Shoc2 containing

structures were characteristic of endosomes or lysosomes. Hence,

to examine the nature of Shoc2-containing compartments, the

endosomal system of the cells was loaded with Dextran-A488TM,

and the cells were then treated with EGF. Significant co-

localization of Shoc2 and Dextran-A488TM was observed in

EGF-treated cells. Co-localization analysis of deconvoluted images

revealed that approximately 32% of cellular Shoc2 was located in

dextran-containing endosomes (Figure 2B), indicating that Shoc2

compartments are indeed of an endosomal origin. The same

extent of colocalization of Shoc2-containing vesicles was observed

with GFP-Rab7 positive endosomes, suggesting that Shoc2

translocate to a sub-population of late endosomes. Interestingly,

Shoc2 immunoreactivity was clustered along the perimeter of large

Rab7-endosomes (Figure 2B). Virtually no co-localization of

Shoc2 with markers of early endosomes (EEA.1, Rab5) and

lysosomes (LAMP1) was observed (Figure 2B and C), suggesting

that endogenous Shoc2 does not translocate to these compart-

ments. Thus, Shoc2 compartments could be a specialized

population of late endosomes.

To examine whether Shoc2 accumulated in endosomes

containing internalized EGFR, we used COS-1 cells that express

a relatively high level of endogenous EGFR and have large

endosomes, which facilitates light microscopic analysis. Cos1 cells

were stimulated with EGF, fixed and co-stained with EGFR and

Shoc2 antibodies. While most of Shoc2 endosomes did not contain

EGFR, a pool of Shoc2 was co-localized with endosomal EGFR

(Figure 3A). As in the case of Rab7 endosomes in HeLa cells

(Figure 2B), clusters of Shoc2 were often located in the membrane

of large endosomes (likely multi-vesicular bodies) containing

EGFR (Figure 3A and B). Taken together, the data in Figures 1,

2, and 3 suggest that a subset of multi-vesicular bodies and late

endosomes is the main site of Shoc2 localization in EGF-

stimulated cells.

RAS Activity and Clathrin are Necessary for Shoc2
Localization to Endosomes

To dissect the mechanisms of Shoc2 targeting to endosomes we

tested whether activity of RAS, the key interacting partner of

Shoc2, is necessary for the endosomal recruitment of Shoc2-tRFP.

To this end, HeLa cells were transfected with YFP-H-RAS (S17N),

a GDP bound mutant of RAS. This mutant is thought to have a

dominant negative effect on the activity of RAS by occupying

GTP-exchange factors of RAS [23], thus inhibiting EGF-induced,

Shoc2 in Endosomes
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Figure 1. Localization of Shoc2-tRFP and characterization of Shoc2-tRFP containing compartments. A, Cos1 cells were transfected with
Shoc2-tRFP and imaged live before EGF treatment. Shoc2-tRFP is located in the cytosol and nucleus. Scale bar, 10 mm. B, Shoc2-tRFP and CFP-Rab7
were transiently expressed in Cos1 cells. Cells were serum-starved for 16 h and then treated with 10 ng/ml EGF for 12 min at 37uC. Insets show high
magnification images of the regions of the cell indicated by white rectangles, Scale bar, 10 mm. A panel below shows multiple high-magnification
images with examples of co-localization of Shoc2-tRFP with CFP-Rab7. Scale bar, 5 mm. C, Shoc2-tRFP and GFP-Rab5 were transiently expressed in
Cos1 cells. Cells were serum-starved for 16 hr. Cells were then treated with 10 ng/ml EGF for 12 min at 37uC. Insets show high magnification images
of the regions of the cell indicated by white rectangles, Scale bar, 10 mm.
doi:10.1371/journal.pone.0036469.g001
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RAS-mediated ERK1/2 activation (Figure 4B). Cells expressing

and not expressing YFP-H-RAS (S17N) were treated with EGF at

37uC for 10 min and then stained with Shoc2 antibodies.

Figure 4A and C show that recruitment of Shoc2 to endosomes

was impaired in cells overexpressing YFP-H-RAS (S17N) (outlined

cells in upper panel of Figure 4A). In cells that did not express or

expressed low levels of YFP-H-RAS (S17N) recruitment of Shoc2

to endosomes was intact or slightly reduced. These results suggest

that RAS activity is required for Shoc2 endosomal localization.

To investigate the role of clathrin-dependent endocytosis in

Shoc2-tRFP targeting to endosomes, clathrin heavy chain (CHC)

was depleted by siRNA. Knock-down of CHC with this duplex

was previously demonstrated to efficiently block the endocytosis of

EGF and transferrin [24]. The cells were stimulated with a low

concentration of EGF (2 ng/ml), conditions favoring internaliza-

tion of EGF-receptor complexes predominantly via clathrin coated

pits. The blockade of endocytosis of transferrin labeled with

Alexa488 (Tfn-A488) was used as control for the efficiency of

CHC depletion in individual cells. As shown in Figure 5, CHC

siRNA dramatically reduced targeting of Shoc2-tRFP to endo-

somes (Figure 5A and B). These data demonstrated that clathrin-

dependent processes are involved in EGF-induced Shoc2-tRFP

recruitment to endosomes.

Shoc2 (S2G) Mutant is not Targeted to Late Endosomes
Heterologous overexpression of the components of the ERK

activation pathway and, in particular, scaffold proteins, in the

presence of their endogenous counterparts often leads to the

formation of non-specific complexes and sequesters binding

partners from specific protein-protein interactions [9]. Therefore,

Figure 2. Localization of endogenous Shoc2. A, Serum-starved HeLa cells were treated (+EGF) or not (-EGF) with 10 ng/ml EGF for 12 min at
37uC. The cells were then fixed, permeabilized and stained with Shoc2 antibodies and secondary Cy3 donkey anti-rabbit antibodies. Images of HeLa
cells before (NDCV) and after de-convolution (DCV) are shown. Deconvoluted Images for Cos1 cells are shown. Insets show high magnification images
of the regions of the cell indicated by white rectangles. Scale bar, 10 mm. B, Serum-starved HeLa cells were incubated with 2 mg/ml Dextran-
Alexa488TM for 2 hours and treated with EGF as in (A). Below, cells were transfected with either GFP-Rab5 or GFP-Rab7, treated as in (A) and then
fixed, permeabilized and stained with antibodies to Shoc2 followed by secondary Cy3-conjugated donkey anti-rabbit antibodies. Insets show high
magnification images of the regions of the cell indicated by white rectangles. 31.768.5% (SD) of Shoc2 immunoreactivity was colocalized with
Dextran-Alexa488TM. Scale bar, 10 mm. C, Serum-starved HeLa cells were treated as in (A), fixed, permeabilized and stained with the Shoc2 antibody
combined with either EEA.1 or LAMP1 antibody. Secondary Cy3-conjugated donkey anti-rabbit and Alexa488-conjugated donkey anti-mouse
antibodies were used. Insets show high magnification images of the regions of the cell indicated by white rectangles. Scale bars, 10 mm.
doi:10.1371/journal.pone.0036469.g002

Figure 3. Endogenous Shoc2 localizes with active EGFR. A, Serum-starved Cos1 cells were treated with 10 ng/ml of EGF for 12 min at 37uC,
fixed, permeabilized and stained with Shoc2 and EGFR (Ab528) antibodies followed by secondary Alexa548 donkey anti-rabbit and Alexa488 donkey
anti-mouse antibodies were used. Insets show high magnification images of the regions of the cell indicated by white rectangles. Scale bars, 10 mm.
B, High magnification images of the regions similar to those presented in (A) with examples of co-localization of Shoc2 and EGFR. Filter channels used
for imaging of living cells as in (A) insets. Scale bars, 5 mm.
doi:10.1371/journal.pone.0036469.g003
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to perform structure-function analysis of the Shoc2 role in EGFR

signaling to ERK1/2, we used an RNAi approach. First, the most

efficient siRNA sequence among 4 siRNA duplexes targeting

Shoc2 (duplex #1) was identified (data not shown). Depletion of

Shoc2 using this siRNA duplex significantly reduced ERK1/2

activity in EGF-treated cells (Figure S2). The effect of Shoc2

knockdown was most evident when the cells were stimulated with

a low (0.2 ng/ml) concentration of EGF (Figure S2). Next, Cos1

cells with constitutive knock-down of Shoc2 (Cos1-LV1) were

generated using lentiviruses carrying shRNA that was prepared

based on the siRNA duplex #1 sequence. In order to prevent

clonal variations due to the different sites of viral genome

incorporation, a pool population of shRNA-expressing Cos-LV1

cells was used in subsequent experiments. Figure 6A shows that

constitutive depletion of Shoc2 protein resulted in the dramatic

decrease in the extent of phosphorylation of MEK1/2 and ERK1/

2 upon EGFR activation. As expected, the effect of Shoc2

knockdown was most evident when the cells were stimulated with

low (0.1–0.5 ng/ml) concentrations of EGF (Figure 6B). Such EGF

concentrations are detected in human plasma and most tissues

where EGFR is accessible to EGF [25,26]. Transient expression of

the Shoc2-tRFP mutant, in which 6 ‘‘silent’’ mutations were

introduced to render it to be resistant to duplex #1 without

changing its amino acid sequence (Shoc2-tRFP*), in Cos-LV1 cells

has rescued EGF-induced ERK1/2 phosphorylation (Figure 6A).

The ERK1/2 phosphorylation signal in these cells was lower than

in parental COS1 cells, presumably, due to the fact that not all

COS-LV1 cells expressed Shoc2-tRFP*.

It has been proposed that overexpression of the Shoc2 mutant

with the S2G substitution (serine 2 is mutated to glycine), found in

Noonan-like syndrome patients, results in N-myristoylation and

targeting of this Shoc2 mutant to the plasma membrane, and

enhances EGFR-dependent ERK1/2 activity [22]. To test the

effect of S2G mutation in the background of cells lacking

endogenous Shoc2, the Shoc2-tRFP* (S2G) mutant was transiently

expressed in Cos-LV1 cells (Figure 7A and B). At the expression

levels that were maximally achievable for these constructs in Cos-

LV1 cells, the Shoc2-tRFP* (S2G) mutant was unable to restore

Figure 4. YFP-H-RAS (N17S) mutant inhibits Shoc2 recruitment to endosomes. A, HeLa cells were transfected with YFP-H-RAS (N17S),
serum-starved and then incubated with 10 ng/ml EGF for 12 min at 37uC. Cells were then fixed, permeabilized and stained with anti- Shoc2
antibodies and secondary Cy3 donkey anti-rabbit. Insets show high magnification images of the regions of the cell indicated by the white rectangle.
Cells expressing YFP-H-RAS (N17S) are outlined in the Shoc2 image. Scale bars, 10 mm. B, HeLa cells were transfected with the YFP-H-RAS (N17S)
mutant and serum-starved. Cells were then incubated with 10 ng/ml EGF for 12 min at 37uC and lysed. The lysates were probed for Shoc2, RAS,
phospho-ERK1/2 and total ERK1/2 by western blotting. C, Multiple images from the experiments exemplified in A were inspected, and the percentage
of cells containing Shoc2 endosomes was calculated (+/2S.D.). The data are representative of 3 independent experiments, a vs. b, P,0.001 (one-way
ANOVA test using SigmaStat 3.5 was used to determine differences).
doi:10.1371/journal.pone.0036469.g004
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the ERK1/2 activity above the basal level of EGF-induced

ERK1/2 activity in Shoc2-depleted cells (Figure 7A and B). These

data suggest that the S2G mutation is inhibitory to the Shoc2

function in ERK activation.

Analysis of the subcellular localization of Shoc2-tRFP* (S2G)

using live-cell fluorescence microscopy demonstrated that in

serum-starved Cos1-LVI cells Shoc2-tRFP* (S2G) is located

mainly in the plasma membrane (data not shown). It is likely

that stable association of Shoc2-tRFP* (S2G) with the membrane

is mediated by its N-myristoylation and interactions of the cluster

of positively-charged amino acids in the amino-terminus of Shoc2

(residues 5–60). After treatment with EGF the mutant was

accumulated in endosome-like compartments (Figure 8A, Movie

S2). In contrast to endosomes containing wild-type Shoc2

(Figures 1, 2, and 3), the S2G mutant was highly co-localized

with EGF-Alexa647 and YFP-H-RAS in endosomes (Figure 8A

and B). Moreover, Shoc2-tRFP* (S2G) mutant was found to be

well co-localized with endosomes containing CFP-Rab5, which

was especially evident on ‘‘donut-shape’’ profiles of large

endosomes (Figure 8C). This pattern of localization in the plasma

Figure 5. CHC siRNA inhibits Shoc2 recruitment to endosomes. A, HeLa cells were transfected with CHC or non-targeting (NT2) siRNAs and
serum-starved. The cells were incubated with 2 ng/ml EGF and 5 mg/ml Tfr-TR for 10 min at 37uC, and fixed. Insets show high magnification images of
the regions of the cell indicated by the white rectangle. Scale bar, 10 mm. B, Multiple images from the experiments exemplified in (A) were inspected,
and the percentage of cells containing Shoc2 endosomes was calculated (+/2S.D.). The data are representative of 3 independent experiments. C,
HeLa cells from the experiment in (A) were lysed and probed for CHC, and total ERK1/2 (loading control).
doi:10.1371/journal.pone.0036469.g005
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membrane and endosomes is reminiscent of the subcellular

distribution of K-Ras that is modified by farnesylation (a fatty-

acid modification similar to myristoylation) and has a positively-

charged region in the proximity to the farnesylation site [27,28].

Most important, unlike wild-type Shoc2, Shoc2-tRFP* (S2G) was

not significantly co-localized with CFP-Rab7 (Figure 8D). These

data demonstrated that upon EGFR activation, Shoc2-tRFP*

(S2G) is recruited to early endosomal compartments and that

Shoc2 located on the plasma membrane and early endosomes is

incapable of promoting ERK1/2 activation under conditions of

cell stimulation with low EGF concentrations.

Discussion

Assembly of macromolecular signaling complexes in intracellu-

lar membrane compartments, such as endosomes, Golgi apparatus

and endoplasmic reticulum, and its importance in orchestrating

the network of signaling processes are well established

[3,29,30,31,32,33]. Herein, we demonstrated endosomal localiza-

tion of Shoc2, a putative scaffold protein that is important for

signaling along the RAS-RAF-MEK-ERK cascade [19,34]. Our

immunofluorescence and live-cell imaging analyses showed that

upon EGFR activation endogenous Shoc2 and transfected Shoc2-

tRFP translocate to endosomes (Figures 1 and 2). Cordeddu and

co-workers have previously reported that heterologously expressed

and endogenous Shoc2 are present in the cytoplasm and nucleus,

and that EGF stimulation causes translocation of cytosolic Shoc2

to membranes [22]. In our experiments, a pool of Shoc2-tRFP was

also found in cell nuclei regardless of EGF stimulation (Figure 1).

However, we have not detected a significant nuclear pool of

endogenous Shoc2 (Figure 2). It is possible that differences in

immunofluorescence staining methods and cell types are account-

able for different patterns of Shoc2 localization observed in our

experiments and by Cordeddu and co-workers [22]. On the other

hand, consistent with the present study, the increased membrane

pool of Shoc2 in EGF-stimulated cells [22] could result from the

recruitment of cytosolic Shoc2 to endosomes, given that Shoc2 was

not detected in the plasma membrane. Hence, we propose that

endosomes are the main site of EGF-dependent targeting of Shoc2

in cells used in our study. The nature of these endosomal

compartments is not fully understood. Many of the Shoc2-

containing vesicles accumulated non-specific endocytic cargo like

dextran, although only a small pool of Shoc2 was detected on

endosomes containing internalized EGFR (Figure 3). Moreover,

Shoc2 was not detected in Rab5/EEA.1 containing early

endosomes where most activated EGFRs were located, suggesting

that Shoc2 is not associated with the classical ‘‘signaling’’

endosomes [29,35]. The highest extent of co-localization of the

vesicle-associated Shoc2 was with Rab7, and thus these Shoc2

compartments likely represent a subset of late endosomes.

As clathrin knock-down inhibited endosomal translocation of

Shoc2 (Figure 5), the mechanism of EGF-induced Shoc2 targeting

to late endosomes involves clathrin-mediated endocytosis of either

EGFR or another protein that anchors Shoc2 to the endosomal

membrane. Shoc2 recruitment to endosomes was also decreased

dramatically in cells overexpressing dominant-negative H-RAS

(N17S) (GDP-bound) mutant suggesting that Shoc2 targeting to

endosomes is downstream of RAS activation (Figure 4). Since

GTP-binding of RAS leads to membrane translocation of RAF

and activation of its kinase, efficient Shoc2 relocation to

endosomes may require RAF activity. Shoc2 was demonstrated

to be a part of the PP1C enzymatic complex activity, that removes

the inhibitory phosphate from Ser259 of RAF in response to the

growth factor stimulation, thus allowing activation of RAF kinase

[21]. Interestingly, recently published data suggest that dephos-

phorylation of RAF S259 is the primary pathogenic mechanism in

the activation of several RAF1 mutants identified in patients with

Noonan syndrome [36], which emphasizes the role of the PP1C

holoenzyme complex and Shoc2, particularly, in the regulation of

ERK1/2 pathway. Therefore, it is tempting to assume that

endosomal targeting of Shoc2 can be a part of the positive

feedback regulatory loop necessary for proper RAF activation.

To examine the role of Shoc2 translocation to late endosomes in

ERK activation, we took advantage of the observation that a single

amino acid change (S2G) results in N-myristoylation and aberrant

targeting of Shoc2 (S2G) mutant to the plasma membrane [22]

and, in cells treated with EGF, to early (Rab5-positive, Rab7-

negative) endosomes (Figure 8). To analyze Shoc2 function during

signal transduction from EGFR using this Shoc2 mutant, we used

an approach that involves the functional rescue of a shRNA-

depleted endogenous Shoc2 by its tagRFP-fused wild-type or

mutant version. Surprisingly, the S2G mutant did not rescue

EGFR-mediated activation of the ERK1/2 pathway in Cos1 cells

with constitutively depleted Shoc2, suggesting that S2G mutation

inhibits Shoc2 function (Figure 7). These results appear to be

inconsistent with the model proposed by Cordeddu and co-

workers [22] in which S2G is considered to be a gain-of-function

Figure 6. Shoc2 is required for ERK1/2 activation by EGF in
Cos1 cells. A, Parental Cos1 and Cos1 cells stably expressing Shoc2-
shRNA (Cos1-LV1) were serum-starved and treated with 0.2 ng/ml EGF
for indicated times at 37uC. The lysates were probed for EGFR, Raf-1,
Shoc2, activated ERK1/2 (pERK1/2), activated MEK1/2 (pMEK1/2), total
ERK1/2 (ERK1/2) and MEK1/2 (MEK1/2). B, Parental Cos1 and Cos1-LV1
cells were serum-starved and treated or not (0) with increasing
concentrations of EGF (0.1, 0.2, 0,5, 1, 2 ng/ml) for 12 min at 37uC.
The lysates were probed for Shoc2, activated ERK1/2 (pERK1/2), total
ERK1/2 and GAPDH (loading control).
doi:10.1371/journal.pone.0036469.g006

Shoc2 in Endosomes

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36469



mutation. This model was based on the observation of a slightly

stronger effect of overexpressed Shoc2 (S2G) mutant on ERK1/2

activity in Neuro2A cells as compared with the effects of

overexpressed wild-type Shoc2. However, several considerations

may explain apparent inconsistencies of the data, and suggest that,

at least in some experimental model systems, the S2G mutation is

inhibitory to Shoc2 function during EGF-induced signaling to

ERK1/2.

Firstly, RNAi studies by others [20,21] and our experiments

(Figures 6 and 7) demonstrated that Shoc2 has significant role in

EGF-induced ERK1/2 activation only when mammalian cultured

cells, such as HeLa, HEK293 and Cos1, are stimulated with low,

physiological concentrations of EGF (,1 ng/ml). Overexpression

of wild-type or mutant Shoc2 increased the constitutive ERK1/2

activity, whereas the EGF-induced ERK1/2 activity was not

changed [22]. This effect was observed in Neuro2A but not in

HEK293 and Cos1 cells. Secondly, genetic analysis of vulval

development in C. elegans demonstrated that SOC-2 (S2G)

expression did not rescue SOC-2 mutation (soc-2, ku167).

However, it is unclear whether the perturbed development in

the presence of S2G mutation is the result of increased RAF

activation in the vulva [22]. The effects of the S2G mutant may,

therefore, be additionally attributed to mechanisms unrelated to

the ERK activation pathway [22]. It should also be pointed out

that not all mutations associated with the Noonan syndrome and

clinically related disorders have a gain-of-function effect, and in

particular, Noonan-like syndrome patients with Shoc2 (S2G)

mutations manifest defects consistent with the reduced cell

proliferation [37]. Thirdly, another level of complexity that can

explain cell-dependent differences in the contribution of Shoc2 in

ERK regulation is the existence of multiple forms of RAF that are

activated and regulated by different and complex mechanisms. As

Figure 7. Wild-type Shoc2 but not Shoc2 (S2G) mutant rescues Shoc2 knockdown. A, Cos-LV1 cells were transiently transfected with full-
length Shoc2-tRFP or Shoc2-tRFP (S2G) mutant. Cells were serum-starved and treated with 0.2 ng/ml EGF for indicated times at 37uC. The lysates
were probed by western blotting for activated ERK1/2 (pERK1/2) and total ERK1/2 (ERK1/2). Low magnification images of Shoc2-tRFP* and Shoc2-
tRFP* (S2G) presented to highlight expression efficiency of these proteins in Cos-LV1 cells. B, Multiple blots from the experiments exemplified in A
were analyzed. Bars represent the mean values (6S.E., n = 3) of phosphorylated ERK1/2 activity normalized to total ERK in arbitrary units (pERK/ERK), a
vs. b, P,0.05 (one-way ANOVA test using SigmaStat 3.5 was used to determine differences in phosphorylated ERK1/2 activity).
doi:10.1371/journal.pone.0036469.g007
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an example, inhibition of the constitutively-active mutant of B-

RAF by vemurafenib may lead to the compensatory up-regulation

of signaling pathways leading to activation of c-RAF [38].

Interestingly, targeting of another signaling protein MEK2 to late

endosomes required A-RAF and c-RAF activity but was not

supported by constitutively-active B-RAF [33]. Finally, discrep-

ancies in the data can be related to the differences in the

experimental design. Our experimental model (Cos-LV1 cells) is

reminiscent of the Noonan-like syndrome because Shoc2-S2G

mutant was expressed in these cells in the absence of wild type

Shoc2 (Figures 6 and 7). In experiments with Neuro2A cells, the

S2G mutant was expressed in the presence of endogenous Shoc2

[22].

While further experimentation is necessary to reconcile all the

data described above, a hypothetic model of spatial regulation of

Shoc2 function and the effects of S2G mutation can be proposed

whereby Shoc2 is important for signaling from EGFR to ERK1/2

if rate-limiting interactions of participating signaling components

are not saturated (low EGF concentrations). Under these

conditions mis-targeting of Shoc2 due to the S2G mutation

eliminates cytosolic and late-endosomal pools of Shoc2, and results

in dramatic inhibition of ERK activation. Therefore, either

cytosolic or late-endosomal, or both of these pools of Shoc2 are

necessary for ensuring an effective signal transduction from

activated EGFR to ERK. More specifically, we hypothesize that

a pool of Shoc2 that is targeted to Rab7-positive endosomes is

important for EGF-dependent ERK1/2 activation because this

endosomal targeting occurs in an EGF and Ras-dependent

manner. In contrast, the cytosolic Shoc2 pool is decreased upon

EGF treatment.

On the other hand, ERK activity supported by EGFR-

independent signaling pathways or in the presence of high EGF

concentrations (30 ng/ml) [22] can be enhanced by overexpres-

sion of the Shoc2 (S2G) mutant, probably, through the increase in

the amount of Shoc2-RAS-RAF complexes at the plasma

membrane and early endosomes. When expressed at very high

levels (that are typically achieved in cells like Cos1 and HEK293)

the Shoc2 (S2G) mutant may also increase signaling from the

plasma membrane but additionally have a trans-inhibitory effect

by preventing binding of Shoc2 interactors to the endogenous

Shoc2 located in the cytosol and on late endosomes. We predict

that, as in the case of stimulation of cells with high concentrations

of EGF (Figure 6), constitutive activity of ERK1/2 would not be

affected in Neuro2A and other cells by siRNA depletion of Shoc2.

To conclude, the critical role of Shoc2 during signaling to

ERK1/2 under physiological conditions of EGFR activation is

striking. Further detailed analysis of Shoc2 interactions and

subcellular dynamics is in progress to generate a comprehensive

model of Shoc2 function.

Materials and Methods

Reagents and Antibodies
EGF was obtained from Collaborative Research (Bedford, MA).

EGF conjugated to Alexa fluor 647 streptavidin (EGF-Alexa647)

and human Transferrin conjugated to Texas Red (Tfr-TR) were

purchased from Molecular Probes (Eugene, OR); antibodies to

EGFR, RAF-1, MEK1/2, ERK1/2, phospho-ERK1/2, phospho-

MEK1/2, GAPDH were from Cell Signaling Technology;

clathrin heavy chain antibodies (TD1) were from the American

Type Culture Collection (ATCC); Shoc2 antibodies were from

Abcam (USA); HA antibodies were from Covance. Pfu polymerase

was purchased from Stratagene (La Jolla, CA).

Expression Plasmids
The full-length human Shoc2 in pcDNA3.1 was kindly provided

by Dr. Rodriguez-Viciana (UCL Cancer Institute, UK). To

generate the tagRFP (red fluorescent protein) [39] (courtesy of Dr.

V.V. Verkhusha, Albert Einstein College of Medicine) tagged

version of Shoc2 a forward primer containing a XhoI site and

reverse primer containing an BamHI site after the stop codon were

used to amplify the human Shoc2 sequence by PCR. CFP/GFP-

tagged Rab7 and Rab5 plasmids were described previously [40].

YFP-RAS (N17S) was kindly provided by Mark Dell’Acqua

(University of Colorado Denver). 3xHA-MRAS and 3xHA-H-

RAS were purchased from Missouri S&T cDNA Resource Center

(www.cdna.org).

Four individual duplexes to human Shoc2 were obtained from

Dharmacon (Lafayette, CO) and used for transient transfection.

Clathrin Heavy Chain specific siRNA oligos were obtained from

Dharmacon (Lafayette, CO) and were described previously [40].

To generate a plasmid stably expressing Shoc2 specific shRNA,

pLVTHM vector was used (Addgene plasmid 12247). A set of

oligonucleotides corresponding to the Shoc2 specific sequence of

siRNA duplex #1 (59GAAGAGAAUUCAAUGCGUU 39) con-

taining MluI and ClaI restriction sites were synthesized. The

following primers were used:

59CGCGTCCCCGAAGAGAATTCAATGCGTTTTCAA-

GAGAAACGCATTGAATTCTCTTCTTTTTGGAAT 39, and

59CGATTTCCAAAAAGAAGAGAATT-

CAATGCGTTTCTCTTGAAAACGCATT-

GAATTCTCTTCGGGGA 39. Oligonucletides were annealed as

described in [41] and ligated into pLV-THM1 using MluI and ClaI

restriction sites. The pLVTHM-Shoc2 construct was verified by

dideoxynucleotide sequencing. Point mutations in the Shoc2-tRFP

construct were introduced using a QuickChange site-directed

mutagenesis kit according to the manufacturer’s directions

(Stratagene). Silent mutations in Shoc2-tRFP changed the DNA

sequence but not the amino acid sequence, making the constructs

resistant to shRNA knockdown. The following primers were used:

59GAGCTCAACAAATGCCGGGAGGAAAACAGCAT-

GAGGCTGGACTTATCCAAGAGAT 39, and 59ATCTCTTG-

GATAAGTCCAGCCTCATGCTGTTTTCCTCCCGG-

CATTTGTTGAGCTC 39. The constructs were verified by

dideoxynucleotide sequencing.

Cell Culture and DNA Transfections
The human cervical carcinoma HeLa cells from ATCC, the

human embryonal kidney 293FT cells from Invitrogen, and Cos1

Figure 8. Shoc2 S2G mutant is co-localized with EGF, Rab5 and H-RAS. A, Cos1-LV1 cells were transiently transfected with Shoc2-tRFP* (S2G)
mutant and CFP-H-RAS. Serum-starved cells were incubated with 10 ng/ml EGF-Alexa647 for 12 min at 37uC. Insets show high-magnification images
of the regions of the cell indicated by white rectangles. Scale bar, 10 mm. B, High-magnification images of the regions similar to those that are
presented in A-insets shown to highlight colocalization of the Shoc2 S2G mutant with EGF and H-RAS. C, Cos-LV1 cells were transiently transfected
with Shoc2-tRFP* (S2G) mutant and CFP-Rab5. Serum-starved cells were treated with EGF-Alexa647 as in A. Insets show high-magnification images of
the regions of the cell indicated by white rectangle. Scale bar, 10 mm. D, Cos-LV1 cells were transiently transfected with Shoc2-tRFP* (S2G) mutant
and CFP-Rab7. Serum-starved cells were treated with EGF-Alexa647 for 30 min. Insets show high-magnification images of the regions of the cell
indicated by white rectangle. Scale bar, 10 mm.
doi:10.1371/journal.pone.0036469.g008
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from ATCC cells were grown in Dulbecco Modified Eagle’s

Medium (DMEM) containing 10% fetal bovine serum (FBS)

supplemented with Sodium Pyruvate, MEM-NEAA, Penicillin,

Streptomycin, and L-Glutamate (Invitrogen). The transfections of

DNA constructs were performed using Lipofectamine2000 (In-

vitrogen) and TransITH (Mirus Bio LLC) reagents. Expression of

tagRFP-fused proteins was confirmed by Western blotting as

described below.

siRNA Transfections
To silence protein expression by RNA interference, HeLa and

Cos1 cells were seeded in 12-well plates (50–60% confluent; 1 ml

of DMEM/FBS per well) at least 20 hours before transfection.

siRNA transfections were performed at 24–36 hour intervals

according to the manufacturer’s recommendations, using Dhar-

mafect reagent 1 (Dharmacon). Three to four days post-

transfection, the confluent cells were trypsinized and half of the

cells were seeded on glass-bottom dishes (MatTek, MA) for

fluorescence microscopy analysis, while the other half were used

for Western blot analysis. The cells were then incubated in serum-

free and phenol red free medium containing 0.2% bovine serum

albumin (BSA) for 20 hours prior to the microscopy experiments.

The efficiency of the siRNA knockdown was validated by Western

blotting.

Immunoprecipitation and Western Blot Analysis
The 293FT cells grown in 35-mm dishes were placed on ice and

washed with CMF-PBS, and the proteins were solubilized in

Triton X-100/glycerol/HEPES lysis buffer supplemented with

100 mm NaCl, and protease inhibitors for 20 min at 4uC [42].

Lysates were then centrifuged at 16,0006g for 20 min to remove

the insoluble material. Lysates were incubated with appropriate

antibodies for 2 h and the immuno-complexes were precipitated

using Protein A or G Sepharose. Immunoprecipitates and aliquots

of cell lysates were denatured in the sample buffer at 95uC,

resolved by electrophoresis, and probed by Western blotting with

various antibodies followed by the chemiluminescence detection.

Western blotting was done as described previously [43]. Several x-

ray films were analyzed to determine the linear range of the

chemiluminescence signals, and the quantifications were per-

formed using densitometry analysis mode of the QuantityOne

software (Bio-Rad, Inc).

Immunofluorescence Staining and Analysis
Cells grown on glass-bottom dishes were either treated or not

treated with 10 ng/ml of EGF and washed with Ca2+, Mg2+ -free

phosphate buffered saline (CMF-PBS). The cells were then fixed

with freshly prepared 4% paraformaldehyde (Electron Microscopy

Sciences, Hatfield, PA) for 10 min at room temperature and

permeabilized using 0.5% Tween for 20 minutes at room

temperature. Immunostaining was performed according to man-

ufacturer’s recommendations for the antibodies used. For dextran

uptake experiments, HeLa cells were pulse-labeled in serum-free

DMEM with 2 mg/ml dextran-Alexa488 (10,000 MW, lysine

fixable (Invitrogen)) for 2 h at 37uC in 5% CO2, followed by a PBS

wash and fixation in 4% paraformaldehyde (Electron Microscopy

Sciences, Hatfield, PA). All images were acquired using a

Mariannas Imaging system consisting of a Zeiss inverted

microscope equipped with a cooled CCD CoolSnap HQ (Roper,

CA), dual filter wheels and a Xenon 175 W light source, all

controlled by SlideBook software (Intelligent Imaging Innovations,

Denver, CO). The detection of Alexa488 fluorescence was

performed using a FITC filter channel, Alexa549 fluorescence

using an mRFP or Cy3 channel; Alexa647– using a CY5 channel.

Images were acquired using 262 binning mode. Image analysis

was performed using the SlideBook 5 software. Co-localization

analysis was performed using the co-localization statistical module

in SlideBook 5 software.

Fluorescence Imaging of Living Cells
The cells were re-plated 24 hours before the experiment onto

35-mm glass-bottom dishes and kept in serum free and phenol red

free medium containing 0.2% BSA for 16–20 hours. The cells

were imaged at room temperature using a MariannasTM

workstation. The detection of GFP fluorescence was performed

using a FITC filter channel, tRFP fluorescence using a Cy3

channel; Alexa647– using a CY5 channel, CFP using a CFP

channel. Images were acquired using 262 binning mode.

To quantify the endosomal localization of Shoc2, several three-

dimensional images were acquired under each experimental

condition. The cells were categorized based on visual inspection

into two groups: (i) cells containing at least one endosome

decorated by tRFP and (ii) cells containing no tRFP-decorated

endosomes. The number of cells containing endosomal Shoc2-

tRFP was expressed as a percent of total cells analyzed.

Supporting Information

Figure S1 Shoc2 binding of RAS in Cos1 cells. 293FT cells

were transiently co-transfected with expression vectors encoding

tagRFP-tagged Shoc2 or its D175N mutant, and either 3xHA-

MRAS or 3xHA-HRAS. 48 h post-transfection, cells were

harvested, and cell lysates were subjected to immunoprecipitation

with anti-HA antibody as described under ‘‘Materials and

Methods’’. The entire bound fraction (IP) was analyzed by

immunoblotting with Shoc2 antibodies to detect Shoc2 and HA

antibodies to detect Ras. Cell lysates (Input) were immunoblotted

with anti-HA antibody to monitor expression of Ras proteins or

Shoc2 Abs to monitor expression of Shoc2 and corresponding

mutant used in panel IP. Results in each panel are representative

of three independent experiments.

(TIF)

Figure S2 Shoc2 is required for ERK1/2 activation by
EGF in Cos1 cells. Cos1 cells were transiently transfected with

Shoc2 specific siRNA duplex #1 (Shoc2) or non-targeting siRNA

(NT). Shoc2 was detected in cell lysates using Shoc2 antibodies.

Cells were starved and then incubated without (2) or with 0.2 or

10 ng/ml EGF (+) for 5 and 15 min at 37uC. The lysates were

probed for activated ERK1/2 (pERK1/2) and total ERK1/2

(loading control).

(TIF)

Movie S1 Cos1 cells were transfected with Shoc2-tRFP
and then treated with 10 ng/ml of EGF for 10 min at
376C (as described in the Fig. 1B). Time-lapse images were

acquired every 5 sec during 2 min at room temperature.

(MOV)

Movie S2 Cos-LV1 cells were transfected with Shoc2
(S2G)-tRFP, CFP-Rab5 and then treated with 1 ng/ml of
EGF-Alexa647 for 10 min at 376C (as described in
Fig. 1B). Time-lapse images were acquired every 30 sec during

12 min at room temperature.

(MOV)
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