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Abstract

Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with
organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from
lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter
library was constructed by randomizing the promoter sequence of the H2O-forming NADH oxidase gene in L. lactis. The
library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using
a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression
of the H2O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the
wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from
21.1560.08 mM to 9.9460.07 mM, and the corresponding diacetyl production increased from 1.0760.03 mM to
4.1660.06 mM with the intracellular NADH/NAD+ ratios varying from 0.71160.005 to 0.38360.003. The results indicated
that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/
NAD+ ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the
lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H2O-forming NADH
oxidase activity led to 76.95% lower H2O2 concentration in the recombinant strain than that of the wild-type strain after
24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of
storage at 4uC, suggesting that the increased enzyme activity could eliminate H2O2 accumulation and prolong cell survival.
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Introduction

Lactococcus lactis has long been used in dairy fermentation

processes and considered as one of the most important starter

cultures. It produces multifarious end metabolites during dairy

fermentation, such as lactate, diacetyl, acetoin, vitamins and

extracellular exopolysaccharides which contribute to the organo-

leptic and health-promoting properties of the fermented products

[1–4]. L. lactis has become a model for rational industrial strain

improvement because of its relatively small genome, simple

metabolism and industrial relevance [5].

Diacetyl is an important aroma compound and essential for the

flavor of dairy products. Normally, L. lactis undergoes homolactic

fermentation, and most of the central intermediate pyruvate is

converted to lactate, a reaction catalyzed by lactate dehydrogenase

(LDH) with the oxidation of NADH to NAD+ for maintaining a

redox balance [6]. Under aerobic conditions, the activities of a-

acetolactate synthase (ALS) and NADH oxidase (NOX) are

strongly increased [7]. ALS catalyzes the pyruvate to a-

acetolactate. After decarboxylation, a-acetolactate is further

converted to acetoin and diacetyl. The reoxidation of NADH by

NOX would replace the role of the LDH in the regeneration of

NAD+, allowing the accumulation of these two aroma compounds

(Figure 1) [8]. However, in the presence of O2, L. lactis displays the

metabolic shift from homolactic to mixed-acid product formation,

including lactate, acetate and CO2. Hence, diacetyl accumulation

is rather limited [9]. Therefore, several approaches to improve

diacetyl production in L. lactis have been developed, such as the

overexpression of the als and nox-2 genes and the inactivation of

the ldh and a-acetolactae decarboxylase (aldB) genes. The herein

excessive pyruvate was channeled to acetoin or diacetyl via ALS,

whereas the flux from pyruvate to lactate was almost abolished

[8,10–12]. Considering that lactate is an important metabolite that

prevents fermented products from spoilage and contributes to the

texture of dairy products, the strong overexpression or complete

deletion of target genes limits the application of genetically

modified lactic acid bacteria as starter cultures for industrial

production of dairy products. Thus, strategies for the fine-tuning of

gene expression are required to control the aimed metabolic

fluxes.

Promoter engineering is interpreted as the creation of a

functional promoter library for precisely controlling gene expres-

sion to perform metabolic optimization or control analysis. It has

promising perspectives with respect to the research of functional

genomics, cell network analysis and synthetic biology [13–15]. For

example, a series of mutant L. lactis strains have been constructed
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based on synthetic promoters to demonstrate that LDH exerted

virtually no control on the glycolytic flux at the wild-type enzyme

level and the lactate production [16]. In addition, a synthetic

promoter library has been used to evaluate the influence of

different production levels of glucose-6-phosphate dehydrogenase

on xylose fermentation and ethanol yield in Saccharomyces cerevisiae

[17]. These previous studies have illustrated the valuable

applications of the promoter engineering in the precise control

and the quantitative assessment of gene expression level.

L. lactis is a facultatively anaerobic bacterium and O2 has

negative effects on both cell growth and survival, because in vivo O2

is converted into reactive oxygen species (ROS) which cause

protein, lipid and nucleic acid damage [18]. To cope with oxygen

toxicity, L. lactis could grow via respiratory metabolism when heme

is available [19]. Some lactic acid bacteria have antioxidant

enzymes to detoxify O2-derived compounds [20]. Aside from the

toxic effects of O2, aeration could induce the metabolic shift from

homolactic to mixed-acid fermentation, making pyruvate metab-

olism more flexible. Therefore, lowering cytoplasmic O2 is

economically significant in improving cell growth and survival

under aerobic conditions.

Here we constructed a constitutive promoter library by

randomizing the space sequence between the two conserved

motifs of the promoter of the H2O-forming NADH oxidase (noxE)

gene in L. lactis. Under the control of individual random

promoters, the fine tuning of lactate and diacetyl production was

achieved by precisely regulating the intracellular NADH/NAD+

ratios in L. lactis. Furthermore, the beneficial effects of the

increased NoxE activity on cell survival were also investigated in

this study.

Materials and Methods

Plasmids, bacterial strains and growth conditions
The plasmids used in this study are listed in Table 1. E. coli

DH5a was grown aerobically in Luria Bertani broth at 37uC. The

plasmid-free strain L. lactis MG1363 was used as host for the

construction of the constitutive promoter library and considered as

a wild-type strain in this study [21]. The L. lactis DA strain was a

derivative of L. lactis MG1363 with the aldB gene deletion. L. lactis

was grown in M17 broth (Oxoid, Basingstoke, United Kingdom)

containing 0.25% (wt/vol) glucose (GM17) at 30uC. For milk

fermentation, L. lactis was incubated in 12.5% (wt/vol) sterile,

reconstituted skim milk (RSM) supplemented with 1% glucose

(wt/vol). The following antibiotics were added at the indicated

concentrations: chloramphenicol, 5 mg/mL for L. lactis or 10 mg/

mL for E. coli; erythromycin, 10 mg/mL for L. lactis; and

ampicillin, 100 mg/mL for E. coli.

Construction of the constitutive promoter library
The primers used in this study are listed in Table 2. All

molecular manipulations were performed as described previously

[22]. Taq polymerase, restriction enzymes and T4 DNA ligase

were used as stated by standard procedures (TaKaRa, Tokyo,

Japan).

The scheme for generating the promoter library is shown in

Figure 2. The nisin-inducible promoter PnisA and nuc gene

fragment of the E. coli/L. lactis shuttle vector pSec:Leiss:Nuc was

replaced by the promoterless green fluorescent protein (gfp) gene

fragment, resulting in the promoter probing vector pGFP.

The noxE promoter fragment was PCR amplified from the

genomic DNA of L. lactis MG1363 with primers NOXEp-for and

NOXEp-rev. The PCR product was digested with BglII and PstI

and ligated to compatible ends of the digested pGFP to generate

pOgfp. To develop the constitutive promoter library for L. lactis,

the fragments containing randomized promoters were amplified

using primers NOXEp-mut and NOXEp-rev by degenerate PCR

with the plasmid pOgfp DNA as template. After digested with

BglII and PstI, the random promoter fragments were inserted into

the corresponding sites of the probing vector pGFP to generate the

mixed plasmids pMgfp. The mixed plasmids pMgfp were then

electrotransformed into the competent cells of L. lactis MG1363,

and the cells were plated onto the GM17 agar containing

chloramphenicol [23]. The colonies ranging in color from white

to dark green were picked from the GM17 agar plates. After

overnight static incubation at 30uC, each culture was diluted 100-

Figure 1. Metabolic pathway of glycolysis and diacetyl biosynthesis in L. lactis. PEP, phosphoenolpyruvate; LDH, lactate dehydrogenase;
ALS, a-acetolactate synthase; ALDB, acetolactate decarboxylase; PDH, pyruvate dehydrogenase; DR, diacetyl reductase; PFL, pyruvate formate lyase;
NoxE, H2O-forming NADH oxidase.
doi:10.1371/journal.pone.0036296.g001
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fold in 5 mL of fresh GM17 medium and further incubated for

10 h at 30uC. The culture turbidity was monitored by OD600.

Cells were collected from 1 mL cultures by centrifugation at

7,000 g for 5 min, washed twice and resuspended in 500 mL of

phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl,

10 mM Na2HPO4, and 2 mM KH2PO4, pH 7.4). The fluores-

cence intensity of the suspension was determined by an LS-50B

spectrofluorometer (PerkinElmer) with excitation at 488 nm and

emission at 511 nm. To obtain a relative fluorescence unit (RFU),

the fluorescence intensity of the cells carrying the promoter

probing vector pGFP was used as a background and subtracted

from that of cells containing plasmids pMgfp.

Characterization of the constitutive promoter library
Eleven colonies with various promoter activities were selected

and their promoters were sequenced. The promoter strength was

evaluated as described by Alper et al. [13]. Growth was monitored

by OD600 every thirty minutes over five hours. At the same

intervals, the cultures were sampled and the fluorescence

intensities were measured as above. The slope of the fluorescence

versus culture turbidity was considered as the exponential growth

phase steady-state concentration of GFP.

The cultures in GM17 medium were collected at the

exponential phase and the total RNA was extracted with a RNA

simple Total RNA Kit (TIANGEN, Beijing, China) according to

the manufacturer’s protocols. The quantity and purity of RNA

were determined spectrophotometrically at 260 nm and 280 nm.

Reverse transcription was performed with Random 6 mers and

Oligo dT primer using the PrimeScript RT reagent Kit (TaKaRa,

Tokyo, Japan) according to the manufacturer’s instructions. Real-

time PCR was performed with the SYBR Premix Ex TaqII

(TaKaRa, Tokyo, Japan) applying the protocol in the Real-Time

PCR Detection Systems (Bio-Rad, Hercules, CA, USA). The gfp

transcript was PCR amplified with the primers GFP-for and GFP-

Table 1. Plasmids used in this study.

Plasmid Relevant characteristics Reference or source

pMD18-T Cloning vector, Amp R Takara

pT-GFP BglII-PstI-gfp-EcoRI fragment cloned in pMD18-T, Amp R This study

pSec:Leiss:Nuc pWV01 replicon, expresses Nuc under PnisA control, Cm R [55]

pGFP Promoter probing vector used in the construction of promoter library;
pSec:leiss:Nuc derivative with PnisA and Nuc fragment replaced by gfp
gene fragment, Cm R

This study

pOgfp pGFP derivative, carrying the native promoter O159, Cm R This study

pMgfp pGFP derivatives, carrying individual random promoters of the promoter
library, Cm R

This study

pG+ host4 Derivative of pGK12 used for homologous recombination, Erm R [28]

pEnox pMgfp derivative with gfp gene fragment replaced by noxE gene
fragment, carrying eleven selected promoters, respectively, Cm R

This study

doi:10.1371/journal.pone.0036296.t001

Table 2. Oligonucleotide primers used in this study.

Primer Sequences (59-39)
Restriction
sites

NOXEp-for GGTAGATCTTTTGATTCAGAAACTATGTGG BglII

NOXEp-rev GATCTGCAGACTAATAGGTCTCCTTTA PstI

NOXEp-mut CGGAGATCTNNNNNNNNTTGACANNNNNNNNNNNNNNNNNNNTANAATNNNNNTTTCACAATGTTCACAAGCGCTTAC BglII

GFP-for TTCTGTCAGTGGAGAGGGT

GFP-rev GGATAACGGGAAAAGCATT

GAP-for GCGACAGGTTTCTTTGCGA

GAP-rev CGTCTGCCATTGGTGCTAA

NOXE-for CCTCTGCAGGTATGAAAATCGTAGTTATC PstI

NOXE-rev TTCGTCGACTTATTTGGCATTCAAAGCT SalI

TU-for ACTCTCGAGCACTAAAATGCGTCAGTCAAT XhoI

TU-rev GGCGAATTCATTTCTCTTTTCTATCTCAT EcoRI

TD-for GCGGAATTCGATATTGATGTAGCTGA EcoRI

TD-rev TTGCGGCCGCTCCACTATCTATAAAATG NotI

DC-for ATAATGAATCAGTCGAATGCAAGA

DC-rev TTTGGGCAATCCAGCAACTCCTA

The restriction sites in the primer sequences are underlined.
doi:10.1371/journal.pone.0036296.t002
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rev. The gapA (D-glyceraldehyde-3-phosphate dehydrogenase)

transcript used as internal standard was amplified with the

primers GAP-for and GAP-rev.

Expression of the noxE gene with selected promoters
The noxE gene was PCR amplified from the genomic DNA of L.

lactis MG1363 using primers NOXE-for and NOXE-rev. The

PCR product was digested by PstI and SalI and inserted into the

same sites of vector pMgfp to replace the gfp gene, yielding pEnox

(E: eleven individual promoters selected). Subsequently, the

plasmids were introduced into L. lactis DA to obtain recombinant

L. lactis DA/pEnox, respectively. The expression of the noxE gene

under the control of eleven promoters was analyzed via the

intracellular NoxE activity assay. See below for details.

Fermentation conditions and analytical methods
The recombinant strains were pre-cultured in 5 mL of GM17

medium, and 2 mL of the overnight cultures were incubated in

500-mL Erlenmeyer flasks with 100 mL of GM17 medium with

200 rpm orbital shaking at 30uC.

Cell growth was monitored by OD600. Glucose, acetate,

lactate, formate and ethanol were analyzed by high-performance

liquid chromatography (HPLC; Shimazu, Japan) using a column

of Aminex HPX-87H Ion Exclusion particles (300 mm67.8 mm,

Bio-Rad, Hercules, CA, USA), at a column temperature of 65uC
with 5 mM sulfuric acid as the mobile phase at a flow rate of

0.6 mL/min. Acetoin, a-acetolactate and diacetyl were deter-

mined according to Benson et al. [24]. H2O2 was measured using

the H2O2 quantified analysis Kit (Sangon Biotech, Shanghai,

China). NADH and NAD+ were extracted as described previously

[25], and their concentrations were measured by enzyme cycling

assay [26,27].

Enzymatic measurements
Cells from 5 mL cultures were collected by centrifugation and

washed twice with potassium phosphate buffer (pH 7.0). The cells

were resuspended in 2.5 mL of potassium phosphate buffer and

disrupted by sonication on ice (400 w, sonication for 3 s,

intermission for 8 s). The supernatant was recovered by centrifu-

gation at 12,000 g for 10 min to determine the in vivo enzyme

Figure 2. Scheme for generating the constitutive promoter library in L. lactis. N = A, G, T or C.
doi:10.1371/journal.pone.0036296.g002
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activities. The protein concentration was determined using the

Bradford protein assay with bovine serum albumin as standard.

The NoxE activity was determined spectrophotometrically by

measuring the initial rate of NADH oxidation at 25uC. The total

200 mL assay mixture contained 0.3 mM NADH and 0.3 mM

EDTA in 50 mM potassium phosphate buffer. The reaction was

initiated by adding 10 mL of cell extract and monitored by the

decrease at OD340nm using Spectra MAX 190 (Molecular

Devices Corporation, U.S.A.). A unit enzyme was defined as the

amount which catalyzed the oxidation of 1 mmol of NADH to

NAD+ per minute at 25uC. LDH activity was determined

according to the method of Andersen et al. [16].

Deletion of the aldB gene
The upstream and downstream sequences of the aldB gene were

PCR amplified from the genomic DNA of L. lactis MG1363 with

primers TU-for/TU-rev and TD-for/TD-rev, and then inserted

into the vector pG+host4, respectively. Subsequently, the resulting

plasmid was used to perform homologous double-cross in the L.

lactis MG1363 chromosome as the modified method described

previously [28]. Gene deletion was verified by PCR amplification

with the primer DC-for and DC-rev.

Results

Construction of the constitutive promoter library
The sequence alignment of the noxE promoter located at L. lactis

MG1363 genome with the consensus promoter sequences of L.

lactis revealed that the 235 region had high identity with the

TTGACA sequence, whereas the 210 region was less conserved

with the sequence TAAAAT deviating from the canonical

TATAAT sequence in the 3rd position. In our strategy, the

235 region nucleotides were kept constant and the 210 region

was generally maintained except the 3rd base A was randomized,

yielding TANAAT (N = A, T, G or C). The spacing between the

210 and 235 region had 19 completely random nucleotides.

Furthermore, the randomization was also introduced into 8 bases

upstream of the 235 region and 5 bases downstream of the 210

region for higher diversity of random promoters.

To screen the random promoters easily, a promoter probing

vector pGFP was constructed using GFP as reporter based on the

E. coli/L. lactis shuttle vector pSec:leiss:Nuc. The randomized

promoter fragments were inserted into pGFP, and the resulting

plasmids pMgfp were transformed into L. lactis MG1363. Five

hundred colonies of L. lactis MG1363/pMgfp carrying individual

random promoters were picked by observation of the green color

on the GM17 plates. To assess the promoter activities, the

fluorescence intensities of the colonies were determined and 30

representative random promoters were selected to form a

constitutive promoter library (Figure 3). The promoter activities

of the library spanned from 7,000 to 380,000 RFU, covering 3 to 4

logs of expression levels in small increments. Six random

promoters showing higher activity than the native promoter

O159 were obtained, and the most potent promoter B6 exhibited

a 2.8-fold activity increment.

Characterization of the promoter library
Eleven promoters (B6, B21, B89, D2, A32, A19, A97, A56, A12,

A1 and A17) with activities covering from 23,000 to 380,000 RFU

were selected for the sequence analysis. As shown in Figure 4A, all

selected promoters had a DNA sequence identical to specific

sequence of the designed oligonucleotide NOXEp-mut. No base

change was observed in the 235 region, while base changes were

found in the 210 region of five promoters which exhibited lower

activity than that of the native promoter O159. The base T

insertion was observed in the spacer of promoter A17, resulting in

a drastic reduction in promoter activity. The alignment showed

that the higher similarity of sequences outside the conserved

regions between the random promoter and the native led to

stronger promoter activity.

To eliminate the effects of protein maturation, degradation and

cell growth rate on the GFP fluorescence intensity, the eleven

promoters strength were determined by a dynamic model in which

the influencing factors were comprehensively considered [13].

Based on this model, the promoter strength of the library varied

from 55,006679 to 311,9826410 and increased by 17.51% on

average between the adjacent promoters (Figure 4B).

To characterize the promoter library at transcriptional level,

relative mRNA levels of the gfp transcripts under the control of

eleven promoters were analyzed by Real-Time PCR. The relative

level of the gfp transcript spanned a 17.49-fold variation and

correlated well with the promoter strength (Figure 4B).

Tuning of the lactate and diacetyl production in L. lactis
To investigate the regulation capacity of different promoters on

the distribution of the pyruvate flux to lactate and diacetyl, the

sequenced promoters were fused with the noxE gene from L. lactis

MG1363. Then, the resulting plasmids (pB6nox, pB21nox,

pB89nox, pD2nox, pA32nox, pA19nox, pA97nox, pA56nox,

pA12nox, pA1nox and pA17nox) were introduced into L. lactis

DA which was unable to convert a-aectolactate to acetoin by

acetolactate decarboxylase. The NoxE activities of the recombi-

nant strains were determined at the late exponential phase. As

expected, the NoxE activity of L. lactis DA was very low

(0.2360.05 U/mg protein). In the eleven recombinants, it showed

linear increase with the promoter strength, from 2.1760.12 U/mg

protein to 13.1160.28 U/mg protein (Figure 4C). However, the

differences in the enzyme activity between the adjacent promoters

did not exceed 1.5 units except promoter B6 which was 3.8 units

higher than the next promoter B21. Moreover, the LDH activity

of the recombinant strains was very similar to that of wild-type

(7.2160.14 U/mg protein).

After 12 h of aerobic culture in GM17 medium, the cell growth

and glucose consumption rate of L. lactis DA and eleven

recombinant strains were similar to those of the wild-type L. lactis

MG1363, indicating that genetic modification had little influence

on L. lactis growth. As shown in Table 3, the intracellular NADH/

NAD+ ratios varied from 0.71160.005 to 0.38360.003 by

controlling the expression of the NoxE. The lactate accumulation

exhibited a nearly linear decrease from 21.1560.08 mM to

9.9460.07 mM, whereas the diacetyl yield showed a gradual

increase from 1.0760.03 mM to 4.1660.06 mM. These results

indicated that the decreased pyruvate flux to the LDH pathway

was rerouted to the ALS pathway accompanied by the

enhancement of NoxE activity. Meanwhile, acetate yield in the

recombinant strains was on average 2.48 mM higher than that of

the strain L. lactis DA and acetoin accumulation was still detectable

in the recombinant strains. In the aldB-deficient strains, the

unstable intermediate a-acetolactate was directly converted to

diacetyl, which was subsequently reduced to acetoin by diacetyl

reductase in the presence of O2. The acetoin and diacetyl yields

were undetectable in L. lactis DA, whereas the lactate and acetate

production were 23.4160.11 mM and 8.4760.47 mM, respec-

tively.

Among the eleven recombinant strains, L. lactis DA/pB6nox

consumed 33.96% and 23.88% of the carbon flux towards lactate

and diacetyl under aerobic conditions, respectively. After L. lactis

DA/pB6nox incubation in RSM supplemented with 1% glucose

Fine Tuning of the Lactate and Diacetyl Production
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for 24 h, lactate production was 11.7860.32 mM and diacetyl

production was 2.9360.21 mM with the pH decreasing from

6.63 to 5.0260.01. The lactate yield in L. lactis DA was

32.0561.05 mM with the pH decreasing from 6.61 to

4.6760.03, whereas little diacetyl was accumulated (Figure 5A

and 5B).

Figure 3. Promoter library for constitutive gene expression in L. lactis. The activity of the promoter is measured as RFU per OD600. The data
are the means and standard deviations of results from five independent experiments. The arrowhead indicates the native promoter O159.
doi:10.1371/journal.pone.0036296.g003

Figure 4. Characterization of the promoter library. (A) Sequence analysis of the selected promoters. N = A, G, T or C. (B) Determination of
promoter strength from the transcript quantification of the gfp gene (black) and dynamics of GFP production based on fluorescence intensity (gray).
(C) Specific NoxE activity (black) under the control of eleven selected promoters (promoter activity is shown as gray). In panels (B) and (C) the values
are means 6 standard deviations of three independent experiments.
doi:10.1371/journal.pone.0036296.g004
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Table 3. pH, product and NADH/NAD+ ratios of different recombinant strains at initial growth pH of 7.3 after 12 h aerobic culture.

Concentrations of pyruvate metabolites (mM)

Strains Final pH Lactate Acetate Diacetyl Acetoin NADH/NAD+ ratio

DA 5.9360.03 23.4160.11 8.4760.14 ND ND 0.74160.009

DA/pA17nox 6.0260.04 21.1560.08 8.4060.15 1.0760.03 0.6960.02 0.71160.005

DA/pA1nox 6.0560.02 20.2860.13 8.4360.09 1.1960.01 0.8760.05 0.68960.006

DA/pA12nox 6.0560.05 19.8660.29 9.2660.1 1.5160.03 0.9260.03 0.68160.002

DA/pA56nox 6.0760.02 19.0960.12 9.1260.14 1.860.01 1.0160.04 0.55660.008

DA/pA97nox 6.1060.01 18.1560.21 10.2960.13 1.860.04 1.0560.01 0.5560.005

DA/pA19nox 6.1060.01 17.4660.17 11.0860.07 1.8460.05 1.0560.03 0.54160.005

DA/pA32nox 6.1260.02 16.2460.1 11.9660.08 2.0260.04 1.3860.01 0.46260.002

DA/pD2nox 6.1460.04 14.2160.13 13.1160.12 2.2660.02 1.6760.05 0.45760.002

DA/pB89nox 6.1860.01 13.0060.09 13.4260.21 2.3960.06 1.9660.04 0.41360.004

DA/pB21nox 6.2260.02 11.7660.16 13.0960.01 3.3860.12 2.1460.04 0.40660.003

DA/pB6nox 6.3260.03 9.9460.07 12.3460.14 4.1660.06 2.8360.06 0.38360.003

ND, not detected. The values are means 6 standard deviations for three independent experiments.
doi:10.1371/journal.pone.0036296.t003

Figure 5. Metabolite accumulation and cell survival of L. lactis DA and the recombinant strain. Lactate production (A) and diacetyl
production (B) by strains L. lactis DA (&) and L. lactis DA/pB6nox (N) in RSM added 1% (wt/vol) glucose. Cell survival (C) and H2O2 accumulation (D) in
L. lactis DA (&) and L. lactis DA/pB6nox (N) after aerobic cultivation in GM 17 medium. In panels (A), (B), (C) and (D) the values are means 6 standard
deviations of three independent experiments.
doi:10.1371/journal.pone.0036296.g005

Fine Tuning of the Lactate and Diacetyl Production
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Cell survival and H2O2 accumulation
To evaluate the effects of increased NoxE activity on the

viability of L. lactis under aerobic conditions, L. lactis DA and L.

lactis DA/pB6nox were cultured aerobically for 24 h, after which

the cultures were transferred to 4uC and cell viability was

examined at intervals over one month. As shown in Figure 5C,

initially, the cell populations of the two cultures reached

approximately 2.061010 per mL. Viable counts of L. lactis DA

dynamically dropped as time progressed, and a 108-fold decrease

was observed after 28 days of storage. Comparatively, the viability

of the L. lacits DA/pB6nox culture remained approximately

6.86106 cells per mL, four orders of magnitude higher than that of

L. lactis DA.

The H2O2 concentration of the L. lactis DA and L. lactis DA/

pB6nox cultures were tested to elucidate the cause of cell death

under aerobic conditions. As shown in Figure 5D, in L. lactis DA,

H2O2 accumulated rapidly within 6 h of incubation and reached a

concentration of 78.4469.29 mM after 24 h. In contrast, H2O2

accumulation was below 10 mM during 12 h of cultivation in L.

lactis DA/pB6nox. After 24 h, the final H2O2 concentration of L.

lactis DA/pB6nox was 18.0860.33 mM, which was 76.95% lower

than that of L. lactis DA. The reduction in the H2O2 concentration

of L. lactis DA/pB6nox might have resulted from the elevated

NoxE activity which catalyzed the oxidation of NADH by

simultaneously reducing O2 to H2O.

Discussion

With the advent of metabolic engineering, L. lactis has received

increasing attention with the aim to promote the flavor and health

advantages of fermented products, through the production of, for

example, homoalanine, diacetyl, mannitol and folate [10,29–33].

This study provided a platform for precisely regulating the

metabolic flux via promoter engineering instead of the gene

inactivation or overexpression in L. lactis. The partial redistribu-

tion of the pyruvate flux from lactate to diacetyl was achieved by

controlling the noxE gene expression through a constitutive

promoter library in L. lactis. Furthermore, we newly demonstrated

that the elevated NoxE activity had a positive role in eliminating

H2O2 and prolonging the cell-survival of L. lactis.

Sequence alignment showed that the promoter of the noxE gene

from L. lactis MG1363 possessed the typical promoter properties

[34]. Therefore, the mutant strategy was performed to randomize

the space sequence of the noxE promoter based on the previous

method [35]. A total of 30 random promoters from 500 mutants

were selected to form the constitutive promoter library, which

displayed broad variability with small steps of activity change

between 0.1 and 2.8-fold of the native promoter. Sequence

analysis verified that any alteration of the bases in the conserved

motifs and changes in the spacer length could lead to a drastic

decrease of promoter strength, which supported the postulates in

the previous report [36]. Moreover, the sequences outside the 210

and 235 region may influence promoter strength. Eleven typical

promoters were used to confirm the effective and stable

characteristics of the library through promoter strength measure-

ments and the mRNA transcript levels of the gfp gene. In addition,

the noxE gene was used to prove the broad application range of the

promoter library. NoxE activity showed a nearly linear correlation

with promoter activity. Consequently, we developed a constitutive

promoter library with a wide promoter activity range for fine-

tuning of gene expression in L. lactis, regardless of the target gene

context.

Although the nisin controlled gene expression (NICE) system

has been utilized extensively in L. lactis [37], some shortcomings

confined it to laboratory experimental conditions, including

inducer usage, expression delay and heterogeneity of transcription

levels in cell population [35]. Therefore, practical and stable

properties of constitutive gene expression systems are desired in

large-scale processes. The stable expression of GFP and NoxE

driven by random promoters confirmed that the constitutive

promoter library could meet the demands of the industrial

fermentation process.

Cofactors are essential in completing a large number of

biochemical reactions, and their manipulation has been proved

to have great influences on metabolic networks [38]. The H2O-

forming NADH oxidase specifically utilizes NADH and provides

an extra route for the regeneration of NAD+ when O2 is available

[39,40]. In this study, eleven typical promoters from the promoter

library were chosen to precisely control the noxE expression and

the intracellular NADH/NAD+ ratios were pinpointly regulated.

The direct oxidation of NADH necessary for pyruvate reduction

by the increased NoxE activity resulted in a diminished pyruvate

flux towards lactate via LDH, and the pyruvate flux was

redistributed to the ALS pathway. Subsequently, a-acetolactate

was decarboxylated into diacetyl in the presence of O2. The

Metabolic Control Analysis (MCA) prediction and experimental

observation showed that the glycolytic flux to the a-acetolactate

branch was less than 0.1% in wild-type L. lactis [41]. However, the

increasing NoxE activity driven by the eleven promoters led to the

increase of 5.98% to 23.88% flux towards a-acetolactate and

retained 67.29% to 33.96% flux to lactate. Acetate production

exhibited a slight increase, probably due to the specific PDH

activity which catalyzed the conversion of pyruvate to acetyl-CoA

with the regeneration of NADH under aerobic conditions [42].

Moreover, neither formate nor ethanol was detected, indicating

that no flux was distributed to the pyruvate formate lyase pathway

and the alcohol dehydrogenase pathway, which was in agreement

with the previous report [43]. In the milk fermentation process, the

carbon flux was apportioned to lactate and diacetyl in 4:1

proportion in L. lactis DA/pB6nox, in which the diacetyl yield was

significantly improved as compared to the wild-type strain.

Accordingly, through the precise control of the noxE gene

expression levels by the constitutive promoter library, the tight

constraint on the end-product fluxes in the wild type was alleviated

by the gradual lowering of NADH/NAD+ ratios, yielding a series

of recombinant strains with small differences in the proportion of

lactate and diacetyl production among the end metabolites, which

provide potential strains to optimize metabolite distribution.

Generally, the tolerance of lactic acid bacteria to O2 requires

the presence of either catalase, NADH oxidases (dehydrogenase),

superoxidase dismutase (SOD) or thiol-active enzyme system [44].

There are more than seven NADH oxidase and dehydrogenase

genes in the L. lactis genome, including noxA, noxB, noxC, noxD,

noxE, yphA and aphF [45,46]. NoxA and NoxB are two membrane-

integrated NADH-dehydrogenases and have been demonstrated

to be components of the electron transfer chain (ETC) [47]. NoxC

and NoxD are described as H2O2-forming NADH oxidases,

however there is no experimental evidence to support this [48].

NoxE is a well characterized H2O-forming NADH oxidase [39].

The yphA gene encodes a NADH dehydrogenase similar to that of

Aquifex aeolicus, which participates in aerobic energy metabolism

[45]. AhpF is an H2O2-forming NADH oxidase, constituting the

alkyl hydroperoxide reductase (AhpR) system [49]. Whole-genome

transcriptome analysis has revealed that the H2O2-forming

NADH oxidase and SOD were induced to alleviate oxidative

stress under aerobic conditions, resulting in H2O2 accumulation

[50]. In addition, a small amount of H2O2 in aerated cultures of L.

lactis may also result from pyruvate oxidase activity (POX,
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encoded by the poxL gene) [51]. However, L. lactis is catalase-

negative, so the considerable H2O2 accumulation leads to

oxidative damage [52]. Figure 5C and 5D showed that the

H2O2 concentration of the recombinant strain L. lactisDA/pB6nox

was markedly reduced and the cell viability was significantly

elevated compared with the wild-type strain. This variance could

be the result of the elevated NoxE activity in the recombinant

strain. Firstly, more dissolved O2 was consumed in the H2O-

forming reaction by the elevated NoxE activity, which reduced the

substrate O2 involved in the H2O2-forming reaction. Secondly, in

L. lactis, NADH can be consumed by NoxE, LDH and H2O2-

forming NADH oxidase. Because NoxE possesses much higher

affinity for NADH (Km = 4.1 mM) than the other H2O2-forming

NADH oxidase (for example, the Km value of NADH for AhpF

was 76 mM), it succeeded in competing with the H2O2-forming

NADH oxidase for the substrate NADH, leading to lower H2O2

production [39,53]. Moreover, although the Km value of the LDH

(10 mM) for NADH could compare with that of the NoxE, there is

no H2O2 generation in the reaction catalyzed by LDH.

Subsequently, decreased H2O2 accumulation could effectively

prevent the formation of HO? via the Fenton reaction and reduce

ROS [54], therefore enabling L. lactis to be resistant to oxidative

stress for achieving long-term cell survival.

In conclusion, here promoter engineering was successfully used

to avoid the disadvantages brought by the massive expression of

controlling enzyme and elimination of the branching flux. This

study proved that promoter engineering was a useful genetic

toolbox for metabolic pathway analysis and optimal metabolite

distribution. As rapid acidification and flavor compound genera-

tion are crucial criteria for starter cultures of lactic acid bacteria,

the recombinant strains constructed in this study showed both

reasonable ratios of end products and long-term cell survival,

which opens perspectives for rational improvement of starter

cultures in dairy fermentation industry.
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