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Abstract

In the well-mixed prisoner’s dilemma game, individuals are typically assumed to have no choice about whether to interact
with other individuals in the population. In this paper, we instead consider reputation-based conditional interaction and its
consequences for the evolution of cooperation. Each individual has a tolerance range, and only interacts with other
individuals whose reputation lies within its tolerance range in a chosen sample of the population. Reputation contains
information about the number of interaction partners an individual has just cooperated with. We find that the introduction
of conditional interaction promotes cooperation in well-mixed populations, and there exist moderate tolerance ranges for
which this effect is maximized. For a given tolerance range, there is a critical cost-to-benefit ratio below which cooperation
can be promoted. Interestingly, we find that if cooperation evolves, different cooperators’ interaction clusters are typically
maintained in the population, each around a different reputation level. We further investigate some properties of these
cooperators’ clusters. Moreover, we examine the effects of the sample number on the evolution of cooperation. Our results
highlight the importance of the detailed consideration of modes of interaction for the evolution of cooperation in well-
mixed populations.

Citation: Chen X, Schick A, Doebeli M, Blachford A, Wang L (2012) Reputation-Based Conditional Interaction Supports Cooperation in Well-Mixed Prisoner’s
Dilemmas. PLoS ONE 7(5): e36260. doi:10.1371/journal.pone.0036260
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Introduction

How to understand the emergence of cooperation is a central

problem in evolutionary biology [1–3]. Evolutionary game theory

has become a powerful framework to study this problem [4]. The

prisoner’s dilemma game (PDG) is often employed for this purpose

[5].

In the PDG framework, a cooperator is an individual who pays

a cost c that leads to the other individual receiving a benefit b,

while a defector pays no cost and provides no benefit. In the

evolutionary PDG, cost and benefit are measured in terms of

payoffs, which are interpreted as reproductive success. In general,

the strategy of someone who receives a higher payoff is more likely

to be successfully reproduced/propagated [2]. In order for

cooperation to increase in a population, cooperative individuals

must receive higher payoffs than non-cooperative individuals,

which occurs provided cooperators benefit from cooperative acts

of others more often than non-cooperative individuals. In other

words, there must be positive assortment between cooperative

types for cooperation to evolve [5–8].

In a well-mixed PDG, all individuals are equally likely to

interact with each other (no assortment), defectors have a higher

average payoff than unconditional cooperators. Therefore, the

relative abundance of defectors increases via natural selection, and

drives cooperators to extinction [4,9–11]. In this simple form of

PDG, each individual deterministically interacts with all other

individuals in the population or with a representative sample of the

population. Thus, individuals do not have a choice whether or not

to interact with other individuals.

In natural systems, individuals do not always deterministically

interact with others in a population. Nor do they interact purely

stochastically (as studied in [12–15]). A more realistic mode of

interaction may be that of selective interaction [16]. Here, we aim

to incorporate this selective interaction mode into the well-mixed

evolutionary PDG. Individuals’ reputation is a universal and

intuitive feature of human society as well as other natural systems,

and can be used by other individuals as a selection criterion [17].

Logically, players prefer to interact with others having a high

reputation over those with a lower reputation [18], but social

tolerance [19] will permit interactions with those having non-high

reputation in some cases. They generally have a certain tolerance

range, and will myopically interact with those whose reputation is

within this range, so that two players can interact only if their

reputation levels are both within the other’s tolerance range due to

the mutually myopic selections. In this study, we consider the

combination of reputation and tolerance range to define the mode

of interaction for paired players, and call it conditional interaction.

In previous reputation-based [20–24] or tag-based [17,25–27]

models, individuals take into consideration the reputations or tags

of their opponents to decide whether to cooperate or to defect.

The reputation here is used to help individuals choose interaction

partners. In fact, information regarding individuals’ reputation can
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be used as a selection parameter for partner choice [28], further

justifying the use of reputation in our model.

In general, an individual’s reputation level is a function of its

behavior, increasing with cooperation. As we notice in human

society, people are associated with a higher reputation the more

they help, or cooperate. In our study, individuals engage in

pairwise interactions with others using unconditional strategies,

but since the interaction itself is conditional on reputation,

different individuals may have different numbers of pairwise

interactions. Thus, a cooperator’s number of interaction partners

could have a strong influence on its reputation. This is taken into

account in the adjustment of individuals’ reputation so that

players’ reputation can only be assessed after all the possible

interactions are carried out [23].

An individual’s tolerance range is an important parameter,

which can help individuals determine their interaction partners. In

this study, we mainly examine the effects of tolerance range on the

evolution of cooperation in the well-mixed PDG. Intriguingly, we

find that moderate tolerance ranges are most beneficial for

cooperation in well-mixed populations. Furthermore, for cooper-

ation to evolve, distinct clusters of cooperators are maintained in

the population that do not interact with each other.

Results

First, we fix the sample size k~N{1~499, and study the

cooperation level as a function of the cost-to-benefit ratio r for four

different values of the tolerance range h, as shown in Fig. 1(a). We

see that for each value of h, full cooperation is achieved when r is

small, which is different from previous findings that cooperators

easily vanish even for very small r in a well-mixed population

[4,11]. This is mainly because that the introduced conditional

interaction promotes cooperation, although cooperators still

become rapidly extinct as r becomes large. Moreover, we notice

that, for some fixed r [e.g., r~0:7, see the dotted line in Fig. 1(a)],

the cooperation level for moderate h~0:15 is higher than the

cooperation level for other values of h, e.g., h~0:05 and 0.35. This

suggests that there exist some optimal intermediate h promoting

cooperation.

In order to examine the effect of h more precisely, we study the

cooperation level rc as a function of h for various r as shown in

Fig. 1(b). Interestingly, we find that for the smaller values of r,

there is a moderate region of h resulting in a plateau of full

cooperation. When h is beyond this region, the cooperation level

decreases sharply. The size of this plateau decreases with

increasing r, and finally vanishes. Even when the plateau of full

cooperation is absent, there still exists an optimal h leading to the

maximal cooperation level [e.g., for r~0:75 in Fig. 1(b)]. Our

results show that such a conditional interaction can provide a

positive effect on the promotion of cooperation, which can be

restricted by increasing r.

It is worth noting that for each value of h, there exists a critical

cost-to-benefit ratio rc below which cooperation can be promoted.

We have determined the critical values rc by means of systematic

MC simulations, and the results are summarized in Fig. 2. Clearly,

we see that rc reaches its maximum value at about h~0:10, and rc

tends to zero if h goes to one.

To explain the non-monotonous dependence of rc on h, we first

consider the boundary cases. For h?1, each individual uncondi-

tionally interacts with others, and our model recovers the

traditional evolutionary PDG model in well-mixed populations.

Therefore, defectors can easily take over all the population. For

h?0, defectors generally have bad reputations and their

reputation differences are very slight, hence they do not restrict

to interact with each other. Whereas the differences between

cooperators’ reputation levels can easily exceed small h, so that

most cooperators are not permitted to interact with each other. As
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Figure 1. Promotion of cooperation due to reputation-based
conditional interaction. Panel (a) shows the cooperation level as a
function of r for different values of h. Panel (b) shows the cooperation
level as a function of h for different values of r. It can be observed that
cooperation can evolve even for large value of r in the mode of
conditional interaction, and there exist intermediate tolerance ranges
leading to the optimal cooperation level. Here, k is set to N{1~499:
doi:10.1371/journal.pone.0036260.g001
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Figure 2. The critical cost-to-benefit ratio rc as a function of
h. Cooperation can be promoted when the cost-to-benefit ratio is less
than the corresponding critical value, and rc reaches its maximum value
at about h~0:10: Parameters are the same as those in Fig. 1.
doi:10.1371/journal.pone.0036260.g002
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a result, cooperators do not have the advantage in payoff gained

by interacting with each other more often than with defectors, and

naturally they are easily wiped out.

As h departs from zero, the differences between some

cooperators’ reputation levels begin to fall within the value of h.

Thus, cooperators are permitted to interact with some other

cooperators [see Fig. 3(a)], resulting in a positive feedback

mechanism that enhances the reputation and payoff of coopera-

tors. As time t increases, the fraction of individuals having small

reputation decreases, and the fraction of individuals having high

reputation increases [see Fig. 3(b)]. Interactions among defectors,

and interactions between defectors and cooperators are both

diminished (see Fig. 3). Importantly, cooperators gradually form

stable interaction clusters, where they have very similar reputation

levels [see Fig. 3(b)], so that positive assortment between

cooperators can be achieved within such clusters, and cooperation

can be promoted even in well-mixed populations.

Furthermore, in Fig. 3(b) when the system reaches the absorbing

state, i.e., full cooperation, we note that there are still different

levels of reputation maintained in the population. This means that

even though the population consists of cooperators only, not all

individuals, interact, i.e., cooperate, with all other individuals in

the population [see Fig. 3(a)]. In other words, the population is

segregated into different cooperation clusters, within which

cooperation occurs, but between which there is no cooperation.

According to the assessment rule, an individual’s reputation not

only depends on its strategy, but also depends on the pairwise

interaction number. Hence, even if all the individuals choose to

cooperate, separate reputation clusters can be maintained in the

population. Moreover, we check that reputation clusters can still

emerge which promotes the evolution of cooperation for moderate

values of tolerance range, in the condition of other initial

assignments of reputations.

Some properties of these cooperators’ clusters at equilibrium are

shown in Fig. 4. We show the average number of cooperators’

clusters �NNc as a function of h in Fig. 4(a). For initial 50% C �NNc first

increases monotonously until reaching the maximum value at

about h~0:10, and then decreases with increasing h. This hump-

shaped dependence can be understood when comparing the

number of clusters emerging in populations that are initialized

with only cooperators [red dots in Fig. 4(a)]. In that case, �NNc

decreases monotonously with increasing h, and as is intuitively

clear, for small tolerances h cooperators would be divided into

more and smaller interaction clusters. However, for small h

defectors can invade and dominate the population (see Fig. 1),

which generates the hump shown in the black dots in Fig. 4(a). In

Fig. 4(b) we study the probability distribution of Nc with different

intermediate values of h for initial 50% C. When full cooperation is

achieved there are always at least 2 cooperators’ clusters

maintained in the population, and for smaller intermediate h

larger Nc is maintained with a higher probability. Individuals from

different cooperative clusters do not interact with each other, but

all have the same strategic genotype. These results may reflect the

phenomenon of segregation in human society [29–32], where

individuals who are otherwise genetically similar enough to

interact (both cooperators, for example) do not interact with a

portion of others in the same community or geographical location

based on some types of behavioural tag.

Finally, we examine the effect of the sample size k on the

evolution of cooperation. As shown in Fig. 5, we find that for

hv0:45, especially for h lying in the optimal region, the smaller

the sample number is, the lower the cooperation level is. With

smaller sample numbers, an additional source of stochasticity is

incorporated into individual payoff assignment, which can result in

a negative effect on the evolution of cooperation. But the finite

population analogue of replicator dynamics we adopted may

dismiss some stochastic effects from weak selection [12,15]. As a

result, the nontrivial dependence of cooperation level on the

tolerance range does not change qualitatively with the sample

number.

Discussion

Reputation is used as a phenotypic feature for selective

interactions in our model, and such reputation-based selective

interactions differ from previous explicit ones [2,20–24]. In

general, indirect reciprocity works through reputation. Individuals

choose to cooperate or to defect, depending on the recipient’s

reputation and their own, and those with high reputation are more

likely to receive help from others. In our model, it is only when

individuals determine whether to participate that they consider the

opponent’s reputation and ones own, and they play the same

strategy with all interaction partners. Individuals’ reputation

generates phenotypic assortment for preferential interactions. In

particular, cooperators maintain a non-zero reputation level, while

the reputation of defectors decreases to zero. This generates the

positive assortment between cooperators necessary for the

maintenance of cooperation.

Our assessment rule gives individuals a reputation that varies

from zero to one, which differentiates the players in the well-mixed

populations. It is interesting to note that even if cooperation

dominates, not all cooperative individuals have the same
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Figure 3. Average interaction cooperator numbers and repu-
tation distribution in the population. Panel (a) depicts the average
interaction cooperator numbers of a cooperator (ICC ) and a defector
(IDC ) as a function of time step t. Panel (b) depicts the contour plot of
reputation distribution in the population drawn as a function of time
step t. It can be observed that during the evolutionary process different
cooperators’ clusters are typically maintained in the population, leading
to interaction segregation in purely cooperative populations. Here,
h~0:15, r~0:60, and other parameters are the same as those in Fig. 1.
doi:10.1371/journal.pone.0036260.g003
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reputation level. Rather, the cooperators form interaction clusters

based on different reputation levels, with cooperative interactions

taking place within clusters, but not between different clusters.

Such cluster formation within populations consisting entirely of

cooperators does not seem to have been observed in previous

reputation-based studies [2,20–24]. But interestingly, such similar

finding has been experimentally demonstrated in other relevant

works regarding in-group favoritism [29–32], where cooperators

only help others in their group. In this sense, our work

complements and confirms previous results by introducing such

a reputation-based conditional interaction rule. Moreover, it is

worth pointing out this assessment rule of reputation is set by only

taking into account some limited factors. In fact, based on this

assessment rule, some more factors (e.g., an individual’s reputation

should keep decreasing after playing as a defector in some

interactions) can be incorporated into the evaluation of reputation,

which could be further helpful in studying the evolution of

cooperation in more realistic systems.

Because the reputation of individuals in our model can be seen

as a kind of tag, our model is related to the considerable body of

work on tag-based cooperation, according to which cooperators

prefer to help others with similar tags [17,25–27,33–37]. In

general, those tag-based selective interactions are based on fixed

tags, and often a result of self-similarity mechanism in nature.

Individuals (or altruists) play a conditional strategy in the

framework of compulsory participation: they cooperate with all

individuals who are close enough in tag space and defect

otherwise. This selective interaction between similar players is

active. Whereas the conditional interaction rule in our model

results from individuals’ respective preferences, so that individuals

passively interact with others having similar and dynamical

reputation level by using pure strategies. In addition, the

phenotypic (heritable) signals in tag-based models are possibly less

reliable [27,33]. Defectors may detect this tag, and destroy the tag-

based cooperation. Presently, individuals’ reputation is adjustable

based on past actions, which could facilitate preferential assort-

ment. In particular, cooperators’ reputation can become very

similar with some others’ at moderate tolerance range. The

positive correlation between reputation and moderate tolerance

range leads to positive assortment between cooperative types–the

basic mechanism that promotes cooperation [5–8]. Noticeably, we

also show that in contrast to previous related works [34,36], this

promotion does not need the additional requirement of spatial

population distribution.

The parameter h in our models could be used to characterize

the strength of individuals’ rationality at choosing interaction

partners. For h?0, individuals only tend to interact with those

having higher reputation levels, demonstrating a rational perfor-

mance; whereas for h?1, individuals unconditionally interact with

other individuals, performing randomly. It is important to

emphasize that such kind of rationality is mainly based on

individuals’ reputation information, rather than payoff informa-

tion. Indeed, the bounded rationality of individuals has been taken

into account in the dynamics of games in real systems, and may

have different forms [17]. For example, in [38–43], a stochastic

Fermi function evolutionary rule is presented to capture the

bounded rationality of individuals. Here we capture the bounded

rationality of individuals in another sophisticated situation, and we

find that this different form of bounded rationality is beneficial for

the altruistic behavior, consistent with previous results [39,40]. In
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Figure 4. Average number of cooperators’ reputation clusters
and their probability distribution. Panel (a) shows the average
number of cooperators’ reputation clusters �NNc as a function of h for two
different initial strategy distributions. Panel (b) shows probability
distribution of cooperators’ reputation cluster numbers Nc with
different values of h for initial 50% C. For initial 50% C, the cluster
number reaches its maximum value at about h~0:10 which optimally
promotes cooperation. Whereas for initial 100% C, the cluster number
decreases with increasing the tolerance range. Here, r~0:6 and other
parameters are the same as those in Fig. 1.
doi:10.1371/journal.pone.0036260.g004
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Figure 5. The cooperation level as a function of h for different
representative sample size k of the population. We fix r~0:6
here, and find that the nonmonotonous dependence of cooperation
level on the tolerance range does not change qualitatively with the
sample number and have checked that the main results can still emerge
for other values of r.
doi:10.1371/journal.pone.0036260.g005
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this sense, our work further shows that individuals’ bounded

rationality can become a beneficial characteristic in understanding

cooperative behavior in the real world [17].

We observe that individuals are constrained to interact with few

others, and cooperators’ interaction clusters can be formed. These

observations are conceptually analogous to the ones in games on

graphs, where individuals are constrained to interact with few

others along the edges [44–46]. Furthermore, there are some

cooperators with high reputation during the evolutionary process,

who act as hub cooperators in heterogeneous networks [47–51]:

they can help others more, resist the exploitation by defectors, and

breed other potential cooperators in the population. By means of

this analogy, we further confirm that an optimal environment for

the evolution of cooperation is warranted by the middle range of

tolerance.

It is noteworthy that our approach bears some similarity with

game models about the coevolution of strategy and network

structure (see [52,53] for review papers), albeit presently only the

interaction network is dynamical. Individuals can have different

and dynamical pairwise interaction numbers by this mode of

selective interaction. In particular, individuals will refuse to

participate in the interactions if they are dissatisfied with their

parters. This similar feature has been reflected in some previous

works about evolutionary games in dynamical networks. For

example, in [54] if a player is dissatisfied with the interaction, then

it competes with the partner to rewire the link; and in [55]

undesired links (the links between cooperators and defectors) break

fasters under the proposed active linking rule. Under this

approach, dynamical heterogeneous interactions emerge in the

well-mixed populations, and allow cooperation to spread at

moderate tolerance range. Moreover, some individuals may be

isolated by all others, and become interaction loners. However, the

loner here is not a strategy choice and does not arise voluntarily

[56,57].

In summary, we have presented a conditional interaction rule in

the well-mixed prisoner’s dilemma game, which combines

individuals’ social tolerance range with reputation information to

help individuals choose interaction partners. We have mainly

studied the effects of tolerance range on the evolution of

cooperation. Interestingly, we found that there exist optimal

moderate tolerance ranges leading to the highest levels of

cooperation, and the conditional interaction rule can be helpful

in solving the problem of cooperation in well-mixed populations.

Furthermore, we obtained the critical cost-to-benefit ratio below

which cooperation can be promoted for each value of tolerance

range. Also, we found that when cooperation evolves, different

cooperators’ clusters are typically maintained in the population,

leading to interaction segregation in purely cooperative popula-

tions. When full cooperation is achieved, there are always at least

two cooperators’ clusters presenting in the population, and the

number of different cooperation clusters appears to be maximal

near the tolerance range that optimally promotes cooperation.

Thus, our model not only shows that conditional interaction is an

alternative way to solve the problem of cooperation through

assortment, but also suggests a mechanism for generating

interaction segregation within cooperative populations. In future

work, it would be interesting to consider these mechanisms in

other evolutionary games, e.g. in the snowdrift game [5], and to

consider the evolutionary dynamics of tolerance levels.

Materials and Methods

Consider the evolutionary PDG in a well-mixed population with

size N. Each individual x can either cooperate (C) or defect (D).

The strategy of player x is denoted by Sx, where Sx~1
corresponds to the strategy C, and Sx~0 to the strategy D.

Following previous works [44,58], we adopt the rescaled payoff

matrix depending on one single parameter so that the problem can

be simplified

C D

C

D

1 0

1zr r

 !
,

ð1Þ

where r~c=b represents the cost-to-benefit ratio. It is worth

pointing out that the qualitative results do not change if we adopt

other forms of payoff matrix for PDG [48,59].

In well-mixed populations, each player chooses a representative

sample of the population as the possible interaction partners in

each generation [15]. Without loss of generality, we assume that

there are k (1%kƒN{1) individuals in the chosen subset of the

population. Note that if k~N{1, each individual has the

opportunity to interact with all others in the population at each

generation.

Then, player x will compare its current reputation with player

y’s in the chosen sample of the population. It will be willing to

interact with player y, if player y’s reputation is within its tolerance

range, that is,

Rx{hƒRy,

where Rx (Ry) is the current reputation level of player x (y), and h is

the tolerance range of player x. In this study, we assume that each

player has the same tolerance range. Similarly, player y will be

willing to interact with player x if Ry{hƒRx: As a result, only

when DRx{RyDƒh, player x can interact with player y, and obtain

the payoff from the game.

According to the above interaction rule, player x chooses its

interaction partners from the sample of the population, and

collects its payoff Px by using strategy Sx,

Px~SxIcz(1{Sx)½Ic(1zr)z(Ix{Ic)r�, ð2Þ

where Ix is the number of player x’s interaction partners, Ic is the

number of cooperators among the interaction partners, and

IcƒIxƒk:
Following the interactions with the sample of the population,

player x’s reputation level is adjusted, and its updated reputation

level, Rx(t), is a weighted combination of its previous level at time

t{1 and its actions taken against interaction partners at t.

Formally,

Rx(t)~(1{a)Rx(t{1)zaSx
Ix(t)

k
, ð3Þ

where 0vav1 is a weighting factor. For a?1, individuals’

reputation depends only on the present interactions. For a?0,
individuals’ reputation is unchanged. Without loss of generality,

the second term in Eq. (3) is normalized (divided by the number of

the sample k), and is a measure of how much player x cooperated

with others. In this study, the reputation level for N agents is

initially random and can vary between 0 and 1, and correspond-

ingly the tolerance rang is set to 0vhv1:
Following the reassignment of reputation levels, player x selects

another player y randomly from the entire population for strategy

updating. Whenever PywPx, it will adopt the selected individual

Conditional Interaction Supports Cooperation
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y’s strategy with probability given by

W~
Py{Px

M
, ð4Þ

where M ensures the proper normalization and is given by the

maximum possible difference between the payoffs of x and y. It is

important to point out that the selection under such strategy

update rule is strong and can dismiss some stochastic effects, so

that we can focus more forcefully on the effects of the reputation-

based conditional interactions.

In this study, we set a~0:5, and investigate the effects of h on

the evolution of cooperation. Moreover, we have checked that the

main results remain unaffected qualitatively when changing a
within realistic limits.

We study this model by Monte Carlo (MC) simulations, which

are carried out in the well-mixed population with size N~500:
Initially, the two strategies of C and D are randomly distributed

among the population with an equal probability, and individuals’

reputation levels are randomly distributed within the interval ½0,1�:

Under stochastic dynamics, the population will inevitably

converge to one of the two possible absorbing states: 100%

cooperators or 100% defectors [54,60]. In our study, we run 500

independent simulations for each set of parameters, and compute

the fraction of times that the system evolves to 100% cooperators

as the cooperation level rc: However, we find that the time for

reaching an absorbing state may be prohibitively long for certain

sets of parameters. If the population does not converge to an

absorbing state after 106 generations, the cooperation level is

determined by the average fraction of cooperators in the

population over the last 103 generations. Furthermore, we

implement this computational model with synchronous updates

[46].
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