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Abstract

Background: Human Phosphatidylethanolamine binding protein 1 (hPEBP1) also known as Raf kinase inhibitory protein
(RKIP), affects various cellular processes, and is implicated in metastasis formation and Alzheimer’s disease. Human PEBP1
has also been shown to inhibit the Raf/MEK/ERK pathway. Numerous reports concern various mammalian PEBP1 binding
ligands. However, since PEBP1 proteins from many different species were investigated, drawing general conclusions
regarding human PEBP1 binding properties is rather difficult. Moreover, the binding site of Raf-1 on hPEBP1 is still unknown.

Methods/Findings: In the present study, we investigated human PEBP1 by NMR to determine the binding site of four
different ligands: GTP, FMN, and one Raf-1 peptide in tri-phosphorylated and non-phosphorylated forms. The study was
carried out by NMR in near physiological conditions, allowing for the identification of the binding site and the
determination of the affinity constants KD for different ligands. Native mass spectrometry was used as an alternative method
for measuring KD values.

Conclusions/Significance: Our study demonstrates and/or confirms the binding of hPEBP1 to the four studied ligands. All of
them bind to the same region centered on the conserved ligand-binding pocket of hPEBP1. Although the affinities for GTP
and FMN decrease as pH, salt concentration and temperature increase from pH 6.5/NaCl 0 mM/20uC to pH 7.5/NaCl
100 mM/30uC, both ligands clearly do bind under conditions similar to what is found in cells regarding pH, salt
concentration and temperature. In addition, our work confirms that residues in the vicinity of the pocket rather than those
within the pocket seem to be required for interaction with Raf-1.
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Introduction

Phosphatidylethanolamine binding protein 1 (PEBP1), also

known as Raf kinase inhibitory protein (RKIP), is involved in

several processes in living cells. Its physiological function,

mechanism of action and binding properties have been studied by

using various cells and tissues from human, bovine, rat and mouse.

The main results have revealed that PEBP1/RKIP regulates three

key mammalian signaling pathways, namely Raf/MEK/ERK, NF-

kB and G-protein coupled receptors (GPCR), and is implicated in

signaling [1–3], proliferation [4], differentiation [5], migration [6],

survival [7], and cell apoptosis [8,9]. PEBP1 acts by direct

interaction with the protein kinases involved in the pathways, such

as Raf-1 [1,10], MEK and ERK [11]. The interaction of PEBP1

with these protein kinases leads to their inhibition. As an example,

the phosphorylation of Raf-1 by p21-activated kinase (PAK) and by

Src family kinases, which is required for Raf-1 activity, is prevented

by PEBP1 binding [12]. Bound Raf-1 is then inactive as a MEK

kinase, which deregulates the ERK pathway. Upon phosphoryla-

tion by PKC on Ser153, PEBP1 dissociates from Raf-1 and inhibits

the G-protein-coupled receptor kinase 2 (GRK2), which is a

negative regulator of GPCRs [13,14]. PEBP1 has also been shown

to bind NF-kB inducing the kinase NIK and to inhibit the signaling

mediated by NF-kB which plays a prominent role in apoptosis [2].

More specifically in human, hPEBP1 has been identified as a

metastasis suppressor [15] since hPEBP1 expression is decreased in

metastatic prostate [16,17] and breast [18,19] cancers. Moreover,

hPEBP1 is a cell sensitizer to chemotherapy and immunotherapy

[20]. Finally, hPEBP1 may also be involved in Alzheimer’s disease

[21], infertility [22,23], and diabetes [24].
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hPEBP1 is a member of the phosphatidylethanolamine binding

protein (PEBP) family, which is a highly conserved group of more

than 400 ubiquitous proteins found in a variety of tissues from a wide

range of organisms (bacteria, yeasts, insects, mammals and plants).

The crystal structures of PEBPs have revealed a remarkably

conserved ligand-binding pocket. X-ray studies for bovine and

human PEBP1s showed that ions such as acetate and o-phosphor-

ylethanolamine (PE) (PDB 1A44; PDB 1B7A) [25], phosphate and o-

phosphotyrosine (PDB 2QYQ) [26], or cacodylate (PDB 1BEH) [27]

could bind to this conserved pocket. The conserved pocket is the only

ligand-binding site of PEBP1s identified by X-ray.

Besides crystallographic data, binding studies have been

reported using other techniques. A study by affinity chromatog-

raphy at pH 7.5 revealed that nucleotides could bind to the bovine

brain PEBP (bPEBP), in the decreasing affinity order

FMN.GTP.GDP.GMP.FAD.ATP.NADP.CTP.UTP.

ADP [28]. Interactions of human and bovine PEBP1s with

morphine and morphine derivatives were characterized at pH 6.8

by noncovalent mass spectrometry [29]. Moreover, an NMR study

of rat PEBP1 (rPEBP1) in near physiological conditions (pH, salt

concentration, temperature) showed that the conserved pocket

could accommodate various ligands such as 1,2-dihexanoyl-sn-

glycero-3-phosphoethanolamine (DHPE), dihexanoylphosphatidyl-

serine (DHPS), dihexanoylphosphatidylglycerol (DHPG), and

dihexanoylphosphatidic acid (DHPA) [30]. The screening of a

chemical library by NMR spectroscopy revealed three novel ligands

for rPEBP1 that also bind to the protein pocket [31]. Shemon and

co-workers (2009) were also interested in the interaction of rPEBP1

with locostatin ((S)-(+)-4-benzyl-3-crotonyl-2-oxazolidinone), since it

is known to be a cell migration inhibitor whose cellular target is

PEBP1 in cell lines from different origins [6]. However, locostatin

itself could not be analyzed by NMR because of its limited solubility

and the fact that it induced protein precipitation [32]. Contrary to

locostatin, its precursor (S)-4-benzyl-2-oxazolidinone was compat-

ible with NMR studies, which indicated a binding to the conserved

pocket of rPEBP1 [32]. Furthermore, interactions between rat,

mouse or human PEBPs and an inhibitor of phosphodiesterase-5

(PDE5) were shown by combining affinity based enrichment

and mass spectrometry [33]. The binding was confirmed by

solution based assays using absorbance, fluorescence and NMR

spectroscopy.

However, some of these studies have emphasized the importance

of both experimental conditions and the species of the PEBP used in

the binding studies. A comparative NMR study at pH 7.4 and 6.0

showed that some ligands of hPEBP1 and bPEBP1 previously

identified did not interact with rPEBP1 at pH 7.4, particularly PE

[30] and the nucleotides GDP and GTP [31]. Furthermore, the

binding study involving PEBPs from rat, mouse and human (rPEBP2,

mPEBP1, mPEBP2 and hPEBP1) and an inhibitor of PDE5

evidenced different behaviors depending on the species and the

tissues of origin of the protein, in spite of high sequence homologies

and high similarities in the protein tertiary structures [33].

As previously mentioned, PEBP1 from bovine, human or rat is

able to bind small ligands as well as proteins such as the Raf-1,

MEK and ERK kinases [1,11]. Although the mechanism of

PEBP1 binding to Raf-1 remains unknown, several studies have

provided information about the binding region of Raf-1 on the one

hand, and the binding region of PEBP1 on the other hand. Yeung

and co-workers (2000) showed that the binding domains of Raf-1

with rPEBP1 were subdomains I and II, a region of approximately

100 amino acids [10]. More recent studies revealed that the

phosphorylated N-region of Raf-1, encompassing amino acids 331

to 349, was sufficient to bind to rPEBP1 [34,35]. These data are

consistent with rat and human PEBP1s inhibiting Raf-1 by

preventing its phosphorylation at S338 and Y341 [12]. Besides, it

has been shown that binding to Raf-1 requires the integrity of the

rPEBP1 pocket [30,35] and is influenced by rPEBP1 pocket

occupancy by another ligand (DHPE) [30]. Furthermore, the

P74L mutation of the rPEBP1 pocket affects Raf-1 binding, but

not the binding of DHPE to rPEBP1 [30]. Thus, the rPEBP1 lipid

binding site may be distinct from the kinase binding site, and at

least some of the pocket residues may be involved directly or

indirectly in the interaction between rPEBP1 and Raf-1 [31].

Another work did support the idea of an indirect binding of Raf-1

to the PEBP1 pocket. Indeed, in contrast to DHPE, the locostatin

precursor binding to the rPEBP1 pocket was not sufficient to

interfere with Raf-1 binding [32]. The authors suggested that

other residues of rPEBP1 may be critical for Raf-1 binding.

Thus, in spite of the numerous papers concerning PEBP1 binding

ligands, one another’s conclusions are not always in agreement. The

works previously mentioned evidenced different binding behaviors

as a function of (i) the species of PEBP1 (mouse, rat or human) [33],

and (ii) the experimental conditions of binding, particularly the pH

value [31]. Moreover, the binding of Raf-1 is complex and the

binding site on PEBP1 is still unknown. In the present study, we

investigated the human PEBP1 by NMR to determine the binding

site of four different molecules: two nucleotides, GTP and FMN,

because of their relatively high affinities for bPEBP1 [28], and a

Raf-1 peptide of 19 amino acids in tri-phosphorylated and non-

phosphorylated forms. The non-phosphorylated peptide

RPRGQRDSSYYWEIEASEV is the minimal region 331–349 of

Raf-1 required for rPEBP1 binding [34]. Three phospho-amino

acids were incorporated at the positions Ser338/339 and Tyr341, since

the phosphorylation enhanced the binding to rPEBP1 as studied by

surface plasmon resonance [34]. In order to examine the effects of

experimental conditions such as pH, salt concentration, and

temperature on binding, we investigated hPEBP1 in two sets of

conditions: MES 10 mM pH 6.5 at 20uC, and HEPES 10 mM,

NaCl 100 mM, pH 7.5 at 30uC (near physiological conditions).

NMR titrations were also used to derive the affinity constants KD of

the ligands with hPEBP1. Native mass spectrometry (MS) was used

as an alternative method for measuring KD at pH 7.4/37uC for

GTP and FMN and at pH 7.4/25uC or pH 6.6/20uC for the tri-

phosphorylated Raf-1 peptide.

Results

15N-1H heteronuclear single quantum coherence (HSQC)

NMR experiment was used to study the interaction between

hPEBP1 and four different ligands under two sets of experimental

conditions. The HSQC spectrum of a protein monitors peptidic

NH groups, giving one signal per amino acid at the level of the

protein backbone. Since the chemical shift is very sensitive to the

environment of the observed nuclei, the binding of the ligand

affects the chemical shifts of both peptidic nitrogen and proton

within the binding area. Hence, the residues involved in a binding

can be determined using HSQC spectra of hPEBP1 in the

presence or absence of a ligand.

Mammalian PEBP1s crystal structures (PDB 2QYQ [26]) have

revealed a remarkably conserved ligand-binding pocket. The

hPEBP1 pocket can be defined by 16 residues at the surface of the

protein: D70, A73, P74, Y81, W84, H86, V107, G108, G110,

P111, P112, H118, Y120, L180, Y181, and L184 (Figure 1).

GTP and FMN do bind to the ligand-binding pocket of
hPEBP1

NMR titration of GTP in MES 10 mM pH 6.5 at 20uC
revealed 34 residues in fast exchange on the NMR time scale

Ligand Binding Study of Human PEBP1/RKIP
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(Figure 2A). Upon titration, the signals of these residues are shifted

in both dimensions in the HSQC 2D plane, and the trajectories of

the signals are linear, as observed for L184 (Figure 2B). This linear

evolution indicates a single binding event [36]. Mapping of the

residues affected by GTP binding on hPEBP1 structure corre-

sponds to the conserved pocket of hPEBP1 (Figure 3A).

The chemical shift perturbations (CSP) values of the 34

perturbed residues were plotted versus the GTP concentration,

and the data were fitted against equation 2 [37], giving a binding

constant for each residue. Fitted titration data are shown in

Figure 2C for six residues. CSP data were normalized to CSPmax

(with the CSPmax estimate obtained from the curve fitting method

used to calculate KD). The plot of normalized CSP (CSP/CSPmax)

versus the GTP concentration revealed a uniform behavior for 30

of the 34 perturbed residues (data not shown). The data of four

residues (V27, G57, Y106, and G110) gave very different values of

KD compared to those calculated from the 30 other residues

perturbed by GTP, and hence, were not considered for the

estimation of the average binding constant of GTP. Among the

four residues excluded for the KD estimation of GTP, (i) two of

them (V27 and G57) were isolated on the protein surface, (ii) one

(Y106) belongs to the binding surface, but is far from the center of

the hPEBP1 pocket, and (iii) the last one’s peak intensity (G110)

was too low to get data of quality. Thus, estimated from 30

perturbed residues, the average binding constant for GTP at

pH 6.5/20uC is KD = 6696140 mM (Table 1).

A total of 67 residues were affected upon FMN titration in MES

10 mM pH 6.5 at 20uC. Most of these residues were in slow

exchange on the NMR time scale (39 residues in red on Figure 3B)

and defined a binding surface centered on the conserved hPEBP1

pocket. 15 residues in fast exchange and 13 residues in

intermediate exchange on the NMR time scale were also observed

(residues in fast exchange in yellow, and residues in intermediate

exchange in orange on Figure 3B). These residues are located in

the outermost region of the binding surface. Since slow exchange

usually indicates a higher affinity compared to fast or intermediate

exchange, the data show that the pocket corresponds to the region

with the greatest affinity for FMN. However, the binding constant

could not be calculated from the intensity data of the residues in

slow exchange because their peak intensities dropped sharply

when the FMN concentration increased. Hence, the affinity was

estimated from CSP data of residues in fast exchange:

KD = 1469 mM. This affinity is therefore underestimated.

GTP and FMN do bind to hPEBP1 in near physiological
conditions

Since the experimental conditions can affect the binding

behavior [31], the binding of GTP and FMN was also investigated

under near physiological conditions: HEPES 10 mM pH 7.5,

NaCl 100 mM, at 30uC.

The binding of GTP in near physiological conditions exhibited

the same features as in MES 10 mM pH 6.5, 20uC, that is, the

same binding site and a fast exchange on the NMR time scale.

Among the 34 residues affected at pH6.5/20uC, 26 were also

perturbed at pH 7.5/NaCl 100 mM/30uC. However, the chem-

ical shift perturbations were smaller in near physiological

conditions (,CSP.+2s= 0.058 ppm) than at pH 6.5/20uC
(,CSP.+2s= 0.087 ppm) (Figure 4). Moreover, the binding

constant measured for GTP at pH 7.5/NaCl 100 mM/30uC was

342561967 mM, which was higher than 6696140 mM at pH 6.5/

20uC (Table 1).

Similarly to the study performed at pH 6.5/20uC, the titration

of FMN in near physiological conditions revealed residues in slow

exchange on the NMR time scale, as well as residues in

intermediate and fast exchange. The data evidenced the conserved

hPEBP1 pocket as the binding surface in both conditions.

Nevertheless, regarding the residues in slow exchange, the loss in

intensity occurred at a higher FMN concentration at pH 7.5/

NaCl 100 mM/30uC than at pH 6.5/20uC (data not shown). The

estimation of KD from CSP data of residues in fast exchange

confirmed a lower affinity in near physiological conditions:

KD = 252684 mM at pH 7.5/NaCl 100 mM/30uC versus

KD = 1469 mM at pH 6.5/20uC (Table 1).

The formation of hPEBP1-nucleotide complexes was also

monitored by native MS (data not shown). In ammonium

bicarbonate (ABC) 20 mM at pH 7.4 and 37uC, hPEBP1 was

found to bind with GTP and FMN with KD values of 89648 mM

and 564 mM, respectively (Table 1). As in NMR, hPEBP1 showed

a higher affinity for FMN than for GTP. In native MS, KD values

were measured in the absence of NaCl. In contrast, NMR

measurements were performed in the presence of NaCl 100 mM,

leading to a partial screening of electrostatic charges, and

consequently to higher KD values.

The Raf-1 peptide does bind in tri-phosphorylated and
non-phosphorylated forms to the ligand-binding pocket
of hPEBP1

HSQC spectra displayed a total of 73 perturbed residues upon

titration of the tri-phosphorylated Raf-1 peptide in MES 10 mM

pH 6.5 at 20uC: 54 residues in slow exchange, 11 residues in

intermediate exchange, and 8 residues in fast exchange (Figure 3C).

Among these 73 perturbed residues, 11 residues were buried (V27,

V67, L68, T69, D72, S109, V121, W122, V124, V151, and C168)

and three were isolated at the surface of hPEBP1 (Q15, G57, and

L58). Thus, after discrimination, we determined a single binding

surface composed of 59 residues including and surrounding the

conserved pocket. Neither the intensity data of the residues in slow

exchange, nor the CSP data of the residues in fast exchange did

allow us to estimate the affinity of the tri-phosphorylated Raf-1

peptide. Indeed, on the one hand, the peak intensities dropped

sharply when the Raf-1 peptide concentration increased. And, on

the other hand, the plot of CSP versus Raf-1 peptide concentra-

tion revealed no saturation upon titration.

However, the affinity of hPEBP1 for the tri-phosphorylated Raf-

1 peptide was measured by native MS. A KD value of 45612 mM

was obtained in conditions of incubation similar to the conditions

used for NMR, in ammonium acetate at pH 6.6 and 20uC

Figure 1. The hPEBP1 pocket on the X-ray ribbon structure and
on surface representation (PDB 2QYQ). Residues indicated in blue
are D70, A73, Y81, W84, H86, V107, G108, G110, H118, Y120, L180, Y181,
and L184. Prolines 74, 111 and 112, which belong to the hPEBP1 pocket
but are not detected by HSQC spectrum, are indicated in green.
doi:10.1371/journal.pone.0036187.g001

Ligand Binding Study of Human PEBP1/RKIP
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(Figure 5). In ABC at pH 7.4 and 25uC, a KD of 1163 mM was

found, a value close to the KD of 20 mM determined in solution

with rPEBP1 [34]. All these values are within the same order of

magnitude.

For the NMR titration with the non-phosphorylated Raf-1

peptide in MES 10 mM pH 6.5 at 20uC, only 33 residues were

perturbed: 16 residues in slow exchange, 6 residues in intermediate

exchange, and 11 residues in fast exchange (Figure 3D). After

discrimination of the buried residues (V27, V46, D72, and S109)

and those isolated at the surface (Y29), three surface patches were

identified. Two small surfaces were formed by L25-H26-V34-

G166 and W55/D56/G57/L58/V164 on the opposite side of the

conserved pocket of hPEBP1, but were not large enough to be

considered as potential binding surfaces. Besides, 19 perturbed

residues defined a surface centered on the conserved pocket

similarly to the other ligands. It is worth noticing that the

corresponding binding surface was larger for the tri-phosphory-

lated peptide. In addition, comparison of the peak intensities for

Figure 2. Binding of GTP to hPEBP1 at pH 6.5/206C by NMR. (A) Overlay of 1H, 15N HSQC spectra of hPEBP1 270 mM in the absence (black)
and presence (red) of GTP 4 mM. (B) Expansion of the selected HSQC region. Overlay of six HSQC spectra of hPEBP1 270 mM with increasing
concentration of GTP: 0 mM (black), 0.27 mM (green), 0.54 mM (orange), 1 mM (purple), 2 mM (blue), and 4 mM (red). (C) Plot of CSP versus GTP
concentration; data fitted against equation of KD (see M&M) for the 6 residues indicated on Figure 3A.
doi:10.1371/journal.pone.0036187.g002

Ligand Binding Study of Human PEBP1/RKIP
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both Raf-1 peptides titrations at similar protein/ligand ratios

revealed that the intensity loss was less severe for the non-

phosphorylated peptide (data not shown). Altogether, these data

suggest a lower affinity of hPEBP1 for the non phosphorylated

Raf-1 peptide compared to the tri-phosphorylated Raf-1 peptide,

in agreement with literature reports [34]. However, we could not

confirm this with a binding constant value. The severe drop of

peak intensities for the residues in slow exchange and the non-

saturation of CSP for the residues in fast exchange upon titration

did not allow us to estimate the KD as mentioned for the tri-

phosphorylated Raf-1 peptide.

One additional difference could be observed between the two

peptides regarding the perturbation of the pocket itself. The

conserved pocket of hPEBP1 is formed by 16 residues at the

Figure 3. Binding site of ligands at hPEBP1 surface at pH 6.5/206C. Mapping of amino acid residues whose HSQC peak is significantly
affected by (A) GTP, (B) FMN, (C) the tri-phosphorylated Raf-1 peptide, and (D) the non-phosphorylated Raf-1 peptide at the surface of hPEBP1 (X-
Ray; PDB 2QYQ). Red = residues in slow exchange; orange = residues in intermediate exchange; yellow = residues in fast exchange. Prolines 74, 111
and 112, which belong to the hPEBP1 pocket but are not detected by HSQC spectrum, are indicated in green. Serine 153 is indicated in cyan as a
reference point. (E) hPEBP1 sequence alignment (accession number P30086) indicating the residues defining the binding surface of GTP, FMN, the tri-
phosphorylated Raf-1 peptide (3P. Raf-1 peptide), and the non-phosphorylated Raf-1 peptide (Raf-1 peptide). The color code is similar to (D).
doi:10.1371/journal.pone.0036187.g003

Table 1. KD values of nucleotides derived from NMR and MS spectrometry.

Compound NMR KD (mM) pH 6.5/206C NMR KD (mM) pH 7.5/NaCl 100 mM/306C MS KD (mM) pH 7.4/376C

GTP 6696140 342561967 89648

FMN 1469 252684 564

doi:10.1371/journal.pone.0036187.t001

Ligand Binding Study of Human PEBP1/RKIP
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surface of the structure PDB 2QYQ [26]. Three prolines are

among these 16 residues, hence only 13 residues of the pocket can

be detected by HSQC. Whereas all these 13 residues were

perturbed upon binding of the tri-phosphorylated Raf-1 peptide,

only four of them were affected by the binding of the non-

phosphorylated peptide: three residues (A73, Y81, and G110) were

located on the edge of the pocket, and only G110 was in the

bottom of the pocket.

Discussion

The present study demonstrates and/or confirms the binding of

hPEBP1 to four ligands, two nucleotides and one Raf-1 peptide in

tri-phosphorylated and non-phosphorylated forms. Although the

affinities for GTP and FMN decrease as pH, salt concentration,

and temperature increased from pH 6.5/NaCl 0 mM/20uC to

pH 7.5/NaCl 100 mM/30uC according to our NMR data, both

ligands clearly do bind under near physiological conditions.

Moreover, all four ligands bind to the same region centered on the

conserved pocket previously identified by X-ray crystallography.

The binding of the two nucleotides
The binding of GTP and FMN was evidenced in two sets of

conditions (MES 10 mM pH 6.5 at 20uC, and HEPES 10 mM,

NaCl 100 mM, pH 7.5 at 30uC) and involved hPEBP1 pocket as

well. However, hPEBP1 shows a higher affinity for FMN than for

GTP, in agreement with literature reports concerning bPEBP1

[28]. Moreover, a higher affinity was observed at pH 6.5/20uC
than at pH 7.5/NaCl 100 mM/30uC for both GTP and FMN

(Table 1). We carried out complementary experiments to

differentiate the effect of the pH alone. Therefore, FMN was

studied in HEPES 10 mM pH 7.5 at 20uC to compare with the

binding study in MES 10 mM pH 6.5 at 20uC. Similar to the data

at pH 6.5, the titration of FMN at pH 7.5 showed a majority of

residues in slow exchange, but also residues in intermediate and

fast exchange. Altogether, the perturbed residues defined the

hPEBP1 pocket as the binding site of FMN at pH 7.5/20uC (data

not shown). The measured affinity indicated no significant effect of

the pH: KD = 14611 mM at pH 7.5/20uC (estimation from CSP

data of 9 residues in fast exchange) versus KD = 1469 mM at

pH 6.5/20uC (estimation from CSP data of 14 residues in fast

exchange). Concerning the effect of salt alone, it is important to

note that the presence of NaCl 100 mM induced no change on the

Figure 4. Comparison of GTP binding to hPEBP1 in two conditions. hPEBP1 chemical shift perturbations at GTP saturation concentration for
both tested conditions: GTP 4 mM at pH 6.5/20uC (white), and GTP 6.4 mM at pH 7.5/NaCl 100 mM/30uC (black). CSP values are higher at pH 6.5/
20uC than pH 7.5/NaCl 100 mM/30uC (hPEBP1 270 and 100 mM, respectively).
doi:10.1371/journal.pone.0036187.g004

Figure 5. Binding of the tri-phosphorylated Raf-1 peptide to
hPEBP1 by Mass Spectrometry. (A) ESI mass spectrum of hPEBP1 in
complex with the tri-phosphorylated Raf-1 peptide, deconvoluted from
10+, 9+ and 8+ charge states. The complex was formed by incubating
18 mM hPEBP1 with 67.6 mM Raf-1 peptide at 20uC in 20 mM NH4OAc,
pH 6.6. (B) MS-measured hPEBP1 bound fraction as a function of the tri-
phosphorylated Raf-1 peptide concentration.
doi:10.1371/journal.pone.0036187.g005

Ligand Binding Study of Human PEBP1/RKIP
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HSQC spectrum of hPEBP1 indicating no conformational

modification. Since the pH had no significant effect on FMN

binding and no conformational change of the protein was induced

by the presence of NaCl 100 mM, the decrease of nucleotides

affinity in near physiological conditions was likely due to the

temperature rise as a consequence of Van’t Hoff law in chemical

thermodynamics.

The interaction between hPEBP1 and GTP evidenced at

pH 7.5/NaCl 100 mM/30uC was physiologically relevant despite

the high concentrations of GTP used (from 0 to 6.4 mM to get

saturation). Whereas the average concentration of GTP is

0.47 mM in mammalian cells and fluids [38], local concentration

of GTP could be higher, particularly near the plasma membrane

where receptors are coupled with heterotrimeric GTP-binding

proteins. hPEBP1 is known to regulate G protein-coupled receptor

signaling in vivo [39] and several studies have shown that hPEBP1

is associated with the G protein-coupled receptor kinase (GRK)

[40]. In particular, hPEBP1 phosphorylated by PKC binds to

GRK2 (G receptor kinase 2), inhibiting its activity and preventing

receptor internalisation [14]. Thus, the GTP concentrations used

in our experiments were certainly in the same order of magnitude

as the GTP amounts encountered near the plasma membrane of

living cells. Moreover, similar concentrations were used for GTP

and FMN in order to compare the affinities obtained with both

nucleotides.

The evidence of GTP binding to hPEBP1 in near physiological

conditions contrasts with the NMR study of Shemon and co-

workers (2010). These authors observed that GTP did not cause

significant chemical shift perturbations for rPEBP1 at pH 7.4/

NaCl 100 mM/30uC, even at a very high ligand concentration

(130 mM GTP for 75 mM rPEBP1) [31]. Since similar conditions

of pH, salt and temperature and identical NMR techniques were

used in both studies, this result highlights the difference in binding

behavior between the rat and the human PEBP1s in spite of an

83% sequence identity (Figure 6). Dadvar and co-workers (2009)

have also evidenced different binding behaviors between PEBPs

from two species [33]. In spite of an 84% sequence identity, the in

vitro binding of an inhibitor of PDE5 was significantly more

efficient with the mouse PEBP (mPEBP2) than with hPEBP1.

Since PEBP has multiple isoforms in each species, and the number

of isoforms is different from one species to another, it seems

possible that the binding properties of a given PEBP are different

from those of its counterpart in another species. Thus, the results

obtained for one species cannot be generalized to the other.

The binding of the Raf-1 peptide in tri-phosphorylated
and non-phosphorylated forms

hPEBP1 pocket did bind the tri-phosphorylated Raf-1 peptide

(Figure 3C), as previously shown by surface plasmon resonance

[34], or for rPEBP [30,35]. In particular, our data showed that

residues A73 and S75 surrounding P74 as well as residue H86 were

involved in the binding, supporting the study of Granovsky and co-

workers (2009) that showed the effect of the mutations P74L and

H86A in the pocket on the binding of rPEBP1 with Raf-1 kinase.

Besides, although S153 was not perturbed itself, residues K150,

V151, A152 immediately preceding S153 in a-helix H1 of hPEBP1

were affected by the tri-phosphorylated Raf-1 peptide binding. This

could agree with the fact that rPEBP1 dissociates from Raf-1 upon

phosphorylation by PKC on S153 (Figure 3C) [13,14].

Raf-1 peptide binds more tightly when it is phosphorylated, as

previously demonstrated by Park and co-workers [34]. As

expected, the binding site of the non-phosphorylated Raf-1

peptide was centered on the conserved pocket (Figure 3D),

involving residue G110 at the bottom of the pocket. However,

most residues of the pocket were not involved in the binding.

Indeed, residues in the vicinity of the pocket, rather than those

within the pocket, were perturbed and hence, seemed to be

required for interaction with Raf-1, as previously suggested by

Shemon and co-workers (2009, 2010) [31,32].

Since our data demonstrated differences between rat and

human PEBP1s for GTP binding, we investigated the interaction

with the locostatin precursor (S)-4-benzyl-2-oxazolidinone (Sigma

#294640), for which the binding to rPEBP1 has been evidenced

by NMR under near physiological conditions (Tris-HCl 50 mM

pH 7.4, NaCl 100 mM, 30uC). The titration of the locostatin

precursor with hPEBP1 (in HEPES 10 mM pH 7.5, NaCl

100 mM, 30uC) revealed 19 residues in fast exchange on the

NMR time scale (data not shown). Analysis of the CSP values of

these 19 residues provided a binding constant equal to

173619 mM. The mapping of the perturbed residues on the X-

ray structure of hPEBP1 shows that the locostatin precursor binds

to the hPEBP1 pocket as previously shown for rPEBP1 under

similar conditions (no KD value was measured for rPEBP1) [32].

Figure 6. Multiple sequence alignment of human PEBP1 (hPEBP1, accession number P30086), rat PEBP1 (rPEBP1, accession number
P31044) and mouse PEBP2 (mPEBP2, accession number Q8VIN1). The hPEBP1 residues defining the binding surface of GTP at pH 6.5 and
20uC are colored yellow.
doi:10.1371/journal.pone.0036187.g006
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In the present study, we confirm the binding of the human

PEBP1 to two nucleotides (GTP and FMN) and a Raf-1 peptide (in

tri-phosphorylated and non-phosphorylated forms) in different

conditions using NMR and mass spectrometry. All ligands bind to

the same region centered on the conserved ligand-binding pocket of

hPEBP1 previously identified by X-ray crystallography. Our work

confirms that residues in the vicinity of the pocket rather than those

within the pocket seem to be required for interaction with Raf-1

[31,32]. The affinity constants KD were estimated by NMR titration

and/or native mass spectrometry. Although the affinities for GTP

and FMN were lower at pH 7.5/NaCl 100 mM/30uC than at

pH 6.5/20uC, both nucleotides clearly did bind under near

physiological conditions. Since no interaction was shown between

the rat PEBP and GTP by NMR in near physiological conditions

[31], our study demonstrates the specific binding behavior of the

human PEBP1 and highlights the importance of the studied species.

In a therapeutic perspective, the choice to study human PEBP1 is a

critical factor in drawing conclusions on human pathologies.

Materials and Methods

Interaction of hPEBP1 was studied with four different ligands:

two nucleotides, GTP and FMN, and a Raf-1 peptide of 19 amino

acids in tri-phosphorylated and non-phosphorylated forms.

Materials
Guanosine triphosphate (GTP), flavin mononucleotide (FMN),

b-mercaptoethanol (BME), and ammonium bicarbonate (ABC)

were purchased from Sigma (St. Louis, MO). Ammonium chloride
15N 98% (15NH4Cl) was purchased from Cortecnet (Voisins-Le-

Bretonneux, France). Ammonium acetate (NH4OAc) was pur-

chased from Merck (Darmstadt, Germany) and formic acid 90%

(FA) from Fisher (Loughborough, UK). The Raf-1 peptide in tri-

phosphorylated and non-phosphorylated forms was prepared by

conventional solid-phase peptide synthesis using the Fmoc

strategy. Fmoc-Ser(PO(OBzl)OH)-OH and Fmoc-Tyr(PO(OB-

zl)OH)-OH were used as phosphoderivatives. They were obtained

by combining both a manual chain assembly method and an

automated one with a ABI 433A synthesizer (Applied Biosystems).

Details of the synthesis strategy will be described elsewhere. All

solvents and buffers were prepared using 18 MV purified water

(MilliQ reagent grade system, Millipore).

Production and purification of 15N hPEBP1
15N hPEBP1 was produced according to the method described

by Marley [41]. The cDNA coding the human PEBP1 has been

inserted in pET31b plasmid [29]; E. coli BL21 DE3 cells were used

to overexpress hPEBP1. The general protocol is as follows: 2 L of

an E. coli BL21 (DE3, pET31b) overnight preculture were

inoculated into 60 L of LB. Upon reaching OD600 ,0.7, the cells

were pelleted by centrifugation. The cell pellet was resuspended in

15 L of M9 medium with 15NH4Cl 1 g/L, ampicillin

50 mg mL21, and then incubated to allow the recovery of growth

and the clearance of unlabeled metabolites. After 1 h, protein

expression was induced by addition of isopropyl-1-thio-b-galacto-

side (IPTG) to a final concentration of 1 mM. After a 2–3 h

incubation period, the cells were harvested and frozen at 220uC.

The purification of hPEBP1 was performed according to a two-

step procedure involving two different ion exchange chromatography

columns. The frozen cell pellet was resuspended in water and loaded

into a French Press cell disruptor. The cell lysate was centrifuged at

14,000 g for 20 min at 4uC. The clear supernatant was dialysed

overnight against Tris 20 mM, EDTA 1 mM, BME 1 mM, pH 8.0.

The dialysed cell lysate was loaded onto an anion exchange

chromatography column (Q Sepharose Fast Flow, Amersham) and

eluted with Tris 20 mM, BME 1 mM, pH 8.0. The fractions

containing hPEBP1, identified with 18% SDS-PAGE, were gathered

and dialysed overnight against NaAc 10 mM, BME 1 mM, pH 5.5.

The dialysed sample was loaded onto a cation exchange chroma-

tography column (Sp Sepharose High Performance, Amersham).

hPEBP1 was eluted with a linear gradient 0–1 M NaCl. The

fractions containing the protein were gathered and dialysed against

MES 10 mM, BME 1 mM, pH 6.5. The protein solution was

aliquoted and stored at 4uC. The final protein purity was assessed

according to 18% SDS-PAGE gel and mass spectrometry.

hPEBP1 and nucleotides purification for mass
spectrometry analysis

Non-labeled recombinant hPEBP1 purified as previously

described [29] was used for mass spectrometry analysis. To

prevent Na+ adduct formation, the commercial GTP and FMN

nucleotides used in native MS were desalted. For this purpose, a

protocol derived from the RNA-desalting procedure of Limbach et

al. (1995) [42] was set up [43].

NMR measurements
The interactions between hPEBP1 100–270 mM and the four

selected ligands were investigated by 15N-1H heteronuclear single

quantum coherence (HSQC) NMR experiments with a sensitivity

enhancement and gradient selected coherence. 1H, 15N HSQC

spectra were recorded at 20 or 30uC on a Bruker 500 MHz or a

Varian Inova 600 MHz spectrometer. Two experimental sets of

conditions were tested: MES 10 mM pH 6.5 at 20uC, and HEPES

10 mM, NaCl 100 mM pH 7.5 at 30uC.

Although the backbone assignment is available for the human

protein at pH 4/25uC at the BMRB (BMRB 16992) [44], we

performed our own backbone amide assignment of free hPEBP1 at

pH 6.5/25uC (BMRB 18204) using 3D TROSY-based HNCA,

HN(CO)CA, HNCACB, HN(CO)CACB, HNCO and HN(CA)CO

experiments [45]. 1H and 15N chemical shifts were assigned for

96.5% of non-prolines residues: all residues except Met1, Val3,

Asp35, Gln45, Lys47 and Lys187 (total residues: 187; non-prolines

residues: 172; assigned residues: 166/172). Measurements were

performed on a Bruker Avance spectrometer 800 MHz equipped

with a cryogenic 1H{13C/15N} triple-resonance probe.

NMR titrations
In the simple case of protein-ligand interactions, the free and the

bound states are observed during the titration. The interpretation

of an NMR spectrum, such as an HSQC, depends on the rate of

exchange between the bound and the free forms. Three different

cases can be observed. If the complex rate of dissociation is very

slow, two separate resonances are observed at the positions

corresponding to the chemical shifts characteristic of the two states

(free and bound). During the titration, the intensity of the free

resonance decreases while the bound resonance one appears and

goes up. This regime corresponds to slow chemical exchange on

the NMR time scale. If the complex rate of dissociation is very fast,

only a single resonance is observed, whose position is the average

of the chemical shifts of the two states, weighted by their relative

populations. In this case, Chemical Shift Perturbations (CSP) are

observed, i.e. the chemical shift evolves as the ligand concentration

increases. This regime corresponds to fast exchange on the NMR

time scale, and is typical for weaker affinity complexes. In the

intermediate chemical exchange case, in addition to CSP, complex

changes will affect the line shape that results in the observation of

very broad signals with low intensity.
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In the fast exchange regime, CSP can be measured from 15N-

HSQC spectra using the equation:

CSP~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Dd1H )2z(0:17|Dd15N )2

q
, ð1Þ

with d being the chemical shift in ppm [37].

A threshold value was estimated in order to determine

significant CSP. In a first step, all the CSP are considered and

the average (,CSP.) plus two times the standard deviation (s) is

calculated. Then, the highest CSP (CSP$,CSP.+2s) are

removed from the data and new average and new standard

deviation calculated. The operation is repeated until the

convergence is reached. The final value ,CSP.+2s for the

residues not significantly perturbed corresponds to the threshold.

Once the residues involved in the binding were selected, the

experimental data were fitted with the quadratic equation 2 using

SigmaPlot 9.0 in order to obtain the dissociation constant value

(KD):

CSP~
CSPmax

2| P½ �0

L½ �z P½ �0zKD

� �
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L½ �z P½ �0zKD

� �2
{4| P½ �0| L½ �

q� �
,

ð2Þ

where [P]0 and [L] are the total protein and ligand concentrations,

respectively [46]. A KD value was estimated for each residue

involved in the binding, and then an average was calculated.

In the slow exchange regime, intensity ratios I/I0 can be

calculated upon titration with I the peak intensity at a fixed

concentration of ligand and I0 the initial peak intensity. A method

similar to the one explained for CSP was used to discriminate the

significant loss of intensity. The threshold corresponds to the

average of the intensity ratios values (,I/I0.) minus two times the

standard deviation (s) for the residues not significantly perturbed.

Once the significant perturbations were discriminated, the

perturbed residues were taken into account for the determination

of the binding surface when (i) the perturbation reaches saturation

upon titration, (ii) the residues are located at the surface, and (iii)

define a contiguous surface patch [36].

In the case of the slow exchange regime, the binding constant

can rarely be calculated because peak intensities are not measured

with enough accuracy.

Native mass spectrometry
All MS measurements were performed in an ESI-ion trap model

Esquire HCT or Ultra HCT PTM Discovery (Bruker, Bremen,

Germany), or in a maXis ESI-UHR-Qq-TOF (Bruker). Com-

plexes were formed by incubating hPEBP1 with a range of ligand

concentrations in ammonium bicarbonate 20 mM/formic acid

buffer, pH 7.4 at 37uC or in ammonium acetate 20 mM, pH 6.6

at 20uC. After incubation, samples were treated with a Zeba micro

gel filtration device with a 7 kDa cut-off (Thermo Scientific,

Waltham, MA) prior to MS measurement, or analyzed directly in

MS. The KD was determined by measuring the bound protein

fraction by native MS. Details of the development of the native

MS method for KD determination are described in the work of

Jaquillard et al. (in press) [43].
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