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Abstract

Background: The objective of this study was to evaluate potential long-term (110 days) and age-specific effects of feeding
genetically modified Bt maize on peripheral immune response in pigs and to determine the digestive fate of the cry1Ab
gene and truncated Bt toxin.

Methodology/Principal Findings: Forty day old pigs (n = 40) were fed one of the following treatments: 1) isogenic maize-
based diet for 110 days (isogenic); 2) Bt maize-based diet (MON810) for 110 days (Bt); 3) Isogenic maize-based diet for 30
days followed by Bt maize-based diet for 80 days (isogenic/Bt); and 4) Bt maize-based diet (MON810) for 30 days followed
by isogenic maize-based diet for 80 days (Bt/isogenic). Blood samples were collected during the study for haematological
analysis, measurement of cytokine and Cry1Ab-specific antibody production, immune cell phenotyping and cry1Ab gene
and truncated Bt toxin detection. Pigs were sacrificed on day 110 and digesta and organ samples were taken for detection
of the cry1Ab gene and the truncated Bt toxin. On day 100, lymphocyte counts were higher (P,0.05) in pigs fed Bt/isogenic
than pigs fed Bt or isogenic. Erythrocyte counts on day 100 were lower in pigs fed Bt or isogenic/Bt than pigs fed Bt/isogenic
(P,0.05). Neither the truncated Bt toxin nor the cry1Ab gene were detected in the organs or blood of pigs fed Bt maize. The
cry1Ab gene was detected in stomach digesta and at low frequency in the ileum but not in the distal gastrointestinal tract
(GIT), while the Bt toxin fragments were detected at all sites in the GIT.

Conclusions/Significance: Perturbations in peripheral immune response were thought not to be age-specific and were not
indicative of Th 2 type allergenic or Th 1 type inflammatory responses. There was no evidence of cry1Ab gene or Bt toxin
translocation to organs or blood following long-term feeding.
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Introduction

The introduction of genetically modified (GM) technology to

crop production almost 17 years ago offered the potential for a

solution to the global food crisis brought about by a world

population explosion. GM technology is the fastest adopted crop

technology to date as it offers the possibility of higher agronomic

productivity of more nutritious food without the use of pesticides

[1]. The global area under cultivation by GM crops has increased

94-fold since 1996, reaching 160 million hectares in 2011 [1] and

new GM crops are continuously being developed. Transgenic

maize is the second most important GM crop after soybean,

occupying 51 million hectares worldwide and accounting for 32%

of the global area under cultivation by GM crops [1]. Bt maize is

one of the most widely grown transgenic maize varieties. It is

genetically engineered to express the truncated Cry1Ab toxin from

Bacillus thuringiensis which confers resistance to the European Corn

Borer.

The safety of GM food and feed in Europe is assessed by the

European Food Safety Authority (EFSA) which recommends that

90-day studies in rodents are conducted for the detection of

potential unintended effects arising from GM feed consumption

[2]. However, some 90-day rodent studies may be insufficient to

reveal late effects and longer term studies of greater than 90 days

duration may be necessary to detect unintended effects of GM

ingredient consumption [3].

Abnormalities in immune response have been documented in

mice fed a-amylase inhibitor peas [4]. Age-specific peripheral

immune responses to Bt MON810 maize have previously been

reported in mice [5] and our group has previously documented

minor changes in both the peripheral and intestinal immune
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response in pigs following short-term feeding of Bt maize [6]. Since

the release of GM crops onto the market, concerns have been

raised as to the fate of the recombinant DNA once ingested. While

some animal studies have been unable to detect transgenic DNA

outside the gastrointestinal tract (GIT) [6,7,8,9], low concentra-

tions have been documented in the organs of pigs [10,11].

The objectives of this study were to determine if long-term

feeding and age were important factors in the peripheral immune

response in pigs fed Bt maize. Another objective was to evaluate

any residual effects on peripheral immune response that may

emerge in older pigs having received Bt maize in early life. The

study was also designed to investigate the digestive fate of

transgenic DNA and protein following long-term Bt maize

consumption in an animal model that closely resembles humans.

Materials and Methods

Ethical Approval
The pig study complied with European Union Council

Directives 91/630/EEC (outlines minimum standards for the

protection of pigs) and 98/58/EC (concerns the protection of

animals kept for farming purposes) and was approved by, and a

license obtained from, the Irish Department of Health and

Children (licence number B100/4147). Ethical approval was

obtained from the Teagasc and Waterford Institute of Technology

ethics committees.

Animals and Experimental Design
Forty crossbred (Large White6Landrace) entire male pigs were

weaned at ,28 days of age and were allowed ad libitum access to a

non-GM starter diet during a 12 day basal period (day –12 to 0).

The mean body weight of pigs on day 0 of the study was ,10.6 kg.

On day 0, pigs were blocked by weight and ancestry and within

block randomly assigned to one of four treatments (n = 10 pigs/

treatment); 1) non-GM isogenic parent line maize-based diet

(Pioneer PR34N43) fed to day 110 (isogenic); 2) GM maize-based

diet (Pioneer PR34N44 event MON810) fed to day 110 (Bt); 3)

Non-GM isogenic parent line maize-based diet fed for 30 days

followed by the GM maize-based diet fed to day 110 (isogenic/Bt);

and 4) GM maize-based diet fed for 30 days followed by the non-

GM isogenic parent line maize-based diet fed to day 110 (Bt/

isogenic). The duration of the study was 110 days.

Housing and Management
From weaning to day 60 of the study, pigs were penned

individually in one of three similar rooms, each containing 24

pens. The pens were fully slatted (1.2 m60.9 m) with plastic slats

(Faroex, Manitoba, Canada) and plastic dividers between pens.

Water was available ad libitum from one nipple-in-bowl drinker

(BALP, Charleville-Mezieres, Cedex, France) per pen. Feed was

available ad libitum from a single stainless steel 30 cm wide feeder

per pen (O’Donovan Engineering, Coachford, Co. Cork).

Temperature was controlled by a hot air heating system and an

exhaust fan drawing air from under slat level, both connected to a

Stienen PCS 8400 controller (Stienen BV, Nederweert, The

Netherlands). The temperature was maintained at 28 to 30uC in

the first week and reduced by 2uC per week to 22uC. Pigs were

transferred to one of four identical finisher rooms containing 18

individual pens per room on day 60 of the study and remained

there until day 110 of the study. Pens (1.81 m61.18 m) were fully

slatted with plastic panelled partitions. Ventilation was by exhaust

fans and air inlets connected to a Stienen PCS 8200 controller.

Temperature was maintained at 20 to 22uC. Feed was available ad

libitum as dry pellets from stainless steel dry feed hoppers 30 cm in

length (O’Donovan Engineering, Coachford, Co. Cork). Water

was available ad libitum from one BALP drinking bowl. For the

duration of the study, dietary treatments were equally represented

in each room to avoid additional variation due to environmental

conditions. Pigs showing signs of ill health were treated as

appropriate and all veterinary treatments were recorded.

Maize and Diets
Seeds derived from GM Bt MON810 and non-GM parent line

control maize (PR34N44 and PR34N43 respectively; Pioneer Hi-

Bred, Sevilla, Spain) were grown simultaneously side by side in

2007 in Valtierra, Navarra, Spain by independent tillage farmers

The GM and non-GM control maize were purchased by the

authors from the tillage farmers for use in this animal study.

Samples from the Bt and isogenic maize were tested for the

presence of the cry1Ab gene, pesticide contaminants, mycotoxins

and carbohydrate composition as previously described by Walsh

et al. [12].

All diets were manufactured and analyzed for proximate

analysis and amino acid concentration (Table 1) as previously

described by Walsh et al. [12]. All diets were formulated to meet

or exceed the NRC [13] requirements for pigs of given weights.

The non-GM starter diet was fed to all pigs from weaning (day -

12) until the beginning of the study (day 0). Both isogenic and Bt

maize link diets were fed from day 0 to 30, weaner diets were fed

from day 31 to 60, finisher 1 diets were fed from day 61 to 100

and finisher 2 diets were fed from day 101 to day 110. Pellet

hardness and durability were determined as described by Lawlor

et al. [14].

Blood Sampling and Analysis
Blood samples were collected on days 0, 30, 60 and 100 for

measurement of immune parameters and on day 110 for the

detection of the cry1Ab gene and protein. Blood samples were

collected from the anterior vena cava of pigs of up to 30 kg body

weight, from the external jugular vein for heavier pigs and during

exsanguination at slaughter on day 110. Whole blood samples

were collected in K2EDTA blood collection tubes (Vacuette,

Greiner Bio One Ltd, Gloucestershire, UK) and stored at room

temperature prior to haematological analysis which was performed

within 6 h of collection. Additional whole blood samples were

collected in heparinised blood collection tubes (BD Vacutainer

Systems, Franklin Lakes, NJ) and stored at room temperature for

peripheral blood mononuclear cell (PBMC) isolation. Blood

samples were also collected in serum collection tubes (BD

Vacutainer Systems, Franklin Lakes, NJ) and centrifuged at

25006g for 20 min within 3 h to obtain serum. Serum was stored

at –20uC for subsequent analysis of Cry1Ab-specific antibodies.

Blood samples taken at slaughter (day 110) were collected in

K2EDTA blood collection tubes and immediately placed on ice for

transport to the laboratory. Within 3 h of collection, blood

samples were centrifuged at 25006g for 20 min, after which the

buffy coat of white blood cells was removed and stored at –20uC
for subsequent tracking of the cry1Ab gene. Serum samples were

also taken at slaughter as described above for Cry1Ab-specific

antibody analysis.

Digesta and Organ Sampling
On day 110, all pigs were sacrificed by electrical stunning

followed by exsanguination. The last meal was administered 3 h

prior to slaughter. During sampling, the following precautions

were taken to prevent any cross contamination between the Bt and

isogenic maize-fed pigs; all isogenic maize-fed pigs were slaugh-

tered first followed by the Bt maize-fed pigs; all surgical
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instruments were cleaned with 70% ethanol between each animal

and all assistants wore single-use gloves that were replaced after

each sample was taken; a sample of semi-tendinosus muscle was

taken and the liver and kidneys were removed first, to prevent

contamination with digesta contents, followed by the entire GIT.

Once removed, the liver and kidneys were trimmed of any

superficial fat or blood clots. The outermost layer of each tissue

was removed to enable sampling of the interior in order to prevent

contamination by feed residue. Samples were taken from the semi-

tendinosus muscle, liver (centre of quadrate lobe) and kidney

(cortex and medulla), snap frozen in liquid N and stored at –20uC
for subsequent analysis of the Bt toxin and cry1Ab gene. Digesta

was then sampled from the stomach (cardiac region), ileum (15 cm

distal to the ileo-cecal junction), cecum (tip of the blind end) and

colon (60 cm from the rectum) and stored at –20uC for subsequent

analysis of the truncated cry1Ab gene and Bt toxin.

Table 1. Composition of diets (as is basis, %).

Ingredient, %

Starter
(d -12–0)

Link
(d 0–30) Weaner (d 31–60) Finisher 1 (d–100) Finisher 2 (d 101–110)

Isogenic1 Isogenic1 Bt2 Isogenic1 Bt2 Isogenic1 Bt2 Isogenic1 Bt2

Maize (Isogenic)1 27.33 38.88 – 65.31 – 73.38 – 79.10 –

Maize (Bt MON810)2 – – 38.88 – 65.31 – 73.38 – 79.10

Soya bean meal 24.00 25.00 25.00 28.64 28.64 22.76 22.76 17.35 17.35

Lactofeed 703 25.00 20.00 20.00 – – – – – –

Immunopro 354 12.50 9.00 9.00 – – – – – –

Fat, soya oil 8.00 4.00 4.00 2.37 2.37 0.06 0.06 – –

Lysine HCl (78.8) 0.30 0.30 0.30 0.36 0.36 0.43 0.43 0.49 0.49

DL-Methionine 0.25 0.20 0.20 0.14 0.14 0.14 0.14 0.14 0.14

L-Threonine (98) 0.12 0.12 0.12 0.15 0.15 0.17 0.17 0.19 0.19

L-Tryptophan 0.10 0.10 0.10 0.05 0.05 0.07 0.07 0.08 0.08

Weaner premix5 0.30 0.30 0.30 – – – – – –

Finisher premix6 – – – 0.10 0.10 0.10 0.10 0.10 0.10

Formaxol7 0.20 0.20 0.20 – – – – – –

Mycosorb8 – – – 0.20 0.20 0.20 0.20 0.20 0.20

Salt 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Dicalcium phosphate 0.50 0.50 0.50 1.19 1.19 1.13 1.13 0.90 0.90

Limestone flour 1.10 1.10 1.10 1.19 1.19 1.26 1.26 1.15 1.15

Analyzed Chemical Composition (%)

Dry matter 91.30 90.40 90.50 88.60 88.80 89.30 89.50 89.20 88.80

Crude protein 20.90 21.00 20.70 17.90 17.80 17.40 17.40 16.00 16.10

Oil (Acid hydrolysis) 9.60 6.20 6.30 5.20 5.40 3.20 3.10 3.20 3.10

Crude fibre 1.70 1.80 1.60 2.10 2.20 3.00 2.40 2.60 2.60

Ash 6.30 5.60 5.80 4.90 4.80 4.80 4.60 4.00 4.10

Lysine 1.55i 1.50 1.56 1.29 1.31 1.36 1.37 1.15 1.16

Ca9 8.30 7.80 7.80 8.00 8.00 8.00 8.00 7.00 7.00

P9 4.08 3.63 3.63 3.20 3.20 3.00 3.00 2.50 2.50

DE MJ/kg9 16.33 15.38 15.38 14.50 14.50 14.00 14.00 13.99 13.99

Pellet durability (g) 210 96.40 95.80 33.00 35.00 56.10 56.80 74.80 75.10

Pellet diameter (mm) 210 5.06 5.05 5.15 5.19 5.18 5.14 5.11 5.15

Pellet hardness (kg) 210 4.32 4.83 1.75 1.75 2.53 2.43 3.80 3.38

1Isogenic: non-GM parent line maize.
2Bt; Bt MON810 maize.
3Lactofeed 70 contains 70% lactose, 11.5% protein, 0.5% oil, 7.5% ash and 0.5% fibre (Volac, Cambridge, UK).
4Immunopro 35 contains whey protein powder - protein 35% (Volac, Cambridge, UK).
5Premix provided per kg of complete diet: Cu, 155 mg; Fe, 90 mg; Mn, 47 mg; Zn, 120 mg, I, 0.6 mg; Se, 0.3 mg; vitamin A, 6000 IU; vitamin D3, 1000 IU; vitamin E,
100 IU; vitamin K, 4 mg; vitamin B12, 15 mg; riboflavin, 2 mg; nicotinic acid, 12 mg; pantothenic acid, 10 mg; choline chloride, 250 mg; vitamin B1, 2 mg; vitamin B6,

3 mg.
6Premix provided per kg of complete diet: Cu, 15 mg; Fe, 24 mg; Mn, 31 mg; Zn, 80 mg, I, 0.3 mg; Se, 0.2 mg; vitamin A, 2000 IU; vitamin D3, 500 IU; vitamin E, 40 IU;
vitamin K, 4 mg; vitamin B12, 15 mg; riboflavin, 2 mg; nicotinic acid, 12 mg; pantothenic acid, 10 mg; vitamin B1, 2 mg; vitamin B6, 3 mg.
7Formaxol is a blend of encapsulated formic and citric acids and essential oils (Soda Feed Ingredients, Monaco).
8MycosorbH is an organic mycotoxin adsorbent (Alltech, Dunboyne, Co. Meath, Ireland).
9Calculated values.
10The starter diet was formulated as meal.
doi:10.1371/journal.pone.0036141.t001
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Isolation and Stimulation of PBMC and Cytokine
Measurement

Isolation and stimulation of PBMC from whole blood was

conducted as described by Walsh et al. [6,15]. Following PBMC

stimulation, the cell culture supernatant was collected and stored

at 280uC. Concentrations of IL-4, IL-6, IL-8, and TNFa were

subsequently determined in the cell supernatants using multiplex

porcine-specific cytokine ELISA kits (Meso Scale Discovery,

Gaithersburg, Maryland) in accordance with the manufacturer’s

instructions.

Immune Cell Phenotyping and Cry1Ab-specific Antibody
Response

Following stimulation, PBMC were resuspended at ,26106

cells/mL in phosphate buffered saline (PBS) containing 2% fetal

bovine serum (PBS-FBS). Primary and secondary antibodies were

added at concentrations determined by titration and incubated in

the dark at room temperature for 15 min. Cells were washed and

re-suspended in PBS-FBS and acquired using a BD FACSCanto

IITM flow cytometer. Antibodies used included anti-porcine CD3

PE/Cy5 (Abcam, Cambridge, UK), anti-porcine CD4 fluorescein

isothiocyanate (FITC), anti-porcine CD8 phycoerythrin (PE), and

anti-mouse CD32 (all antibodies were obtained from BD

Biosciences, Devon, UK unless otherwise stated). Antibodies were

used according to manufacturer’s recommendations. The per-

centages of CD4+, CD8+ and CD4+CD8+ T lymphocytes were

calculated on the CD3+ gate. At least 50,000 events were acquired

and analyzed. Data were analyzed using FACSDIVA software

(BD Biosciences).

The detection of Cry1Ab-specific IgA and IgG in pig serum was

conducted as previously described by Walsh et al. [6] on samples

taken on days 0, 30, 60, 100 and 110.

Haematological Analysis
Whole blood samples were analyzed using a Beckman Coulter

Ac T Diff haematology analyzer (Beckman Coulter Ltd., High

Wycombe, UK). The following parameters were determined;

counts of white blood cells (WBC), lymphocytes (LY), monocytes

(MO), granulocytes (GR), and red blood cells (RBC), haemoglobin

concentration (Hgb), haematocrit (Hct), mean corpuscular volume

(MCV), mean corpuscular haemoglobin (MCH), mean corpuscu-

lar haemoglobin concentration (MCHC), red cell distribution

width (RDW), platelet count (Plt) and mean platelet volume

(MPV). Samples were analyzed according to the manufacturer’s

instructions and general haematology recommendations [16].

Tracking of the Truncated Bt toxin and cry1Ab gene in
Feed and Porcine Digesta, Organs and Blood

Bt toxin quantification. Organ samples (liver, muscle and

kidney) were homogenised in 0.8% saline (0.5 g/mL) and serum

was diluted in 0.8% saline (0.5 mL/mL). Ten mL of 10 mM

phenylmethylsulfonyl fluoride (PMSF) was added per mL of

solution and samples were centrifuged for 20 min at 93906g.

Digesta samples were centrifuged for 15 min at 5406g and 10 mL

of 10 mM PMSF was added per mL of supernatant and samples

were centrifuged for 20 min at 93906g. The concentration of the

Bt toxin in both the organ and digesta samples was determined as

previously outlined by Walsh et al. [6].

Detection of the cry1Ab gene. DNA extraction from

digesta, animal tissue and white blood cells was conducted as

previously outlined [6]. A preliminary cross-dilution assay was

performed to determine the detection limit of the cry1Ab-specific

PCR and the possible inhibitory effect of porcine DNA. Five

primer pairs targeting two endogenous maize genes [rubisco and

shrunken 2 (sh2)], two cry1Ab gene fragments (cry1Ab-1 and cry1Ab-

2) and a porcine growth hormone gene (sw), respectively were

obtained from Invitrogen (Paisley, UK). The primer sequences

and PCR conditions used for the detection of sh2, cry1Ab-1 and sw

have previously been described by Walsh et al. [6]. The primers

and conditions used for the detection of rubisco and cry1Ab-2 are

outlined in Table 2. Two microlitres of extracted DNA was used in

all PCR reactions, which were performed in a final volume of

50 mL. Each PCR reaction contained 25 mL of either REDTaq

ReadyMix PCR reaction mix containing MgCl2 (Sigma-Aldrich)

(for white blood cells) or DreamTaq Green PCR master mix

(Fermentas, Ontario, Canada) (for tissue samples and digesta), as

well as 0.6 or 0.1 mM of the cry1Ab-2 or rubisco primers,

respectively. PCR reactions were performed in a GeneAmp

2400 or 2700 thermal cycler (Applied Biosystems, Foster City,

CA). Each set of PCR reactions included a positive control for the

cry1Ab gene (DNA from Bt maize), a negative control for the cry1Ab

and endogenous maize genes (DNA from isogenic maize),

contamination controls without template DNA, and a positive

control for the endogenous porcine gene (DNA from normal pig

meat). PCR products were analyzed on 10% polyacrylamide gels

run at 200 V for 50 min and visualized by SYBR Green-staining.

Statistical Analysis
For all response criteria, the pig was the experimental unit.

Immune cell phenotype and haematology data were analyzed as

repeated measures using the MIXED procedure of SAS (SAS Inst.

Inc., Cary, NC) with Tukey-Kramer adjustment for multiple

comparisons using day 0 values as a covariate in the model.

Cytokine data found not to be normally distributed following log

transformation were analyzed using the non-parametric Kruskal-

Wallis test within the NPAR1WAY procedure in SAS. Cytokine

data are presented as treatment median values with the 25–75th

percentiles. The level of significance for all tests was P,0.05 and

trends were reported for 0.05,P,0.10.

Results

Effect of Feeding Bt and Isogenic Maize on Immune
Response in Growing Pigs

Cytokine production. In the absence of exogenous stimuli,

the spontaneous production of IL-6, IL-4 and IL-8 by resting

PBMC from pigs on all four dietary treatments was comparable on

days 0, 30 and 100 (Table 3). On day 0, (prior to commencement

of dietary treatments), PBMC from pigs subsequently fed Bt maize

for 110 days produced lower concentrations of TNFa than those

from pigs on all other treatments (P,0.01). However, TNFa
production by resting PBMC was not different between treatments

on day 30 or 100 of the study. The concentration of IL-6, IL-4, IL-

8 and TNFa produced by mitogen-stimulated PBMC on day 0, 30

and 100 did not differ between treatments (Table 4).

Immune cell populations. Treatment6time interactions for

all immune cell populations examined were non-significant

(Table 5). There was no effect of feeding Bt maize to pigs on

populations of CD3+, CD3+CD4+ or CD3+CD8+ T cells isolated

from PBMC at any time during the study. The proportion of

CD3+ T cells increased in pigs on day 60 of the study; however, by

day 100, it was reduced to below day 30 values (P,0.05). The

number of both CD3+CD4+ and CD3+CD8+ T cells decreased on

day 60 of the study but increased again by day 100 (P,0.001). On

day 30, pigs fed isogenic maize for 30 days followed by Bt maize

for 80 days tended to have a greater proportion of CD4+CD8+ T

cells than pigs fed isogenic maize (P = 0.08) but cell proportions in
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these pigs did not differ from the other two treatments. Similar to

findings for both CD3+CD4+ and CD3+CD8+ T cells, the

proportion of CD4+CD8+ T cells decreased over time until day

60 and increased thereafter (P,0.001).

Cry1Ab-specific immunoglobulin production. Cry1Ab-

specific IgA and IgG were not detected in the serum of pigs fed

either Bt or isogenic maize at any time point during the study (day

0, 30, 60, 100) or at slaughter on day 110 or in non-maize-fed pigs

(control) even at the lowest dilution (data not shown).

Haematological parameters. Overall, the total count of

leukocytes was not altered by dietary treatment. However, on day

100, pigs fed Bt/isogenic maize diets tended to have higher

leukocyte counts than pigs fed isogenic or Bt maize diets for 110

days (Table 6; P = 0.06). Furthermore, leukocyte counts increased

as the pigs aged (P,0.001). Overall, there was a tendency for

higher lymphocyte counts in pigs fed Bt/isogenic maize diets

compared with pigs fed isogenic or Bt maize diets for the entire

110 day period (P = 0.09). This was brought about by similar

pattern of differences, this time significant, on day 100 (P,0.05).

Monocyte counts tended to be higher on day 100 in pigs fed Bt/

isogenic maize diets or isogenic/Bt maize diets compared with pigs

fed Bt maize for 110 days (P = 0.09). Overall, there were no dietary

treatment effects on monocyte counts; however, counts increased

over time (P,0.01). Granulocyte counts were not altered by

dietary treatment; however, an initial decrease in granulocyte

count was followed by an overall increase by day 100 of the study

(P,0.01).

On day 100, pigs fed Bt/isogenic maize diets had higher

erythrocyte counts compared with pigs fed isogenic/Bt maize diets

or Bt maize for the entire 110 days (Table S1; P,0.05). Overall,

however, there were no dietary treatment effects on erythrocyte

counts. In addition, erythrocyte counts were found to increase up

to day 60 of the study and to decrease thereafter (P,0.01).

Haemogloblin concentration, haematocrit or the erythrocyte

parameters MCV, MCH, MCHC and RDW were not altered

by dietary treatment. Likewise, platelet counts and MPV were not

affected but were lower in older pigs (P,0.001). The erythrocyte

indices MCH (P,0.01), and MCHC (P,0.001) increased over

time, while MCV was lower in older pigs (P,0.001). The

erythrocyte index RDW also tended to increase over time

(P = 0.07). Both haemogloblin concentration and hematocrit

initially increased as the pigs aged but decreased thereafter

(P,0.01).

Fate of Ingested cry1Ab gene and Truncated Bt Toxin
Detection of transgenic and endogenous plant genes in

white bloods cells, tissue and digesta. Neither transgenic

cry1Ab plant gene fragments of 211 or 149 bp were detected in

liver, kidneys, muscle or in white blood cells of any pigs, regardless

of dietary treatment (Table 7). Likewise, fragments of a single copy

endogenous plant gene (sh2) were not detected in any tissue or

white blood cells examined. However, a multiple copy endogenous

plant gene (rubisco) was detected in 40–60% of liver samples, 30–

50% of kidney samples, 20–50% of muscle samples and 0–20% of

white blood cells examined, depending on treatment. All tissue

and white blood cell samples were positive for the endogenous

porcine gene (sw). The single copy endogenous plant gene, sh2 was

detected in the gastric digesta of 80–90% of pigs, depending on

treatment but was undetectable in the ileal, cecal and colon digesta

(Table 8). Likewise, the multiple copy rubisco gene was found in

90–100% of gastric digesta samples, depending on treatment.

However, unlike the sh2 gene, rubisco was detected in 80–100% of

ileal, 30–60% of cecal and 10–40% of colon digesta samples,

depending on treatment. Both transgenic plant gene fragments

(cry1Ab-1 and cry1Ab-2) were found in the gastric digesta of 90% of

the pigs fed Bt maize either for the entire 110 days or only for the

final 80 days of the study. Faint signal bands for both cry1Ab-1 and

cry1Ab-2 were detected in gastric digesta of 40% of the pigs fed

either isogenic or Bt/isogenic maize diets, respectively at slaughter

on day 110 (data not shown). This is thought to have occurred due

to sample contamination post-sampling. No Bt toxin fragments

Table 2. Primers and PCR conditions used for the detection of target genes in porcine organ, white blood cell and digesta
samples.

Primer name Sequence (59-39) Specificity Target gene
Amplicon size
(bp) PCR conditions1 Ref.

rubisco – F AGC TAA TCG TGT GGC
TTT AGA AGC C

Plant (endogenous) Ribulose bisphosphate
carboxylase

173 94uC63 min
94uC630 s
62uC630 s
72uC630 s
72uC67 min

Guertler et al., 2009

rubisco – R TGG TAT CCA TCG CTT
TGA AAC CA

Plant (endogenous) Ribulose bisphosphate
carboxylase

94uC63 min
94uC630 s
62uC630 s
72uC630 s
72uC67 min

cry1Ab-2– F ACT ATC CTT CGC AAG
ACC CTT CCT C

Plant (transgenic) cry1Ab 149 95uC63 min
95uC625 s
62uC630 s
72uC645 s
72uC67 min

Nemeth et al., 2004

cry1Ab-2– R GCA TTC AGA GAA ACG
TGG CAG TAA C

Plant (transgenic) cry1Ab 95uC63 min
95uC625 s
62uC630 s
72uC645 s
72uC67 min

1PCR conditions for rubisco F & R included 1 cycle at 94uC for 3 min, 35 cycles of 94uC for 30 s, down to 62uC for 30 s and back up to 72uC for 30 s and 1 cycle of 72uC for
7 min; cry1Ab-2 F & R; 1 cycle at 95uC for 3 min, 30 cycles of 95uC for 25 s, down to 62uC for 30 s and back up to 72uC for 45 s and 1 cycle of 72uC for 7 min.
doi:10.1371/journal.pone.0036141.t002
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were detected in gastric digesta from these pigs. Likewise, cry1Ab

gene contamination was not found in other digesta samples from

these pigs and prior to feeding, no cry1Ab gene fragments were

detected in the isogenic maize [12]. The cry1Ab-1 gene fragment

was detected in the ileal digesta of 20 and 10% of the pigs fed Bt

maize for the entire 110 day period and the final 80 days of the

study, respectively. However, the cry1Ab-2 gene fragment was not

detected in the ileal digesta of any pigs fed Bt maize at any time.

Likewise, no transgenic plant gene fragments were detected in the

cecal or colon digesta of pigs fed Bt maize for 80 or 110 days. All

digesta samples from pigs fed the isogenic maize diet for 110 days

or Bt/isogenic maize diets did not contain either transgenic plant

gene fragment.

Detection of the transgenic Bt toxin in serum, tissue and

digesta. The Bt toxin was not detected in the kidneys, liver,

muscle or in the sera of any of the pigs fed any of the four dietary

treatments at any time point during the study (data not shown).

The Bt toxin was not detected in the stomach, cecal or colon

digesta of pigs fed the isogenic maize diet or pigs fed the Bt/

isogenic maize diet. It was only detected in the digesta of pigs fed

Bt maize for 110 days or the isogenic/Bt maize diet (Table 9). In

these pigs, it was detected in 90 and 80% of the gastric samples, 80

and 50% of cecal samples and 100% of colon samples, respectively

3 h after the last meal was administered. The mean concentration

of Bt toxin was lower in the digesta of pigs fed the isogenic/Bt

maize diet compared with those fed Bt maize for the entire study

period, except in the cecum where the opposite was true. In both

Bt maize-fed groups, the mean concentration of Bt toxin in the

cecal digesta was lower than in the gastric or colon digesta

(Table 9). In fact, the Bt toxin was most concentrated in the colon

digesta.

Discussion

To our knowledge, this study is the first to evaluate the effects of

long-term feeding (80 or 110 days) of Bt maize on peripheral

immune response of pigs. It is also the first to investigate if age at

feeding impacts the response in pigs. By using a cross-over study,

we were able to evaluate any residual effects on peripheral

immune response that may emerge in older pigs having received

Bt maize for a relatively short time period in early life (post-

weaning) as well as the effects of feeding Bt maize for a longer

period later in life. Changes in peripheral immune response were

evaluated through measurement of cytokine production from

PBMC, investigation of Cry1Ab-specific antibody production in

serum, immunophenotyping and haematological analysis. In pigs

fed Bt maize for the entire 110-day study period and in pigs that

were older when first fed Bt maize, there was no change in the

production of IL-6, IL-4, IL-8 and TNFa from mitogen-stimulated

or resting PBMC between treatments at any time point. TNFa
production from resting PBMC isolated from the Bt maize group

was less on day 0 than all other treatments. This difference

however, cannot be attributed to Bt maize, as these samples were

taken prior to feeding of treatment diets. A study examining the

effects of glufosinate-ammonium tolerant triticale on the immune

system of mice found increased IL-2 and decreased IL-6 in serum

but no significant change in IL-4, IL-10, IL-12 or IFNc
concentrations in the fifth generation [17]. Finamore et al. [5]

reported an age-specific serum cytokine response to feeding

MON810 maize in mice where IL-6, IL-13, IL-12p70 and MIP-1ß

were elevated in weaning mice fed MON810 maize for 30 days;

however, MIP-1ß was the only cytokine elevated in weaning or old

mice after 90 days of feeding. Our group previously found that

feeding Bt maize to weanling pigs for a shorter time period i.e. 31

days had no effect on the production of IL-10, IL-6, IL-4 or TNFa
from mitogen-stimulated or resting PBMC; however a reduction in

both IL-12 and IFNc was observed [6].

In our study, there was no effect of feeding Bt maize for 80 or

110 days on CD3+, CD4+ and CD8+ T cells. On day 30, there

tended to be a difference in CD4+CD8+ T cells between the

isogenic and isogenic/Bt groups. However, at this stage both

groups were receiving the same diet i.e. non-GM feed; therefore,

this difference is not related to Bt maize consumption. In a

previous study, feeding weaning mice MON810 maize for 90 days

resulted in increased B cells in blood; however, when older mice

were fed the same maize for 90 days, B cell and CD8+ T cells

populations were decreased, while CD4+ T cells were increased

Table 3. Cytokine production by resting PBMC from pigs fed
diets containing Bt and isogenic maize (pg/mL)1.

Cytokine Isogenic2 Bt3
Isogenic/
Bt4

Bt/
isogenic5 P-value

Day 0

IL-6 4.5 1.2 6.5 4.0 0.16

(0.1–8.4) (0.2–15.1) (1.4–61.1) (2.5–8.8)

IL-4 11.8 3.5 8.9 9.4 0.42

(1.8–57.2) (0.6–21.3) (0.2–14.0) (4.6–22.7)

IL-8 44.7 69.6 121.0 109.4 0.44

(8.59–435.42) (2.1–129.8) (25.3–5277.9) (5.5–1497.9)

TNFa 2.6x 0.6y 2.4x 2.9x 0.01

(0.40–15.84) (0.2–1.3) (0.5–20.0) (1.3–4.9)

Day 30

IL-6 2.7 2.2 6.8 4.4 0.14

(0.3–15.8) (0.1–6.9) (2.9–82.0) (0.3–8.8)

IL-4 7.2 7.9 9.7 6.1 0.45

(1.8–24.6) (5.1–18.2) (4.5–34.9) (2.4–14.2)

IL-8 150.9 381.0 703.7 448.6 0.35

(95.8–2428.5) (72.3–
2349.1)

(175.1–
5415.5)

(33.9–1177.5)

TNFa 4.1 6.9 7.8 6.7 0.65

(0.7–22.1) (0.4–17.6) (3.6–79.0) (1.7–18.6)

Day 100

IL-6 0.4 1.2 4.5 1.5 0.28

(0.04–1.7) 0.03–9.7 0.5–8.4 (0.5–2.0)

IL-4 3.5 6.7 3.0 2.6 0.12

(0.31–7.18) (2.8–35.9) (1.3–5.8) (0.5–14.3)

IL-8 553.8 150.1 787.4 354.9 0.14

(142.1–2109.8) (11.6–
6428.9)

(270.3–
2807.1)

(57.1–2397.7)

TNFa 1.3 2.1 1.4 1.0 0.94

(0.4–5.9) (0.1–13.0) (0.3–10.4) (0.2–4.8)

1Values are given as the median with 25th to 75th percentiles in parentheses.
2Isogenic: isogenic maize diet for 110 days.
3Bt: Bt maize diet for 110 days.
4Isogenic/Bt: isogenic maize diet for 30 days followed by Bt maize diet for 80
days.
5Bt/isogenic: Bt maize diet for 30 days followed by isogenic maize diet for 80
days.
xyWithin a row means without a common superscript differ by P,0.05 by
means separation using Tukey-Kramer adjustment for multiple comparisons.
doi:10.1371/journal.pone.0036141.t003
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[5]. Krzyzowska et al. [17] reported a decrease in B cells in blood

of the fifth generation of mice fed GM triticale. While changes in B

cell populations in response to feeding Bt maize were not

evaluated in our study, we did not find the changes in CD4+

and CD8+ T cells observed by others in mice [5].

Our group has previously found no Cry1Ab-specific antibody

response in weanling pigs following 31 days of feeding Bt maize

[6], which is in agreement with the findings from this study where

80 or 110 days of feeding Bt maize also did not elicit an antigen-

specific antibody response. An antigen-specific IgG1 response has

been reported in mice fed diets containing rice expressing the

Cry1Ab toxin and spiked with the purified Bt toxin for 28 days

and a weak specific IgG2a response was evident after feeding rice

expressing Bt toxin for 90 days [18]. However, similar to our

findings, Adel-Patient et al. [19] found no specific anti-Cry1Ab

antibody response in serum from mice fed MON810 maize

following intragastric or intraperitoneal sensitization.

On day 100, pigs fed the Bt/isogenic maize diet tended to have

a higher leukocyte count than those fed either Bt or isogenic maize

for 110 days. This increase was primarily a reflection of the

increase in lymphocyte count in these pigs. Both leukocyte and

lymphocyte counts for all pigs fed Bt maize at some point during

the study were above the normal reference range for pigs [20].

The immunophenotyping data indicated that T cell populations

were not influenced by feeding Bt maize; however, B cells were not

evaluated. While lymphocyte counts were elevated significantly in

some pigs fed Bt maize, there was no indication of a Th 2-

mediated allergic inflammatory response to the Cry1Ab toxin in

the form of antigen-specific Ig production. The spleen weight of

these pigs, reported previously by Buzoianu et al. [21], did not

differ between treatments and no histopathological indicators of

organ damage were evident in the spleen or other organs.

Likewise, the cecal bacterial community structure was similar

across treatments [22] and as a result alterations in immune

response as a consequence of changes in gut microbiota were not

anticipated [23]. A study using rats as an animal model for the

safety evaluation of Bt rice found that leukocyte count and MCH

were decreased in male rats; however, all haematological

parameters analyzed were within the reference range for rats of

the age and breed used [24]. Krzyzowska et al. [17] also found that

Table 4. Cytokine production by mitogen-stimulated PBMC from pigs fed diets containing Bt and isogenic maize (pg/mL)1.

Cytokine Isogenic2 Bt3 Isogenic/Bt4 Bt/isogenic5 P-value

Day 0

IL-6 18.8 34.9 23.2 112.0 0.84

(10.3–550.3) (1.0–416.1) (3.19–268.6) (4.1–454.9)

IL-4 24.0 38.8 34.3 65.1 0.96

(6.8–148.9) (13.9–82.5) (1.8–205.9) (4.33–125.8)

IL-8 5438.2 10696.7 9516.9 11739.5 0.89

(1435.5–22783.7) (565.9–21144.7) (469.4–21224.0) (317.4–27328.6)

TNFa 43.7 66.9 58.7 125.2 0.85

(24.2–543.1) (6.9–304.9) (7.1–367.1) (1.3–480.5)

Day 30

IL-6 23.3 30.6 19.6 65.9 0.50

(8.7–91.6) (11.1–49.7) (11.3–66.9) (4.7–134.6)

IL-4 23.4 33.1 18.9 30.9 0.87

(5.8–149.1) (12.1–80.8) (8.9–108.8) (10.5–141.1)

IL-8 4080.5 4009.9 2576.3 5985.2 0.46

(789.3–13561.9) (748.9–12187.9) (373.3–9668.0) (923.1–12288.2)

TNFa 30.5 38.3 26.7 55.9 0.72

(13.8–120.4) (15.7–80.2) (12.3–115.6) (14.9–169.1)

Day 100

IL-6 2.9 2.2 6.5 4.8 0.44

(0.3–7.7) (0.4–8.7) (0.3–19.1) (1.4–15.1)

IL-4 3.2 9.9 7.6 2.7 0.17

(1.3–8.7) (5.1–33.8) (0.03–38.8) (1.0–54.2)

IL-8 2266.3 1838.2 2447.0 3440.3 0.59

(812.7–6732.5) (345.6–9734.9) (1383.6–10625.4) (398.0–23765.5)

TNFa 8.6 10.7 17.1 9.0 0.52

(4.4–18.2) (9.2–21.0) (3.9–24.9) (1.9–34.3)

1Values are given as the median with 25th to 75th percentiles in parentheses.
2Isogenic: isogenic maize diet for 110 days.
3Bt: Bt maize diet for 110 days.
4Isogenic/Bt: isogenic maize diet for 30 days followed by Bt maize diet for 80 days.
5Bt/isogenic: Bt maize diet for 30 days followed by isogenic maize diet for 80 days.
doi:10.1371/journal.pone.0036141.t004
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leukocyte counts were increased when mice were fed GM triticale,

but again, these values were within the normal reference range for

mice. Erythrocyte counts in pigs fed Bt maize for 80 days or longer

were lower than in pigs fed the Bt/isogenic maize diet. We have

previously reported a decrease in erythrocyte counts in sows fed Bt

maize (Text S1). However, in that study haemogloblin concen-

tration and hematocrit were also decreased and the changes

observed were not attributed to Bt maize consumption.

In an earlier study with weanling pigs (,65 days old), we

detected a small (211 bp) fragment of the cry1Ab gene in the gastric

digesta of all pigs fed Bt maize; however, detection in the ileal and

cecal digesta was limited to two and one pigs, respectively while

the gene fragment was undetectable in the colon [6]. However, in

the present study, in older pigs (,150 days old) cry1Ab gene

fragments (149 and 211 bp) were detectable in the gastric digesta

and the 211 bp gene fragment only was detected at low frequency

in ileal digesta. The cry1Ab gene, regardless of amplicon size, was

not detected in the cecum or colon. Nucleic acids are known to

endure extensive enzymatic degradation in the GIT [25].

Potentially, the transgenic DNA was degraded by microbial

DNAse enzymes which are most likely present at higher

concentrations in the cecum and colon as a result of larger

microbial populations. These findings agree with results from a

wild boar study where cry1Ab fragments of up to 420 bp were

detected in gastric contents but no fragments greater than 211 bp

were found further down the GIT [26]. In the same study, a small

(173 bp) rubisco gene fragment was found throughout the GIT and

a small (, 100 bp) fragment of cry1Ab was found at very low

frequency in the jejunal contents [26]. The smallest fragment we

chose to detect in our study was 149 bp; therefore, smaller cry1Ab

fragments may have been present in digesta distal to the stomach

but remain undetected. Similar to Wiedemann et al. [26], and

Chowdhury et al. [27], we detected a small (173 bp) rubisco

fragment in small intestinal, cecal and colon digesta. Chowdhury

et al. [27], also detected a small (110 bp) cry1Ab fragment in 40 kg

pigs fed Bt maize for 28 days.

The majority of studies, both in monogastric and ruminant

species, have failed to detect transgenic DNA beyond the

gastrointestinal barrier [28,29]. Furthermore, our group were

previously unable to detect a 211 bp fragment of the transgenic

cry1Ab gene in the organs or blood of pigs fed Bt (MON810) maize

for 31 days [6]. In agreement with these findings, a longer feeding

period of 110 days did not influence the ability of cry1Ab to

translocate across the intestinal barrier of pigs, as neither the 211

or 149 bp cry1Ab fragments were detectable in the blood, liver,

muscle, or kidneys in the present study. Mazza et al. [11], however,

detected a 519 bp cry1Ab fragment in the plasma, liver, kidney and

spleen of piglets fed Bt (MON810) maize for 35 days, although the

gene’s smallest functional unit (1800 bp) was never detected.

Likewise, a 278 bp fragment of the cp4epsps transgene from

Round-up Ready canola was found in the liver and kidneys of

pigs, however, the prevalence was extremely low [10]. The

transfer of endogenous plant DNA from the GIT into blood and

organs appears to occur spontaneously in nature [11,30,31]. Our

Table 5. Effects of feeding Bt and isogenic maize on immune cell phenotypes of peripheral blood mononuclear cells.

Day Treatment Mean P – value

Isogenic1 Bt2 Isogenic/Bt3 Bt/isogenic4 Treatment Time Treatment6Time

CD3+ T cells

30 55.566.63 53.565.95 52.166.76 49.866.51 52.763.11 0.94

60 68.466.92 60.466.39 62.966.71 56.967.08 62.263.36 0.76

100 53.566.63 43.166.31 50.967.30 54.966.51 50.663.35 0.51

Mean 59.064.75 52.364.04 55.364.56 53.964.63 0.82 0.02 0.84

CD3+CD4+ T cells

30 16.162.65 18.362.36 19.762.64 20.562.48 18.761.20 0.68

60 5.262.61 7.662.44 8.662.63 5.762.59 6.761.27 0.77

100 10.862.65 11.462.45 11.062.82 10.362.48 10.961.27 0.99

Mean 10.762.14 12.461.89 13.162.14 12.262.02 0.90 0.001 0.82

CD3+CD8+ T cells

30 26.562.37 26.762.22 27.662.46 31.362.45 28.061.15 0.45

60 15.162.36 12.862.34 11.262.46 12.262.56 12.961.24 0.70

100 24.062.37 20.262.34 25.362.66 22.162.45 22.961.24 0.52

Mean 21.961.62 19.961.55 21.461.68 21.961.76 0.78 0.001 0.40

CD4+CD8+ T cells

30 7.3b61.21 8.8ab61.14 11.8a61.26 9.6ab61.19 9.460.59 0.08

60 4.061.20 5.261.21 3.561.26 2.661.26 3.860.63 0.48

100 3.961.21 4.261.20 4.761.36 4.061.19 4.260.63 0.97

Mean 5.160.81 6.160.79 6.760.85 5.460.81 0.51 0.001 0.29

The CD4+, CD8+, CD4+CD8+ immune cell populations are given as proportions of CD3+ T cells (%). All values are shown 6SE.
1Isogenic: isogenic maize diet for 110 days.
2Bt: Bt maize diet for 110 days.
3Isogenic/Bt: isogenic maize diet for 30 days followed by Bt maize diet for 80 days.
4Bt/isogenic: Bt maize diet for 30 days followed by isogenic maize diet for 80 days.
abWithin a row means without a common superscript differ by P,0.10 by means separation using Tukey-Kramer adjustment for multiple comparisons.
doi:10.1371/journal.pone.0036141.t005

Effects of Long-Term Feeding of Bt Maize to Pigs

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36141



findings are similar to those reported in calves [32] and fallow deer

[29] where small fragments of the multiple copy endogenous

chloroplast rubisco gene (173 or 226 bp) were detected in liver,

kidney and spleen. Guertler et al. [29] and Mazza et al. [11] also

Table 6. Effects of feeding Bt and isogenic maize on immune cell counts (61000/mL) 6SE in growing pigs.

Day Treatment Mean P - value

Isogenic1 Bt2 Isogenic/Bt3 Bt/isogenic4 Treatment Time
Treatment6
Time

Leukocytes5

30 18.062.96 22.062.44 25.162.54 26.462.71 22.961.20 0.28

60 19.562.80 23.662.72 25.862.80 28.462.71 24.361.34 0.25

100 22.7b62.70 28.6b62.56 29.5ab62.80 35.2a62.71 29.061.26 0.06

Mean 20.062.26 24.761.86 26.862.01 30.062.12 0.13 0.001 0.95

Lymphocytes6

30 12.961.86 14.761.73 15.461.74 17.161.80 15.060.85 0.49

60 13.561.80 16.161.93 18.561.87 18.961.180 16.760.94 0.19

100 13.8y61.71 15.4y61.81 17.9xy61.87 21.4x61.80 17.160.87 0.04

Mean 13.4c61.30 15.4bc61.28 17.2ab61.25 19.1a61.30 0.09 0.15 0.87

Monocytes7

30 1.760.23 1.460.22 1.760.22 1.660.22 1.6160.10 0.78

60 1.660.23 1.760.25 1.960.23 1.960.22 1.7960.12 0.76

100 2.2ab60.21 1.7b60.23 2.3a60.23 2.5a60.22 2.1760.11 0.09

Mean 1.8460.14 1.6060.14 1.9860.13 2.0060.13 0.21 0.002 0.77

Granulocytes

30 2.662.5 6.861.84 8.561.97 8.162.17 6.560.90 0.45

60 3.562.45 6.762.02 5.662.15 8.162.17 6.060.10 0.64

100 5.962.39 12.461.91 8.862.15 11.962.17 9.760.94 0.24

Mean 3.762.14 8.761.45 7.661.64 9.361.81 0.45 0.002 0.68

1Isogenic: isogenic maize diet for 110 days.
2Bt: Bt maize diet for 110 days.
3Isogenic/Bt: isogenic maize diet for 30 days followed by Bt maize diet for 80 days.
4Bt/isogenic: Bt maize diet for 30 days followed by isogenic maize diet for 80 days.
5Normal reference range in pigs = 11,000–22,000/mL [20].
6Normal reference range in pigs = 4,300–13,600/mL [20].
7Normal reference range in pigs = 200–2,200/mL [20].
xyWithin a row means without a common superscript differ by P,0.05 by means separation using Tukey-Kramer adjustment for multiple comparisons.
abcWithin a row means without a common superscript differ by P,0.10 by means separation using Tukey-Kramer adjustment for multiple comparisons.
doi:10.1371/journal.pone.0036141.t006

Table 7. Detection of endogenous maize and porcine genes and transgenic cry1Ab gene in the organs and blood of pigs fed Bt
and isogenic maize1.

Fragment amplified Organ

Liver Kidney Muscle White blood cells

Dietary treatment2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Endogenous

Sh2 (maize) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rubisco (maize) 6 5 4 5 4 3 3 5 3 2 5 4 2 2 0 1

sw (porcine) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Transgenic

cry1Ab-1 (211 bp; maize) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cry1Ab-2 (149 bp; maize) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1Number of samples that tested positive for the gene of interest out of 10 samples analyzed. One sample was tested per pig (n = 10 pigs per treatment).
2Dietary treatments; 1) isogenic maize diet for 110 days, 2) Bt maize diet for 110 days, 3) isogenic maize diet for 30 days followed by Bt maize diet for 80 days and 4) Bt
maize diet for 30 days followed by isogenic maize diet for 80 days.
doi:10.1371/journal.pone.0036141.t007
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detected fragments of the multiple copy endogenous chloroplast

zein gene in organs of deer and pigs fed Bt maize, respectively. We

were previously unable to detect fragments of the single copy

endogenous chloroplast sh2 gene in the organs or blood of pigs fed

Bt maize for 31 days [6] and similar results were found when pigs

were fed Bt maize for a longer duration in the present study. These

findings suggest that copy number is the rate limiting step in the

traceability of transgenic DNA. Also, the low detection frequency

of the cry1Ab gene in the ileum and the absence of cry1Ab gene

detection distal to the ileum may account for the lack of detection

of the single copy cry1Ab gene in animal tissues and blood.

Similar to our findings in weanling pigs [6], the Bt toxin was

detected in the stomach, cecum and colon digesta but not in the

organs or plasma of pigs fed Bt maize for 110 days. Similarly, in other

studies with pigs, Yonemochi et al. [7] did not detect the Cry9C

protein in blood, liver or muscle samples and Wiedemann et al. [26]

found the Cry1Ab protein in stomach, colon and rectum samples

from wild boar fed Bt176 maize but not in the organs or blood. In the

present study, the Cry1Ab protein (Bt toxin) was recovered from

85% of stomach, 65% of cecum and 100% of colon samples from

pigs fed Bt maize even though the cry1Ab gene (either 211 or 149 bp

fragments) was only detected in the stomach and at low frequency in

the ileum. Einspanier et al. [33] reported that the use of PCR primers

for shorter amplicons increased the chance of detecting plant DNA

in ruminal contents. Therefore, similar to our previous study [6], the

discrepancies observed in detection frequency between the cry1Ab

gene and Bt toxin fragments along the GIT may be due to the failure

to amplify gene fragments of less than 149 bp in length. In addition,

in our study, the concentration of Bt toxin found in the stomach and

colon digesta was twice as high as that found in the cecum. This is

likely due to the fact that the colon digesta is more concentrated as a

result of water absorption. Furthermore, the concentration of Bt

toxin detected in the digesta from any site within the GIT of finisher

pigs in this study is higher than that previously found by our group in

weanling pigs (2.41–2.74 ng/mL) [6]. This is most likely due to the

higher inclusion of Bt maize in finisher diets compared to those used

for weanling pigs. The concentration of Bt toxin in the digesta of pigs

fed Bt maize during the entire 110-day study period was higher at all

gastrointestinal sites, with the exception of the cecum, than in pigs

fed the isogenic/Bt maize diet. The longer duration of feeding may

account for this difference. Also, the Bt toxin was no longer present

in the digesta of pigs fed the Bt/isogenic diet. This is not surprising,

as these pigs had not been fed Bt maize for 80 days. This

demonstrates that once Bt maize feeding ceases, the Bt toxin is no

longer detectable in the GIT.

In conclusion, long-term feeding of Bt maize to pigs did not

elicit an allergic or inflammatory-type peripheral immune

response. This was evidenced by the lack of antigen-specific

antibody production and the absence of alterations in T cell

populations and inflammatory cytokine production. Peripheral

immune response to Bt maize did not appear to be age-related, as

there were no differences in cytokines, antigen-specific Ig

production or T cell populations between pigs fed Bt maize from

40 or 70 days of age. However, a residual effect on lymphocyte

count was apparent in older pigs fed Bt maize in early life, an effect

which was not present following long-term Bt or isogenic maize

consumption. Intestinal degradation of transgenic DNA was

enhanced in older pigs, as the cry1Ab gene was detected in gastric

digesta and at low frequency in the ileum but not in the distal GIT,

unlike Bt toxin fragments which were found in the colon.

Furthermore, long-term feeding of Bt maize did not result in the

translocation of transgenic DNA or Bt toxin from the GIT to

organs or blood. Findings from this study can offer assurance to

regulators and consumers as to the safety of long-term consump-

tion of Bt maize.

Supporting Information

Text S1 Supplemental Information.

(DOC)

Table 8. Detection of endogenous maize and porcine genes and transgenic cry1Ab gene in stomach, ileum, cecum and colon
digesta of pigs fed Bt and isogenic maize diets1.

Fragment amplified Stomach Ileum Cecum Colon

Dietary treatment2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Endogenous

sh2 (maize) 9 9 9 8 0 0 0 0 0 0 0 0 0 0 0 0

rubisco (maize) 10 9 9 8 10 10 8 9 4 5 6 3 1 1 1 4

Transgenic

cry1Ab-1 (211 bp; maize) 0 9 9 0 0 2 1 0 0 0 0 0 0 0 0 0

cry1Ab-2 (149 bp; maize) 0 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0

1Number of samples that tested positive for the gene of interest out of 10 samples analyzed. One sample was tested per pig (n = 10 pigs per treatment).
2Dietary treatments; 1) isogenic maize diet for 110 days, 2) Bt maize diet for 110 days, 3) isogenic maize diet for 30 days followed by Bt maize diet for 80 days and 4) Bt
maize diet for 30 days followed by isogenic maize diet for 80 days.
doi:10.1371/journal.pone.0036141.t008

Table 9. Mean Bt toxin concentrations (ng/mL) in
gastrointestinal digesta of pigs fed Bt and isogenic maize1.

Treatment Isogenic2 Bt3 Isogenic/Bt4 Bt/isogenic5

Stomach BLD6 (0) 28.26 (90) 12.97 (80) BLD (0)

Cecum BLD (0) 7.92 (80) 11.45 (50) BLD (0)

Colon BLD (0) 32.74 (100) 18.05 (100) BLD (0)

1Values in parentheses correspond to the percentage of pigs within each
treatment that tested positive for the Bt toxin.
2Isogenic: isogenic maize diet for 110 days.
3Bt: Bt maize diet for 110 days.
4Isogenic/Bt: isogenic maize diet for 30 days followed by Bt maize diet for 80
days.
5Bt/isogenic: Bt maize diet for 30 days followed by isogenic maize diet for 80
days.
6BLD – below the limit of detection (stomach; 0.82 ng/mL, cecum; 2.16 ng/mL,
colon; 1.48 ng/mL).
doi:10.1371/journal.pone.0036141.t009
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Table S1 Effects of feeding of Bt and isogenic maize on
haematological parameters in growing pigs.
(DOC)
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