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Abstract

Mycoplasmas cause numerous human diseases and are common opportunistic pathogens in cancer patients and
immunocompromised individuals. Mycoplasma infection elicits various host immune responses. Here we demonstrate that
mycoplasma-infected tumor cells release exosomes (myco+ exosomes) that specifically activate splenic B cells and induce
splenocytes cytokine production. Induction of cytokines, including the proinflammatory IFN-c and the anti-inflammatory IL-
10, was largely dependent on the presence of B cells. B cells were the major IL-10 producers. In splenocytes from B cell
deficient mMT mice, induction of IFN-c+ T cells by myco+ exosomes was greatly increased compared with wild type
splenocytes. In addition, anti-CD3-stimulated T cell proliferation was greatly inhibited in the presence of myco+ exosome-
treated B cells. Also, anti-CD3-stimulated T cell signaling was impaired by myco+ exosome treatment. Proteomic analysis
identified mycoplasma proteins in exosomes that potentially contribute to the effects. Our results demonstrate that
mycoplasma-infected tumor cells release exosomes carrying mycoplasma components that preferentially activate B cells,
which in turn, are able to inhibit T cell activity. These results suggest that mycoplasmas infecting tumor cells can exploit the
exosome pathway to disseminate their own components and modulate the activity of immune cells, in particular, activate B
cells with inhibitory activity.
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Editor: Niels Olsen Saraiva Câmara, Universidade de Sao Paulo, Brazil

Received May 20, 2011; Accepted March 31, 2012; Published April 27, 2012

Copyright: � 2012 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by Department of Defense grants 17-03-1-0488 and 17-03-0412 and U01 NS058451, P30 AG024827 and R21 AG033907
grants from the National Institutes of Health to P.D.R. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: probb@pitt.edu

Introduction

Exosomes are 30–100 nm membrane vesicles released by a wide

variety of cells. They are formed by reverse budding of the

multivesicular bodies in the late endocytic compartments and are

released upon their fusion with the plasma membrane [1,2]. The

protein composition of exosomes usually reflects that of the

parental cells [3]. Exosomes have been shown to have various

immunoregulatory effects, which also largely depend on the nature

of the parental cells. Dendritic cell (DC)-derived exosomes can be

either immunostimulatory or immunosuppressive, provided dif-

ferent inducing conditions [4,5,6]. Tumor-derived exosomes were

initially considered as a new source of tumor antigens that could

be used to stimulate anti-tumor responses [7]. However, tumor-

derived exosomes have also been found to possess diverse

immunosuppressive properties, such as negatively regulating the

function of antigen-presenting cells (APCs) and effector cells (e.g.

natural killer cells and T cells), promoting the generation of

myeloid suppressor cells, and supporting the function of regulatory

T cells [8,9,10,11,12,13,14]. Interestingly, studies have shown that

intracellular pathogens infecting APCs can modulate the immu-

noregulatory properties of APC-derived exosomes, making them

proinflammatory [15,16] or mitogenic [17].

Mycoplasmas are parasitic bacteria of minute size (0.2–1.0 mm),

causing numerous diseases such as pneumonia and also acting as

opportunistic pathogens that colonize a host with a weak immune

system [18,19,20]. They can infect many cell types by either

surface attachment to the cell membrane or fusion with the host

cells [20]. Persistent mycoplasma infection induces chromosomal

instability and malignant transformation of mammalian cells

[21,22,23,24,25,26,27], and certain tumor-associated proteins are

proposed to have a mycoplasma origin [28]. Mycoplasma

infection of tumor cells were reported to increase tumor cell

invasiveness [29]. Mycoplasmas can induce a wide range of

immune responses. Many mycoplasma species can activate

monocytes and induce the secretion of proinflammatory cytokines

[30,31,32]. Mycoplasmas can also induce immunosuppression

through various mechanisms including arginine depletion, cyto-

toxicity and induction of anti-inflammatory cytokines

[20,30,33,34,35]. In addition, temporary inhibition of cell-

mediated or humoral immune responses by mycoplasma infection

was observed in different hosts [36,37,38].

The incidence of mycoplasma infection in established tumors is

unclear. Nevertheless, mycoplasma DNA has been detected in

different archived human cancer tissues, including ovarian cancer,

gastric carcinoma, colon carcinoma, esophageal cancer, lung

cancer, breast cancer and glioma, suggesting the possible co-

existence of mycoplasmas and tumors in vivo. [39,40]. In vitro,

mycoplasma infection is commonly found in laboratory cultured

cell lines including tumor cell lines [41]. During the study of
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tumor-derived exosomes, we found that certain immune responses

elicited by exosomes were associated with mycoplasma infection of

the parental tumor cells. Here we report that exosomes derived

from mycoplasma-infected tumor cells preferentially activate B

cells and induce robust cytokine production by splenocytes,

including both proinflammatory and anti-inflammatory cytokines.

In addition, T cell activation and proliferation is inhibited by those

activated B cells. Our data indicate that mycoplasmas are able to

exploit the exosome pathway of the host tumor cells to disseminate

their own components and influence the activity of immune cells.

Our results also suggest a potential immunosuppressive mecha-

nism of mycoplasmas-infected tumor cells through the release of

exosomes.

Results

Exosomes derived from mycoplasma-infected tumor cells
induce splenocytes cytokine production and splenic B
cell activation

Tumor cell lines can be infected with mycoplasmas during long-

term culture, with no apparent alterations on cell growth and

proliferation. A screen for mycoplasma infection of a panel of

murine tumor lines identified subcultures of the B16 melanoma

cells and the EL4 thymoma cells as mycoplasma positive

(Figure 1A). Exosomes were isolated from the culture supernatants

of both infected and non-infected cell lines. Similar amounts of

exosome proteins were obtained and electron microscopy (EM)

demonstrated that exosomes derived from infected cells (myco+
exosomes) have similar morphology as those derived from healthy

cells (myco2 exosomes). No mycoplasma-like bacteria were

observed by EM in myco+ exosome preparations (Figure 1B).

To examine the effect of myco+ exosomes on immune cells,

splenocytes from C57BL/6 mice were treated with 1 mg/ml of

exosomes for 72 hr. Treatment with myco+ exosomes resulted in

robust induction of the proinflammatory cytokine IFN-c as well as

the anti-inflammatory cytokine IL-10, whereas myco2 exosomes

did not induce cytokine production (Figure 2A). The cytokine

induction by myco+ exosomes was dose-dependent (Figure 2B).

Similar results were obtained using either B16 or EL4 exosomes.

Myco+ exosome treatment also resulted in splenic B cell

activation, as evidenced by CD25hi, CD40hi, CD86hi, CD80hi and

IgDlo expression on B220+CD19+ cells. There was no significant

change in the expression of IgM, CD1d, and CD5 on B cells,

suggesting that myco+ exosomes were not preferentially stimulat-

ing either marginal zone or B1 B cells expressing these markers. In

contrast, myco2 exosomes did not stimulate B cells (Figure 3A).

Also, an increase in the percentage of B cells in total splenocytes

was observed after myco+ exosome treatment (Figure 3B). Myco+
exosome treatment also resulted in moderate T cell activation, as

evidenced by increased CD44hi, CD69hi, CD25hi, CD62Llo CD8+
T cells and increased CD69hi CD4+ T cells (Figure 3C). Similar

results were obtained with either B16 or EL4 exosomes (data not

shown).

Cytokine induction by myco+ exosome is largely
dependent on the presence of B cells

To determine if cytokine induction by myco+ exosome

correlates with B cell activation, we examined the cytokine

production of splenocytes isolated from B cell deficient mMT mice

upon exosome treatment. Splenocytes isolated from wide type

(WT) mice or mMT mice were treated with 1 mg/ml of B16 myco+
exosomes for 72 hr and the levels of IL-10 and IFN-c in the

Figure 1. Morphology of exosomes derived from healthy or mycoplasma-infected tumor cells. (A) Detection of mycoplasma DNA in B16
and EL4 cell cultures. Culture supernatants were tested by PCR using primer sets specific to the highly conserved 16S rRNA coding region in the
mycoplasma genome. Mycoplasma positive samples show bands in the range of 26068 bp. An internal control DNA band at 481 bp was included
and is attenuated in the presence of heavy mycoplasma DNA load. (B) Electron micrograph of exosomes prepared from non-infected (myco2) and
infected (myco+) tumor cell cultures. Scale bar: 100 nm.
doi:10.1371/journal.pone.0036138.g001
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culture supernatants were tested. Interestingly, there was a

significant reduction in the amount of both cytokines produced

by mMT cells than that by WT cells (Figure 4), suggesting that

cytokine induction by myco+ exosomes is largely B cell-dependent.

Compared with untreated control, small amounts of cytokines

were still induced in mMT splenocytes culture, indicating that in

the absence of B cells, other cell type(s) also respond to myco+
exosomes, but to a much lower level.

B cells are the major IL-10 producers following myco+
exosome treatment

To identify the major cytokine-producing cells induced by

myco+ exosomes, the percentages of IL-10+ cells and IFN-c+ cells

in both B and T cell gates were analyzed 48 hr after exosome

treatment by intracellular cytokine staining. The increase of % IL-

10+ cells in the B cell gate upon myco+ exosome treatment was

significantly higher than that in the CD4+ T cell gate or the CD8+
T cell gate (Figure 5A–B). In addition, compared with untreated

control, the percentage of IL-10+ B cells in total splenocytes, but

not IL-10+CD4+ or IL-10+CD8+ T cells, was significantly

increased after myco+ exosome treatment (Figure 5C). There

was also a greater induction of IFN-c+ cells in the B cell gate than

in the CD4+ or CD8+ T cell gate (Figure 5D–E) and the

percentage of IFN-c+ B cells in total splenocytes was significantly

elevated after myco+ exosome treatment (Figure 5F). These results

demonstrate that IL-10-producing B cells were preferentially

induced by myco+ exosome and there was also a greater induction

of IFN-c-producing B cells than IFN-c-producing CD4+ or CD8+
T cells.

Induction of IFN-c-producing T cells by myco+ exosomes
is increased in the absence of B cells

Given that myco+ exosomes induce B cell-dependent anti-

inflammatory cytokine IL-10, we compared the induction of IFN-

c-producing T cells by myco+ exosomes in mMT spleen cells with

that in WT spleen cells. Interestingly, in the CD8+ T cell gate the

increase in the percentage of IFN-c+ cells was significantly higher

in mMT splenocytes (.3-fold) than that in WT splenocytes (,2-

fold) (Figure 6A–B). Similarly in the CD4+ T cell gate, there was a

greater increase in the percentage of IFN-c+ cells in mMT

Figure 2. Cytokine induction in splenocytes by myco+ exosome treatment. (A) Splenocytes from C57BL/6 mice were cultured in a 24-well-
plate at the density of 56106 cells/1.5 ml media/well in the presence of 30 U/ml rmIL-2 and were treated with either myco+ exosomes or myco2
exosomes (1 mg/ml), or left untreated for 72 hr. The IL-10 and IFN-c levels (pg/ml) in the culture supernatants were measured by ELISA. Treatments
were conducted in duplicates or triplicates in each experiment. Data represent the averaged cytokine levels 6 SD of three independent experiments.
(B) Dose-dependent cytokine induction by myco+ exosomes. Splenocytes were treated with an increasing dose of myco+ exsosomes (0.1, 1 and
10 mg/ml) for 72 hr, and the cytokine levels were measured by ELISA. Treatments were conducted in duplicates. Data represent the averaged
cytokine levels 6 SD of three independent experiments. Significance at: *, P,0.05.
doi:10.1371/journal.pone.0036138.g002
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Figure 3. Myco+ exosomes induce B cell activation and expansion. Splenocytes were treated with 1 mg/ml of B16 myco+ exosomes or B16
myco2 exosomes, or cultured untreated for 72 hr. Cells were harvested and analyzed by FACS. (A) Expression of CD25, CD40, CD86, CD80, CD23, IgD,
IgM, CD1d, CD5 and CD43 in the B cell gate (CD19+B220+). (B) Percentage of B cells in total splenocytes within the live cell gate after exosome
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splenocytes (.5-fold) compared with WT splenocytes (,2-fold)

(Figure 6C–D). This suggests that the presence of myco+ exosome-

activated B cells inhibits the induction of IFN-c-producing T cells

by myco+ exosome treatment.

T cell proliferation is inhibited in the presence of myco+
exosome-treated B cells

Since IL-10 production by B cells was dramatically induced

upon myco+ exosome treatment and IL-10 is known to negatively

regulate T cell activity, we examined if T cell proliferation was

affected by myco+ exosome-activated B cells. Anti-CD3 stimulated

T cell proliferation was first examined in splencoyte culture.

Purified T cells expressing the congenic marker CD45.1 were

labeled with CFSE and co-cultured with T cell-depleted, myco+
exosome pre-treated splenocytes. T cells were stimulated with

10 mg/ml of anti-mouse CD3e and were allowed to proliferate for

3 days. T cell proliferation was demonstrated by CFSE dilution.

Notably, the proliferation of CD8+ T cells and CD4+ T cells were

both inhibited when the T cells were co-cultured with myco+
exosome-treated splenocytes, compared with untreated spleno-

cytes. Proliferation of T cells with the CD44hiCD62Llo phenotype,

representing the activated T cell subset, also was found inhibited

(Figure 7A–B).

Next, we tested if B cells alone, upon myco+ exosomes

treatment, can inhibit T cell proliferation. B cells were purified

from total splenocytes by MACS depletion of T cells and Non-B-

APCs. T cells were co-cultured with myco+ exosome pre-treated B

cells and stimulated with anti-CD3. CFSE dilution demonstrated

that myco+ exosome-treated B cells were equally capable of

inhibiting the proliferation of total CD8+ T cells and CD4+ T

cells, as well as T cells with the CD44hiCD62Llo phenotype

(Figure 7C).

TCR signaling is impaired in myco+ exosome-treated
splenocytes

We next examined whether anti-CD3-stimulated T cell receptor

(TCR) signaling was impaired in myco+ exosomes-treated

splenocytes. CD3 cross-linking triggers several downstream signal

transduction pathways that lead to T cell activation and

proliferation, including the MAP kinase pathway. Thus ERK

phosphorylation, the last step in the MAP kinase cascade, was

examined upon anti-CD3 stimulation. Splenocytes were treated

with increasing doses of exosomes (0.1, 1 and 10 mg/ml) or

cultured untreated for 48 hrs, and then stimulated with 1 mg/ml of

anti-CD3e for 30 min before being harvested. Phosphorylation of

ERK proteins (pERK1/2) was examined by Western blotting.

Robust ERK phosphorylation was detected in untreated spleno-

cytes and splenocytes treated with myco2 exosome, whereas in

splenocytes treated with myco+ exosomes, ERK phosphorylation

was significantly reduced in a dose-dependent manner (Figure 8).

Cytokine induction by myco+ exosomes does not require
exosome membrane integrity

To determine if intact exosome structure is required for the

stimulatory effect, myco+ exosome were subjected to 5 cycles of

freeze/thaw or repeated sonication, which has been shown to

disrupt exosome membrane [5]. Interestingly, membrane disrup-

tion had little impact on the cytokine induction (Figure 9B–C) and

B cell activation (data not shown) effects of myco+ exosomes,

whereas exosomes derived from cells whose mycoplasma infection

had been removed by Plasmocin completely lost their stimulatory

ability. Since the ultra-filtration process during exosome prepara-

tion excluded the whole mycoplasma organisms, these results

suggest that the stimulatory effect of myo+ exosomes was due to

mycoplasma-derived components incorporated into exosomes but

does not require exosome membrane integrity.

treatment. Data represents the mean 6 SD of four independent experiments. Significance at: *, P,0.05. (C) Expression of CD25, CD69, CD44, CD62L,
CD80 and CD86 in the CD4+ T cell gate and the CD8+ T cell gate. Black line: B16 myco+ exosome treatment; grey line: B16 myco2 exosome
treatment; grey solid: untreated.
doi:10.1371/journal.pone.0036138.g003

Figure 4. Cytokine induction by myco+ exosomes in WT and mMT splenocytes. Splenocytes from either WT mice or mMT mice were cultured
in 24-well-plate at 56106 cells/1.5 ml media/well with 30 U/ml of rmIL-2 and treated with 1 mg/ml of B16 myco+ exosomes or left untreated for 72 hr.
IL-10 and IFN-c levels in the culture supernatants were measured by ELISA. Treatments were conducted in triplicates in each experiment. Data
represents the averaged cytokine levels 6 SD of three independent experiments. Significance at: *, P,0.05.
doi:10.1371/journal.pone.0036138.g004
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Figure 5. Intracellular cytokine staining of myco+ exosome-treated splenocytes. WT splenocytes were cultured with or without 1 mg/ml of
B16 myco+ exosome for 48 hr in 24-well-plate at 56106 cells/1.5 ml media/well with 30 U/ml of rmIL-2. Brefeldin A was added to the culture for the
last 6 hr before cells were harvested. Cells were first surface stained for CD19, B220, CD4 and CD8, and then stained for intracellular IL-10 and IFN-c.
(A) Percentage of IL-10+ cells in the B cell, CD4+ T cell and CD8+ T cell gates. Numbers in each plot represent % cells in each cell gate. Figures show
the data of one representative experiment of three with similar results. (B) Fold increase of % IL-10+ cell in the B cell, CD4+ cell and CD8+ cell gate.
Data represents the mean 6 SD of three independent experiments. Significance at: *, P,0.05. (C) Percentage of IL-10+ B cells, IL-10+ CD4+ cells and
IL-10+ CD8+ cells in total splenocytes in untreated or B16 myco+ exosome-treated splenocytes. Data represents the mean 6 SD of three independent
experiments. Significance at: *, P,0.05. (D) Percentage of IFN-c+ cells in the B cell, CD4+ T cell and CD8+ T cell gates. Numbers in each plot represent
% cells in each cell gate. Figures show the data of one representative experiment of three with similar results. (E) Fold increase of % IFN-c+ cell in the
B cell, CD4+ cell and CD8+ cell gate. Data represents the mean 6 SD of three independent experiments. (F) Percentage of IFN-c+ B cells, IFN-c+ CD4+
cells and IFN-c+ CD8+ cells in total splenocytes in untreated or B16 myco+ exosome-treated splenocytes. Data represents the mean 6 SD of three
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Discussion

Mycoplasmas interact with host cells by different ways such as

adherence, invasion or fusion. Following infection, they are potent

modulators of the host immune systems. We have observed that

mycoplasmas can also indirectly affect immune cells by modifying

exosomes released by host tumor cells with specific immunoreg-

ulatory properties. In this study, we demonstrate that tumor cells

with mycoplasma infection release exosomes with B cell

stimulatory and cytokine induction ability, which were not

observed in exosomes released from uninfected tumor cells.

Moreover, B cells activated by these exosomes were capable of

inhibiting T cell responses. These effects of exosomes exclusively

correlated with the infection status of their parental cells, as the

effects were completely abolished after treating the infected cells

with mycoplasma removal reagent.

It has been reported that macrophages infected with intracel-

lular pathogens such as Mycobacterium tuberculosis and Mycobacterium

bovis BCG release exosomes that contain pathogen-associated

molecular patterns, and these exosomes are able to stimulate a

proinflammatory response both in vitro and in vivo [15]. It was also

reported that mycobaterial components actively traffic within

infected macrophages with access to the MVB pathway and are

released in exosome-like extracellular vesicles [16,42]. In addition,

independent experiments. Significance at: *, P,0.05.
doi:10.1371/journal.pone.0036138.g005

Figure 6. The induction of IFN-c-producing T cells by myco+ exosomes increases in the absence of B cells. WT or mMT spleen cells were
cultured with or without 1 mg/ml of B16 myco+ exosome for 48 hr and stained for intracellular IFN-c. (A) Induction of IFN-c+CD8+ T cells in WT and
mMT splenocyte cultures. Data shows one representative experiment of three with similar results. Numbers in each plot represent % cells in CD8+ cell
gate. (B) Fold increase of % IFN-c+ cells in the CD8+ cell gate in WT and mMT splenocytes upon B16 myco+ exosome treatment. Data shows the mean
6 SD of three independent experiments. Significance at: *, P,0.05. (C) Induction of IFN-c+CD4+ T cells in WT and mMT splenocyte cultures. Data
shows one representative experiment of three with similar results. Numbers in each plot represent % cells in the CD4+ cell gate. (D) Fold increase of
% IFN-c+ cells in the CD4+ cell gate in WT and mMT splenocytes upon B16 myco+ exosome treatment. Data shows the mean 6 SD of three
independent experiments. Significance at: *, P,0.05.
doi:10.1371/journal.pone.0036138.g006
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DCs infected with mycoplasmas give rise to exosome preparations

which are able to induce polyclonal B cell mitogenisis [17]. In fact,

the ability of mycoplasmas to invade non-phagocytic host cells and

enter the endosome pathway [43] make exosomes produced by

non-phagocytic cells including tumor cells equally susceptible

targets for the incorporation of pathogen components. Neverthe-

less, there remains a possibility that mycoplasmas could be co-

isolated with exosomes, and whether whole, viable mycoplasmas

are co-isolated with exosomes largely depends on the stringency of

excluding mycoplasma-sized particles during exosome purifica-

tion. In our study, electron microscopy showed that whole

mycoplasma organisms were absent in the exosomes prepared

from infected cell lines. Those exosome preparations induced

splenic B cell activation and cytokine production, typically seen

within 48–72 h after treatment. Such effect was not affected by

repeated freeze-thaw cycles or sonication of the exosome

preparation, suggesting that intact exosome membrane structures

are not necessary to initiate the immune response.

Mycoplasmas contain abundant lipoproteins, many of which

are immunogenic and/or mitogenic. Certain lipoproteins were

found to induce T cell-independent B cell blastogenesis and

secretion of proinflammatory cytokines [44,45,46], resembling the

effect of myco+ exosomes we observed. Many mycoplasmal B cell

mitogens function through a pathway distinct from that of

lipopolysaccharide (LPS) [20,44]. In an effort to identify the

potential mycoplasma ligand(s) in exosomes responsible for the

responses, proteomic analysis was performed on both myco+ and

myco2 exosomes. Mass spectrometry analysis on both myco+ B16

exosomes and myco2 B16 exosomes identified a group of

membrane associated proteins and lipoproteins with potential

Figure 7. T cell proliferation is inhibited when co-cultured with myco+ exosome-treated splenocytes or purified B cells. Splenocytes
(T cell-depleted) or purified splenic B cells were cultured in 24-well-plate at 2.56106 cells/well with or without 1 mg/ml of B16 myco+ exosomes for
24 hr, then 0.56106 of CFSE-labeled T cells (CD45.1+) were added to the culture and stimulated with 10 mg/ml of anti-CD3e. Cells were co-cultured
for another 3 days and T cell proliferation was analyzed by CFSE dilution. (A) Gating of CD45.1+CD8+ T cells and CD45.1+CD4+ T cells. Expression of
CD44 and CD62L were shown within each T cell gate in non-treated and B16 myco+ exosome treated co-cultures. Non-treated cells without anti-
CD3e were included as an unstimulated control. T cells that are CD44highCD62Llow represent the activated T cell subset. (B) Proliferation of CD8+ T
cells and CD4+ T cells in myco+ exosome-treated splenocytes shown by CFSE dilution. Total T cells: total CD8+ or CD4+ T cells. CD44hiCD62Llo T cells:
T cell subsets that are CD44highCD62Llow. Unstimulated: Non-treated T cells without anti-CD3 stimulation. (C) Proliferation of CD8+ T cells and CD4+ T
cells when co-cultured with myco+ exosome-treated B cells, shown by CFSE dilution.
doi:10.1371/journal.pone.0036138.g007
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pro-inflammatory properties that are specifically present on myco+
exosomes (Table S1). However, other mycoplasma components,

such as glycan moieties or lipids, may also contribute to the B cell

stimulatory activity [32]. Additionally, mycoplasma infection also

seems to alter the endogenous protein composition of tumor-derived

exosomes, as a wide variety of proteins including membrane

proteins, enzymes, chaperons, nuclear proteins and structural

proteins were found at a higher level in myco+ B16 exosome

(Table S2), while another large repertoire of proteins were found

down-regulated in myco+ B16 exosomes (Table S3). The immune

responses stimulated by exosome-incorporated mycoplasma com-

ponents could potentially interfere with the intrinsic immunomod-

ulatory properties of exosomes, and it is possible that exosomes

released from mycoplasma-infected cells could stimulate similar

immune responses regardless of the type of host cells.

The anti-inflammatory cytokine IL-10 was found expressed at a

higher level in certain mycoplasma-associated human diseases [34].

Here in murine splenocytes culture, we found that myco+ exosomes

predominantly induce IL-10 in addition to IFN-c and the production

of these cytokines was largely B cell-dependent. Moreover, the IL-10-

producing cells were mainly induced in the B cell population, not in

the T cell population (Figure 5). These results emphasize a role of B

cells in producing anti-inflammatory cytokines, especially IL-10, in

response to exosomes derived from mycoplasma-infected cells.

It has been reported that B cell-derived IL-10 can be produced

by both naı̈ve and memory B cells, as well as the regulatory B cell

subset with a CD1d+CD5+ phenotype [47]. Although the exact B

cell subset(s) producing IL-10 in response to myco+ exosomes is

not clear, it is likely that more than one subset contributed to the

production of IL-10. IL-10 sustains the growth of activated B cells

and acts as a hinge cytokine by suppressing cell mediated

immunity while promoting humoral immunity [48,49]. B cell-

derived IL-10 can function in the prevention of inflammatory

responses in autoimmune diseases as well as in the down-

regulation of active disease exacerbation [47]. Our observation

that myco+ exosome-treated mMT spleen cells produce dramat-

ically decreased IL-10 while having significantly increased

percentage of IFN-c-producing T cells, suggests that T cells are

better activated in the absence of B cells and that myco+ exosome-

activated B cells can potently suppress T cell activity.

The inhibitory effect of myco+ exosome-activated B cells on T

cells was further demonstrated by T cell proliferation assay. Anti-

CD3-stimulated proliferation of both CD4+ T cells and CD8+ T

cells was strongly inhibited by myco+ exosome-treated B cells

(Figure 7). Such inhibition correlated with impaired TCR

signaling in response to anti-CD3 stimulation (Figure 8). Presum-

ably B cell-derived IL-10 and/or the IL-2 deprivation by B cells

with up-regulated CD25 could be responsible for the inhibitory

effect on T cells.

The impact of mycoplasma infection of tumor cells on tumor-

associated immune responses remains unclear. Certain mycoplas-

ma proteins have been shown to promote cancer cell invasiveness

Figure 8. Myco+ exosome treatment inhibits anti-CD3-stimulated ERK phosphorylation. Splenocytes were treated with 0.1, 1 or 10 mg/ml
of myco+ exosomes or myco2 exosomes for 48 hr, then 1 mg/ml of anti-CD3e were added for 30 min. Cells were prepared for western blot analysis
using antibodies against phosphorylated ERK protein (pERK1/2) and total ERK protein (ERK1/2). (A) Representative western blot figures of splenocytes
upon B16 myco2 exosome or B16 myco+ exosome treatment. Non: non-treated splenocytes with anti-CD3 stimulation. Unstimulated: non-treated
splenocytes cells without anti-CD3 stimulation. (B) Relative expression of pERK normalized to total ERK. Data represents the mean 6 SD of three
independent experiments. 10 mg/ml of B16 myco+ exosome treatment significantly decreased pERK/ERK compared with non treatment. Significance
at: *, P,0.05. (C) Representative western blot figures of splenocytes upon EL4 myco2 exosome or EL4 myco+ exosome treatment. (D) Relative
expression of pERK normalized to total ERK. Data represents the mean 6 SD of three independent experiments. 10 mg/ml of EL4 myco+ exosome
treatment significantly decreased pERK/ERK compared with non treatment. Significance at: *, P,0.05.
doi:10.1371/journal.pone.0036138.g008
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and metastasis both in vitro and in vivo [50]. Our observation

provides implications of immune modulation by co-existing

opportunistic pathogens in tumor-bearing hosts. Our studies

identify exosomes as effective vehicles for intracellular pathogens

to communicate indirectly with immune cells to confer their

immunomodulatory effects. Our results also suggest that myco-

plasmas infecting tumor cells could utilize tumor-derived exosomes

to induce a B cell response and the production of B cell-derived

regulatory cytokines IL-10, which could further lead to the

inhibition of T cell activity. Such effect may not only diminish the

inflammatory response directed against these pathogens, but also

jeopardize effective T cell responses in anti-tumor immunity.

In conclusion, our study characterizes the splenic B cell and T

cell responses to exosomes derived from tumor cells with

mycoplasma infection. We demonstrate the preferential activation

of B cells and B cell-dependent cytokine induction by these

exosomes and the subsequent inhibition of T cell proliferation and

TCR signaling. Our results dissect the reactions of B and T

lymphocytes in response to tumor-derived exosomes carrying

mycoplasma components and reveal the potential antagonizing

effect of B cell activation to T cell activity. These observations will

help us better understand the impact of pathogenic components

released in the form of exosomes on host immune modulation.

Materials and Methods

Cell lines and mice
Murine B16 and EL4 cell lines were originally purchased from

American Type Culture Collection. Cells were cultured in RPMI

1640 supplemented with 10% FBS, 2 mM L-glutamine, 0.1 mM

non-essential amino acids, 1 mM sodium pyruvate, 10 mM

HEPES, Antibiotic-Antimicotic (GIBCO), and 50 mM b-mercap-

toethanol. Female C57BL/6J (CD45.2+) mice, mMT (Ighmtm1Cgn)

mice and the congenic CD45.1+ B6 (B6.SJL-PtprcaPep3b/BoyJ)

mice were purchased from the Jackson Laboratory. Animals were

maintained in a pathogen-free animal facility at University of

Pittsburgh Biotechnology Center. All animal-related experiments

were conducted in strict accordance with the guidelines for the

care and use of Laboratory Animals of the National Institutes of

Health and animal protocol 0804421B-1 was approved by the

University of Pittsburgh Institutional Animal Care and Use

Committee, assurance number A3187-01. Mice were euthanized

in CO2 tank for organ harvesting.

Mycoplasma detection and elimination
Cell lines were screened for mycoplasma using MycoAlertTM

mycoplasma detection kit (Lonza) and infections were confirmed

using LookOutH Mycoplasma PCR detection kit (Sigma). DNA

was separated in a 1.2% agarose gel and stained with ethidium

bromide. For mycoplasma removal, infected cell lines were treated

with PlasmocinTM (Invivogen) for 2 weeks and then cultured for

another week before PCR test to ensure complete elimination.

Exosome purification
Exosomes were isolated from cell culture supernatant by

differential centrifugation and filtration. FBS used for culture

media was pre-cleared by ultracentrifugation at 100,0006 g for

3 hr at 4uC. 48 hr culture supernatants were centrifuged at 10006
g for 10 min and 10,0006 g for 30 min to remove cell and

membrane debris, then filtered through 0.22 mm sterilizing filter

(Corning), and further concentrated using Centricon Plus-70

Figure 9. Cytokine induction by myco+ exosomes after exosome membrane disruption or mycoplasma removal reagent treatment
of parental cells. (A) Mycoplasma-infected cells were treated with Plasmocin for 2 wk and tested to be mycoplasma-free. (B) B16 and EL4 myco+
exosomes were subjected to 5 cycles of freeze/thaw (F/T) or sonication (sonic). Splenocytes were treated with 1 mg/ml of myco+ exosomes, F/T
exosomes, sonic exosomes or exosomes derived from Plasmocin-treated cells (plasmo) for 72 hr. IL-10 production was measured by ELISA. (C) IFN-c
production measured by ELISA. Induction of IL-10 and IFN-c by plasmo exosomes was significantly reduced compared with intact, F/T and sonic
exosomes. Significance at: *, P,0.05.
doi:10.1371/journal.pone.0036138.g009

Myco+ Exosomes Activate Inhibitory B Cells

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e36138



100 kD cutoff filter units (Millipore). The concentrated superna-

tants were subjected to ultracentrifugation at 100,0006g for 1 hr.

Exosomes pellets were washed with sterile PBS, centrifuged at

100,0006 g for 1 hr, and resuspended in sterile PBS. Exosome

quantification was done by Bradford protein assay (Bio-Rad).

Transmission electron microscopy
Exosome preparations were loaded on Formvar/carbon-coated

grids and negatively stained with 1% uranyl acetate. Pictures were

taken on a JEM-1011 transmission electron microscope with the

Advanced Microscopy Techniques (AMT) software.

Splenocytes culture
Spleens were isolated from mice euthanized in CO2 tank. Single

cell suspensions were prepared by mincing the tissues through a

70 mm cell strainer. Erythrocytes were depleted using ACK cell

lysing buffer (Biowhittaker). Splenocytes were cultured in complete

RPMI 1640 media, in the presence of 30 U/ml recombinant

murine IL-2 (Biolegend).

ELISA
IL-10 level in culture supernatants was detected using mouse

IL-10 ELISA kit (eBioscience). IFN-c ELISA was performed using

purified anti-mouse IFN-c as capture antibody and biotinylated

anti-mouse IFN-c as detection antibody (BD Pharmingen).

Flow cytometry
For surface staining, cells were washed in staining buffer (2%

FBS, 0.4% NaN3 and 1 mM EDTA in PBS) and stained with

Ethidium monoazide (EMA) for dead cell exclusion. Cells were

then washed and incubated with purified anti-mouse CD16/32

(Fc-block, eBiosciences) for 10 min on ice, followed by incubation

with fluorochrome-conjugated antibodies for 30 min on ice. When

biotinylated antibodies were used, cells were further incubated

with secondary reagent (streptavidin-fluorochrome). For intracel-

lular cytokine staining, cells were treated with Brefeldin A for the

last 6 hrs in culture before being harvested. After surface staining,

cells were fixed and permeablized with Fix/Perm solution (BD

Biosciences) and then stained with cytokine antibodies in Perm/

Wash buffer (BD Biosciences) for 1 hr at RT or overnight at 4uC
in dark. Antibodies used for surface marker characterization

include: APC-eFluor780-B220, PacificBlue-CD19, PE-Cy7-CD25,

PE-CD40, FITC-CD86, PE-CD80, PE-Cy7-CD23, FITC-CD19,

eFluor450-IgD, PE-CD1d, PE-CD43, PE-CD8, APC-eFluor780-

CD4, FITC-CD69, APC-CD62L, eFluor450-CD44, PE-7-CD4,

APC-CD8 and Biotin-CD5 from eBiosciences, and FITC-IgM

from BD Bioscience. Antibodies used for intracellular cytokine

characterization include: FITC-CD19, FITC-B220, APC-

eFluor780-CD4, PacificBlue/eFluor450-CD8, APC-IL-10 and

APC-IFN-c from eBiosciences. Secondary reagents used include

streptavidin-APC-eFluor780 and streptavidin-APC-Cy7 from

eBiosciences. Antibodies and secondary reagent used for T cell

proliferation assays include: PE-Cy7-CD4, eFluor450-CD8, PE-

CD45.1, APC-CD62L, Biotin-CD44 and streptavidin-APC-Cy7

from eBiosciences. Flow acquisition was performed on LSRII

analyzers (BD Biosciences) and data were analyzed using the

Flowjo software (Tree star Corp.).

T cell proliferation assay
Splenic single cell suspension was prepared from C57BL/6

(CD45.2+) mice as mentioned above. For T cell depletion,

splenocytes were first incubated with biotin-anti-mouse CD3

(10 ml Ab/1006106 cells/1 ml, eBioscience) at 4uC for 15 min,

then with streptavidin MACS beads (100 ml/1006106 cells/1 ml,

Miltenyi) at 4uC for 15 min, followed by negative selection using

autoMACSTM Pro Separator (Miltenyi). To purify B cells from

total splenocytes, cells were first incubated with biotin anti-mouse

CD3, CD11c, F4/80 and PDCA-1(each at 10 ml Ab/1006106

cells/1 ml, ebioscience), then with streptavidin MACS beads,

followed by autoMACS negative selection. B cell purity was

checked by FACS and the percentages of remaining Non-B-APCs

are: CD11c+ cells ,1.3%; F4/80+ cells ,0.1%; and PDCA-1+
cells ,1%. To purify T cells from CD45.1+ B6 splenocytes, cells

were first incubated with biotin-anti-mouse CD19, B220, IgM,

CD11c, F4/80, PDCA-1, IA/IE, and CD25 (eBioscience), then

with streptavidin MACS beads, followed by autoMACS negative

selection. T cell purity was checked by FACS and the percentage

of CD4+ plus CD8+ T cells reached 90%. Purified T cells were

labeled with 2 mM of CFSE. To assess anti-CD3-stimulated T cell

proliferation, T cell-depleted splenocytes or purified B cells were

cultured in 24-well-plate at a cell density of 2.56106/1 ml media/

well, with or without treatment of 1 mg/ml B16 myco+ exosomes.

On the following day, 0.56106 of purified CD45.1+ T cells were

added to each well and the media volume was brought up to 3 ml.

10 mg/ml of purified anti-mouse CD3e (BD Pharmingen) was

added for stimulation. Cells were harvested after 3 days and the

CFSE dilution of CD45.1+ T cells were analyzed by FACS.

CFSE labeling
T cells purified from CD45.1+ splenocytes were labeled with

CFSE using CellTraceTM CFSE cell proliferation kit (Molecular

Probes, Invitrogen). Briefly, 2 mM CFSE working solution were

prepared in PBS containing DMSO (10%), and mixed well with

cell pellet at the ratio of 56106 cells/1 ml of CFSE. Cells were

incubated at 37uC for 10 min and the reaction was quenched with

complete media. Cells were then washed in warm PBS.

Western blot
Splenocytes were collected after treatment and lysed in NP-40

lysis buffer in the presence of protease inhibitor (Sigma-Aldrich)

and phosphotase inhibitor (1 mM Na2VO4). 10 mg of cell lysate

was separated on 12% SDS-PAGE and transferred onto

polyvinylidene difluoride membranes (Millipore). The membrane

was blocked and incubated with phosphor-p44/42 MAP kinase

antibody (Cell Signaling), followed by horseradish peroxidase-

conjugated anti-rabbit secondary antibody (Santa-Cruz). Protein

bands were visualized using an enhanced chemiluminescence

detection kit (PerkinElmer Life Science). To blot for total ERK

protein, the same membrane was stripped in stripping buffer

(Pierce), blocked, incubated with p44/42 MAP antibody (Cell

Signaling), and followed by anti-rabbit secondary antibody.

Densitometric quantitations were done using the ImageJ software.

Statistics
Statistical analysis was performed by Student’s t-test. A value of

P,0.05 was considered as statistically significant.

Mass spectrometry
The LC-MS/MS and database searching were performed by

the Mass Spectrometry Platform of Cancer Biomarkers Facility in

University of Pittsburgh Cancer Institute. Briefly, 10 mg of total

cell lysate was resolved by 1D-PAGE and subjected to in-gel

digestion. Tryptic peptides were extracted, lyophilized and

resuspended in 0.1% trifluoroacetic acid. Nanoflow reversed-

phase liquid chromatography (RPLC) was performed using a

Dionex Ultimate 3000 LC system (Dionex Corporation, Sunny-
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vale, CA) coupled online to a linear ion trap (LIT) mass

spectrometer (LTQ, ThermoFisher Scientific, San Jose, CA).

The LIT-MS was operated in a data dependent MS/MS mode in

which each full MS scan was followed by seven MS/MS scans

where the seven most abundant peptide molecular ions are

selected for collision-induced dissociation (CID). Tandem mass

spectra were searched against a combined UniProt mouse protein

database (03/2010) from the European Bioinformatics Institute

(http://www.ebi.ac.uk/integr8) using SEQUEST (ThermoFisher

Scientific). In addition, data were searched against two combined

UniProt mycoplasma database (M. hominis/A. laidlawii; and M.

agalactiae/arthriditis/pneumoniae/pulmonis). Results from both search-

es were further filtered using software developed in-house to

determine unique peptides and proteins.

Supporting Information

Table S1 Data show the selective search results against
two combined UniProt mycoplasma database: M. homi-
nis/A. laidlawii, and M. agalactiae/arthriditis/pneu-
moniae/pulmonis.

(DOCX)

Table S2 Data show the selective search results against
a combined UniProt mouse protein database (03/2010)
from the European Bioinformatics institute (http://www.

ebi.ac.uk/integr8).
(DOCX)

Table S3 Data show the selective search results against
a combined UniProt mouse protein database (03/2010)
from the European Bioinformatics institute (http://www.

ebi.ac.uk/integr8).
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