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Abstract

The endocrine disrupting chemical, bisphenol A (BPA), has been shown to accelerate the rate of adipogenesis and increase
the amount of triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. The objective of this study was to
investigate if that observation is mirrored in human primary cells. Here we investigated the effect of BPA on adipogenesis in
cultured human primary adult stem cells. Continuous exposure to BPA throughout the 14 days of differentiation
dramatically reduced triglyceride accumulation and suppressed gene transcription of the lipogenic enzyme, lipoprotein
lipase (LPL). Results presented in the present study show for the first time that BPA can reduce triglyceride accumulation
during adipogenesis by attenuating the expression of LPL gene transcription. Also, by employing image cytometric analysis
rather than conventional Oil red O staining techniques we show that BPA regulates triglyceride accumulation in a manner
which does not appear to effect adipogenesis per se.
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Introduction

Adipose tissue physiology and pathophysiology is at the centre

of the emerging obesity epidemic in the developed world, with

much attention now being paid to the role of adipose tissue

dysfunction in the ever increasing incidence of metabolic diseases.

A previous notion of adipose tissue as little more than storage

depots for body energy was recently challenged with the dicovery

of adiponectin [1,2,3,4], and leptin [5]. These discoveries firmly

established adipose tissue as an endocrine organ and concurrently

propelled adipogenesis to the forefront of scientific research.

The formation of adipose tissue ultimately links the processes of

adipogenesis and lipogenesis which together control both the fat-

cell number and size [6]. Induction of these processes involves an

orchestrated expression profile of several adipocyte-specific genes

namely peroxisome proliferator-activated receptor-gamma (PPAR

c), and CCAAT/enhancer binding protein-alpha (C/EBP a) [7],

coupled with the expression of key lipogenic enzymes including

lipoprotein lipase (LPL) [8]. Thus, disruption to the expression

profile of either of these processes may jepardize the ability of

adipose tissue to function correctly in regulating lipid metabolism

and maintaining energy homeostasis.

More recently, much attention has focused on the impact of

endocrine disrupting chemicals on the development of adipose

tissue and how this may contribute to the onset of metabolic

disorders such as obesity and insulin resistance. These endocrine-

disrupting chemicals (EDCs) are compounds that can mimic or

interfere with the normal actions of endocrine hormones including

estrogens, androgens, thyroid, hypothalamic and pituitary hor-

mones [9]. One such EDC, bisphenol A (BPA), is ubiquitously

prevalent in our environment, utilized in the manufacturing of

polycarbonate resins, coatings of food and beverage containers,

and more [10]. The use of BPA in products has increased

exponentially over the last 3 decades [11] which, as a result of

increased human exposure, will enevitably lead to an increase in

metabolic diseases [12].

Studies investigating the effects of BPA on adipogenesis have

largely employed 3T3-L1, a murine cell line widely used to study

adipocyte physiology. Recent evidence suggests that BPA acts as

an adipogenic agent [13], and in combination with insulin, can

accelerate the conversion of 3T3-L1 preadipocytes to the

adipocyte linage [14]. This has been interpreted that BPA

exposure can stimulate both the formation of triglyceride and

commitment of pre-adipocytes to the adipogenic linage, thereby

acting as a potential contributor to weight gain and the

development of obesity. This observation is based on the use of

two phenotypic markers for adipocytes namely triacyglycerol (TG)

accumulation in cells, and the expression of adipogenic marker

genes such as PPAR c, C/EBP a, LPL and adipocyte-specific fatty

acid binding protein (aP2). However, the effect of BPA in

adipogenesis of human cells is not clearly understood.

In this study the effects of BPA on human Adult Stem Cells

(hASCs) was evaluated. We found that, unlike in mouse 3T3-L1

cells, BPA attenuates triglyceride formation by suppressing
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differentiation-mediated induction of LPL. This may have

significant impact on our understanding of the molecular

mechanism of action of BPA in altering adipogenesis and fat

accumulation in the future.

Materials and Methods

2.1. Cell culture and differentiation
Human adult stem cells (hASCs) were obtained from Zen-Bio

(Research Triangle Park, NC, USA). hASC lots used in all

experiments were from female donors with an average age of 41

[range: 27–51] and a BMI average of 25.17 [range: 22.5–28.2].

For independent repeats within experiments repeat 1 and 2 were

performed using 2 separate single female donor lots. For the third

independent repeat for each experiment a mixed female donor lot

(12 female donors) was used. See Table 1 for further donor

information. Cells were maintained in DMEM/Ham’s F12 media

supplemented with HEPES pH 7.4, 10% FBS (Zen-Bio), 100 mg/

ml penicillin and 100 mg/ml streptomycin. For adipocyte

differentiation, cells in early passage (not exceeding 4 passage)

were seeded at 4.06105 cells/ml, a density pre-optimized for

adipogenic differentiation. After 24 hours confluent cultures (Day

0) were stimulated to differentiate with adipocyte differentiation

medium (Zen-Bio) containing optimized concentrations of iso-

butylmethylxanthine, dexamethasone, human insulin and a

PPARc agonist. After 7 days, media was changed to an adipocyte

maintenance medium (Zen-Bio) and cultured for a further 7 days.

Unless otherwise stated, all chemicals were from Sigma (MO,

USA).

2.2. Nile Red and 49,6-Diamidino-2-phenylindole (DAPI)
staining

hASCs, seeded in 96 well plates were grown to confluency and

treated with either vehicle (DMSO) as control or BPA. After 14

days, monolayer’s were washed twice with PBS and fixed for

30 min at room temperature with 10% formalin. Cells were

washed 3 times with PBS and Nile Red was added to a final

concentration of 0.5 mg/ml in PBS. After 60 min DAPI was added

to a final concentration of 0.2 mg/ml in PBS at room temperature

for 5 min. Cells were then washed 3 times with PBS. Plates were

viewed with an Olympus Corp. fluorescent microscope, and

images taken using CellR analysis software.

2.3. Image Cytometric Analysis
During image acquisition, the same field of view was imaged in

2 separate optical channels to selectively visualize nuclei and lipid

droplets. Images were merged and analyzed using Cyteseer image

cytometry software (Valascience). A lipid droplet algorithm was

employed to enable cell-by-cell analysis. Differentiation was

quantified based on 2 parameters, namely triglyceride accumula-

tion (total lipid mask per cell), and adipogenic differentiation (total

number of cells containing cytoplasmic lipid greater than

undifferentiated hASCs). Results are reported for differentiated

cells only.

2.4. Real-time quantitative PCR
Total RNA was isolated using the TRIzol reagent according to

the manufacturer’s instructions. RNA was reverse transcribed to

cDNA using the Superscript II reverse transcriptase kit (Invitro-

gen) according to manufacturer’s instructions. qPCR was

performed using the ABI-Prism7500 sequence detection system

(Applied Biosystems) and SYBR-Green ROX mix. Primer pairs

for PPARc, C/EBPa, LPL and aP2 were designed using the

Primer express software (Applied Biosystems). The mRNA levels

of these genes were normalized to those of GAPDH and unless

otherwise stated, fold changes of gene expression was calculated by

the 2-DDCt method.

2.5. MTT assay
Cell viability was determined using the mitochondrial-depen-

dent reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-

zolium bromide (MTT) to formazan. Breifly, hASCs were seeded

in 96 well plates and induced to differentiate with BPA for 14 days.

MTT assay was carried out as previously described [15]

2.6. Lentiviral Transduction
Full length LPL cDNA was amplified from a mammalian vector

(Genocopia) and subsequently subcloned into the lentiviral pCDH

vector using the GatewayH system as described previously [16].

2.7. Lipolysis Assay
hASCs were induced to differentiate as in 2.1 in the presence of

either vehicle or 80 mM BPA. On day 7 of differentiation

adipogenic media was replaced with adipocyte maintenance

media containing either vehicle or 80 mM BPA. Cells were

incubated at 37uC for a further 7 days. On day 14, media samples

were collected and analyzed for the presence of glycerol using

Glycerol Free Reagent (Sigma) according to manufacturer’s

instructions. Briefly, an equal volume of media supernatant was

mixed with the free glycerol reagent and incubated at 37uC for

5 minutes. Absorbance was measured at 540 nm. A glycerol

standard curve was generated from which glycerol concentrations

were determined.

2.8 Triglyceride Assay
hASCs were induced to differentiate as in 2.1 in the presence of

either vehicle, BPA or E2. On day 7 of differentiation adipogenic

media was replaced with adipocyte maintenance media containing

either vehicle, BPA or E2. Cells were incubated at 37uC for a

further 7 days. On day 14, samples were collected and analyzed

for the presence of triglyceride using a triglyceride assay kit (Zen-

Bio) according to manufacturer’s instructions. Briefly, on day 14 of

differentiation, adipocytes were lysed and the supernatants

containing glycerol were collected. A glycerol standard curve

Table 1. Additional Donor Information.

Experimental Repeat No. Of Donors Gender
Basal Metabolic
Index (BMI) Age Smoker Diabetic

Repeat 1 1 Female 23.29 36 No No

Repeat 2 1 Female 27.8 50 No No

Repeat 3 5 Female 25.7–28.9 37–57 No No

doi:10.1371/journal.pone.0036109.t001
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Figure 1. Continuous exposure to BPA inhibits triglyceride accumulation in differentiating hASCs. (A) hASCs were grown to confluency
(Day 0) and induced to differentiate with an optimised adipocyte differentiation medium in the presence of 80 mM BPA throughout differentiation.
On days 5, 8 and 14 cultures were fixed and subjected to flourescence microscopy. Merged images of lipid droplets (green) and nuclei (blue) were
analyzed by image cytometric software. Data generated from (A) was expressed as adipogenic differentiation (B), and triyzaglyceride accumulation
(C). Data are expressed as mean 6SD (3 independent experiments, .500 cells were analyzed for each experiment). * p,0.05, n.s. is p.0.05 (BPA vs.
vehicle). hASCs were grown to confluency (Day 0) and induced to differentiate with adipocyte differentiation media in the presence of 0.8 mM and
8 mM BPA throughout differentiation. On day 14 cultures were fixed and subject to flourescent microscopy. Merged images of lipid droplets (green)
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was generated from which triglyceride concentrations were

determined based on the equation: 1 M Triglyceride yields 1 M

glycerol+Free Fatty Acids.

2.9. Western blot
Cells were lysed in a lysis buffer (20 mM HEPES, 350 mM

NaCl, 1 mM MgCl2, 0.5 mM EDTA, 100 mM NaF, 1% Triton

X-100, 1 mM PMSF, 100 mg/ml leupeptin, 10 mg/ml aprotinin,

pH 7.4) for 20 min at 4uC and centrifuged to remove insoluble

materials. The protein concentrations in the cell lysates were

measured using a DC Protein Assay. The same amount (15 mg of

protein/lane) of proteins were denatured by boiling in Laemmli

sample buffer containing 10% 2-mercaptoethanol, separated by

SDS-PAGE, and transferred electrophoretically to a nitrocellulose

membrane. The blotted membranes were incubated with indicat-

ed primary antibodies (1:500) and horseradish peroxidase-conju-

gated secondary antibody (1:5,000). Blots were visualized with an

ELC Plus Western Blotting kit according to the manufacturer’s

instructions. A rabbit polyclonal antibody to PPAR gamma and a

mouse monoclonal antibody to LPL were obtained from Santa

Cruz Biotechnology, Inc. A rabbit polyclonal antibody to Actin

was obtained from Sigma.

2.10. Statistical Analysis
All data is expressed as means 6 standard deviation (SD) from 3

independent experiments. Statistical significance (p values of less

than 0.05) was evaluated based on the unpaired Student’s t test

(Graphpad).

Results

3.1. Exposure to BPA inhibits lipid accumulation without
affecting adipogenic differentiation

To determine the effect of BPA on adipocyte differentiation and

lipid accumulation, hASCs were treated with increasing doses of

BPA throughout the 14 days of differentiation. Adipocytes were

stained for lipid on days 0, 5, 8 and 14 of differentiation and

analyzed by image cytometric software (Fig. 1A). 80 mM BPA had

no significant effect on the percentage of cells that underwent

adipogenic differentiation, (Fig. 1B), however, 80 mM BPA did

significantly reduce the amount of lipid in each differentiated cell

throughout maturation of adipogenesis (Fig. 1C). BPA at 0.08 mM

and 8 mM however did not appear to affect either adipogenic

differentiation (Fig. 1D) or the level of triglyceride accumulation

(Fig. 1E). This effect of 80 mM BPA on lipid accumulation was not

due to a loss of cell viability, as the MTT assay showed no

significant loss of cell viability in response to BPA (Fig. 1F). To

functionally ascertain whether differentiated hASCs treated with

vehicle or BPA represented real adipocytes, a lipolysis assay was

preformed (Fig. 1G). This showed that adipocytes treated with

either vehicle or BPA throughout differentiation, secreted glycerol

into the media after 14 days. Taken together these results suggest

that (1) 80 mM BPA can attenuate the accumulation of lipid in

differentiating adipocytes, (2) 80 mM BPA does not appear to

reduce adipogenic differentiation, (3) 80 mM BPA reduces

triglyceride accumulation, which appears to be independent of

hASC commitment to the adipogenic lineage.

3.2. BPA can regulate the expression of genes involved in
lipid metabolism

To determine the molecular mechanism of action of BPA we

performed qPCR for PPAR c, C/EBP a, LPL, aP2 and FAS

throughout differentiation. The anti-lipogenic effect of BPA during

adipogenesis was accompanied by changes in the expression of

adipogenic marker genes and of genes involved in adipocyte lipid

metabolism (Fig. 2). During early differentiation (day 3), treatment

with BPA had no significant effect of the expression of PPAR c
(Fig. 2A, image i) and C/EBP a, however there was decreased

expression of C/EBP a at day 9 (Fig. 2A, image ii). Interestingly,

mRNA expression of the lipogenic enzyme, LPL, was significantly

downregulated at day 3, and remained robustly inhibited

throughout terminal differentiation (Fig. 2A, image iii). A similar

downregulation was shown for the fatty acid transport protein,

aP2. The mRNA expression level of aP2 was reduced at day 5 and

remained low during differentiation (Fig. 2A, image iv). Intrigu-

ingly, the expression of FAS, a marker of de novo lipogenesis, was

not affected by BPA (Fig. 2A, image v). These results suggest that

BPA can inhibit lipid accumulation by targeting genes involved in

lipogenesis, To better understand the kinetics of gene expression

throughout adipogenic differentiation, in response to BPA, data is

normalized to day 0 of differentiation in the case of PPARc
(Fig. 2B, image i) and C/EBPa (Fig. 2B, image ii) and FAS (Fig. 2B,

image iii). In the case of aP2 (Fig. 2B, image iv) and LPL (Fig. 2B,

image v), mRNA expression in day 0 cells was negligible and so

data was normalized to day 3 differentiating cells. This data

suggests that although adipogenic differentiation was successful,

BPA was a potent suppressor of the mRNA expression of the

lipogenic marker genes LPL, aP2 and C/EBPa.

3.3 The effect of BPA on PPARc and LPL protein
expression

To assess whether the qPCR data for PPARc and LPL in

Figure 2 was reflected at the protein level we examined the effect

of BPA on the levels of PPARc and LPL by Western blot (Fig. 3).

Treatment with 80 mM BPA did not affect PPARc protein

expression but did cause a reduction in LPL protein expression

when compared to vehicle lysates. These results suggest that BPA

can suppress the protein expression of LPL but not PPARc during

adipogenesis.

3.4. The effect of BPA on lipogenesis following initial
adipogenic induction and in sub-optimal conditions

In order to dissect the effects of BPA on the overlapping

processes of adipogenic differentiation and lipid accumulation,

hASCs were initially allowed to differentiate into adipocytes for 7

days. After the initial 7 days of adipogenic induction, differentiated

cells were then exposed to either BPA or vehicle for a further 7

days to identify any effects BPA would have on triglyceride

accumulation. BPA did not affect the amount of adipocytes

formed (Fig. 4A, image i). BPA at 80 mM did, however, cause a

reduction in the amount of triglyceride accumulated in each

adipocyte when compared with vehicle treated adipocytes (Fig. 4A,

image ii). These results help to support the hypothesis that BPA

regulates triglyceride accumulation in differentiated adipocytes.

and nuclei (blue) were analyzed by image cytometric software. Data generated from image cytometry was expressed as adipogenic differentiation
(D), and triglyceride accumulation (E). (F) hASCs were induced to differentiate in the presence of vehicle or BPA (80 mM). On day 14 of differentiation
cell viability was evaluated by MTT assay. (G) hASCs were induced to differentiate in the presence of vehicle or BPA (80 mM). On day 14 culture
supernatant were collected and assessed for the presence of glycerol. Data are expressed as means 6 SD (n = 3 independent experiments performed
in triplicate) ** is p,0.005 (treatment vs Day 0).
doi:10.1371/journal.pone.0036109.g001
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To exclude the possibility that a potential adipogenic effect of

BPA is being obscured by performing all experiments under

‘‘ideal’’ conditions for adipogenic differentiation we evaluated the

effect of BPA during differentiation under suboptimal conditions.

Firstly, when hASC cells were induced to undergo adipogenic

differentiation at subconfluent densities, 80 mM BPA did not affect

the percentage of cells that underwent adipogenic differentiation

(Fig. 4B, image i), but did significantly suppress triglyceride

accumulation by approx 70% in each differentiated cell when

compared with vehicle treated cells (Fig. 4B, image ii). To

elucidate any possible agonistic effects of BPA in hASC cultures

BPA or vehicle was added as a sole adipogenic-inducing agent.

Neither vehicle nor BPA was able to stimulate triglyceride

accumulation as assessed by the absence of the lipid sensitive

dye Nile Red on cells treated for 14 days with either compound

(Fig. 4C). This result was validated by qPCR data, which shows

that neither BPA nor vehicle was able to stimulate expression of

adipogenic or lipogenic marker genes when added to confluent

cultures for 14 days (Fig. 4D). Taken together this data suggests

that BPA is not an adipogenic agent, and when added to cells

cultured in suboptimal differentiating conditions has a similar anti-

lipogenic effect than when added to differentiating cells in pre-

optimized conditions, as seen in Figure 1.

3.5. BPA inhibits lipid accumulation by suppressing
transcription of the LPL gene

To determine the functional significance of the BPA-mediated

downregulation in LPL gene expression during differentiation we

utilized a lentiviral system, which allowed for the stable expression

of LPL throughout the 14 days of differentiation in hASCs

(Fig. 5A). Cells transduced with LPL expressing virus were induced

to differentiate and the intracellular lipid was stained as previously

described (Fig. 5B). 80 mM BPA reduced lipid accumulation by

approx 70% in pCDH control cells. In contrast, the decrease in

lipid accumulation was reduced by approx 30% in pCDH-LPL

cells (Fig. 5C), without affecting adipogenic differentiation

(Figure 5D). Similarly, exogenous addition of purified LPL could

significantly rescue triglyceride accumulation in BPA treated cells

(Figure 5E). This data suggests that BPA attenuates lipid

accumulation by downregulating LPL gene transcription.

3.6. LPL overexpression can ameliorate lipid
accumulation independent of other adipogenic marker
genes

To ascertain whether LPL overexpression was capable of

augmenting lipid accumulation in response to BPA independently

of other adipogenic marker genes we performed qPCR for PPAR

c, C/EBP a and aP2. On day 10 of adipogenic differentiation, the

expression of PPAR c, C/EBP a, and aP2 were analyzed in

pCDH control and pCDH-LPL transduced cells treated with BPA

(Fig. 6). There was no significant change in the expression of any

of the genes analyzed in pCDH-LPL compared with pCDH

control cells. These results suggest that the increase in lipid

accumulation seen in Figure 5A between pCDH and pCDH-LPL

cells treated with BPA appears to be independent of PPAR c, C/

EBP a and aP2.

Discussion

Being an endocrine disrupting agent it is conceivable that BPA

might also be involved in lipid metabolism. Indeed, reports show

that BPA can both accelerate and increase the rate of adipogenesis

[13]. However, these studies exposed the differentiating cells to

BPA selectively at different stages of differentiation. Given that

BPA can bioaccumulate in adipose tissue [17], it is plausible that

BPA may affect adipogenesis by being present in vivo from

commitment through to terminal differentiation. To best simulate

this scenario in vitro, hASCs were continuously exposed to BPA

throughout differentiation. Using image cytometric software

instead of conventional adipogenic quantification techniques we

were able to investigate how BPA was effecting the differentiation

of a precursor cell to an adipocyte. This allowed for the novel

finding that BPA did not actually influence the number of cells that

committed to differentiate (Fig. 1B). BPA did, however, signifi-

cantly inhibit the amount of triglyceride that formed in each

differentiated cell (Fig. 1C). The measurement of glycerol secretion

is often used to ascertain the function and physiological state of

adipocytes [18]. Although BPA treated cells accumulated much

less triglyceride than vehicle treated cells, a lipolysis assay provided

functional evidence that BPA treated cells were behaving like

normal mature adipocytes, whereby glycerol secretion were at

levels comparable to that of vehicle treated cells (Fig. 1G).

It was interesting to find that BPA had no effect on the mRNA

(Fig. 2A, image i) or protein (Fig. 3) expression of PPAR c
throughout differentiation, providing further evidence to suggest

that BPA may not actually affect the formation of fat cells per se,

but does inhibit the formation and/or accumulation of fat. This

hypothesis is supported by the downregulation of C/EBP a, a

transcription factor important in the regulation of several genes

involved in lipid metabolism [19]. Two enzymes that provide non-

Figure 2. BPA differentially regulates the mRNA expression of adipogenic marker genes during adipogenesis. hASCs were induced to
differentiate with an optimised adipocyte differentiation medium in the presence of 80 mM BPA or vehicle. qRT-PCR was performed on days 3, 5, 9, 11
and 14 of differentiating cells treated with vehicle or BPA using specific primer pairs for PPAR c (Ai), C/EBP a (Aii), LPL (Aiii), aP2 (Aiv) and FAS (Av). The
relative qRT-PCR values were corrected to GAPDH expression levels and normalized with respect to vehicle controls on each day. Values are mean 6
S.D. of three independent experiments. *p,0.05, ** p,0.001, *** P,0.0001 as compared with vehicle control for each day. (B) To show the kinetics in
gene expression throughout adipogenesis one representative experiment from A is corrected to GAPDH expression levels and normalized to non-
induced day 0 cells for PPAR c (Bi) and C/EBP a (Bii) and FAS (Bv). Expression of LPL and aP2 was negligible in day 0 cells and so data was normalised
to day 3 vehicle treated cells for LPL (Biii) and aP2 (Biv).
doi:10.1371/journal.pone.0036109.g002

Figure 3. BPA reduces LPL but not PPAR c protein expression.
hASCs from the mixed female donor lot were induced to differentiate
with an optimised adipocyte differentiation medium in the presence of
80 mM BPA or vehicle. On day 11 of differentiation proteins (10 mg of
protein/lane) in the cell lysates were separated by SDS-PAGE. Expression
of PPAR c, LPL and Actin was analyzed by Western blot. Data are
representative of two experiments.
doi:10.1371/journal.pone.0036109.g003
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esterified fatty acid substrate for triglyceride synthesis are FAS and

LPL. FAS plays a central role in regulating de novo lipogenesis by

converting acetyl-CoA and malonyl-CoA into the final end

product, palmitate, which can subsequently be esterified into

triacylglycerols and then stored in adipose tissue [20,21].

Interestingly, the mRNA expression of FAS was not affected by

BPA (Fig. 2A, image v), which may perhaps suggest a minimal role

of de novo lipogenesis in this cell model. LPL is also expressed at

high levels in adipose tissue and hydrolyzes triglyceride-rich

lipoproteins at the capillary endothelium to generate NEFA for

uptake in peripheral tissues [22]. Novel data provided in this study

can help support a hypothesis that BPA can regulate triglyceride

accumulation by robustly suppressing LPL mRNA (Fig. 2A, image

iii) and protein (Fig. 3) throughout differentiation. When looking at

the kinetics of gene expression, in particular PPARc (Fig. 2B,

image i), in response to BPA and vehicle it is obvious that

induction of adipogenesis was successful which helps support the

hypothesis that BPA, by suppressing lipogenic gene expression can

regulate triglyceride accumulation.

hASCs can differentiate into adipocytes following 3 days post

adipogenic induction and express genes which characterize a

differentiated adipocyte [23]. Lipid begins to be expressed within

an adipocyte from about day 7 onwards [24]. Here we show that

BPA can reduce triglyceride accumulation when added to an

already differentiated adipocyte (Fig. 4A, image ii) suggesting a

role of BPA in regulating triglyceride accumulation independently

of the adipogenic process per se. To eliminate the possibility that

any real effect of BPA on adipogenic differentiation is being

masked by performing all experiments under optimal conditions

we tested whether BPA can stimulate adipogenesis and triglyceride

accumulation when added to differentiating cells seeded at lower

than optimal densities. Given the anti-proliferative effects of BPA

in 3T3-L1 cells [25] it is possible that a substantial initial loss of

cells by BPA treatment would be replaced during the 14 days of

differentiation thus allowing for a misinterpretation of results.

Here, however, we show that BPA can also suppress triglyceride

accumulation in sub-confluent differentiating cultures (Fig. 4B,

image ii). Furthermore, we confirm that BPA alone does not act as

an adipogenic agent (Fig. 3C), nor does it stimulate adipogenic

marker gene expression (Fig. 3D).

The generation of fatty acids from dietary sources and their

uptake by cells are essential processes for efficient energy

metabolism and storage with a vital role for LPL in these

processes being confirmed from LPL gene ablation studies in mice.

These studies resulted in a lethal phenotype [26]. Similarly, using

an in vitro model system, a reduction in LPL expression by $50%

during the course of adipocyte differentiation resulted in a parallel

decrease in lipid storage of ,80%, which was completely reversed

by the exogenous addition of purified LPL [27]. This study serves

to highlight the necessity of LPL expression by adipocytes for

intracellular lipid accumulation in vitro. Here we have shown for

the first time that BPA inhibits lipid accumulation in hASC

adipocytes by approx 70%, at least in part by suppressing LPL

gene transcription during adipogenesis. Overexpression of LPL

reduced this inhibition of triglyceride in adipocytes to only 30%

(Figure 5D). Transduction efficiencies for LPL transduced cells

reached approx 65% (not shown), which may explain why a 100%

rescue in triglyceride accumulation was not achieved. Interesting-

ly, LPL overexpression did not cause any significant change in the

expression profile of C/EBP a, PPAR c and aP2 gene expression

during differentiation when treated with BPA, suggesting that LPL

is capable of increasing the rate of triglyceride accumulation

during adipogenesis independently of C/EBP a, PPAR c and aP2

(Figure 6). Given the forced expression of LPL and that there was

no significant difference in triglyceride levels between pCDH and

pCDH/LPL cells treated with vehicle (Fig. 5C) it is possible that

pCDH/LPL control cells are undergoing lipolysis in an attempt to

regulate intracellular triglyceride levels. This is supported given C/

EBPa ability to activate triacylglycerol hydrolase, a lipase that

catalyses the lipolysis of intracellular stored triacylglycerol [28]. To

further support the association of decreased triglyceride accumu-

lation with a downregulation of LPL transcription, exogenous

addition of LPL to the media of BPA treated cells could

significantly augment triglyceride accumulation (Figure 5D).

Although the effect of BPA on triglyceride accumulation

described herein do not correlate with results published using

the 3T3-L1 cell line [13] it is important to consider differences in

the cell models used between studies. hASCs provide a more

physiological significant model to better represent an in vivo

scenario. Unlike cell lines such as 3T3-L1 fibroblasts, hASCs are

multipotent stem cells that have not committed to the adipogenic

lineage [29]. As such hASCs include this additional commitment

step, which may provide another point of target of BPA that is

absent in the 3T3-L1 cell line. Stimulation by BPA at this early

commitment stage of adipogenesis and subsequent stimulation

during terminal differentiation may account for the differences

between results found herein and those published using the 3T3-

L1 cell line. Furthermore, the differentiation protocols between

3T3-L1 cells and hASCs differ significantly. Given the high

efficiency of 3T3-L1 to differentiate, a 2 day induction period

followed by insulin treatment is sufficient for successful adipogenic

differentiation. In contrast to this is the protocol employed herein

whereby confluent cultures are initially induced to differentiate for

7 days, followed by a maturation phase of 7 days. This difference

in protocol extends the exposure time of BPA during a stage of

adipogenic differentiation whereby critical genetic and morpho-

logical changes are occurring within the differentiating cell. This

provides another explanation for the inconsistencies in results

between cell models used in this study and previously published

results. Given that BPA can mimic the effects of estrogen, it was of

Figure 4. BPA suppresses triglyceride accumulation in pre-differentiated adipocytes and in suboptimal differentiation conditions.
(A) hASCs were grown to confluency (Day 0) and induced to differentiate with an optimised adipocyte differentiation medium in the presence of
vehicle or BPA throughout differentiation. On day 14 cultures were fixed and subjected to flourescence microscopy. Merged images of lipid droplets
and nuclei were analyzed by image cytometric software. Data generated from the merged image analysis was expressed as adipogenic differentiation
(Ai), and triglyceride accumulation (Aii). Data are expressed as mean 6SD (3 independent experiments, .500 cells were analyzed for each
experiment). ** p,0.005 (BPA vs. vehicle). (B) Cells were seeded at 5.06103 cells/ml, 1.06104 cells/ml or 2.06104 cells/ml. 24 hrs later cells were
induced to differentiate with an optimised adipocyte differentiation media in the presence 80 mM BPA or vehicle throughout differentiation. On day
14, cultures were fixed and subject to flourescent microscopy. Merged images of lipid droplets (green) and nuclei (blue) were analyzed by image
cytometric software. Data generated from image cytometry was expressed as adipogenic differentiation (Bi), and triglyceride accumulation (Bii), as
described in methods. Values are mean 6 S.D. of three independent experiments. *** P,0.0001 as compared with vehicle control for each day. (C)
hASCs were grown to confluency and treated with either 80 mM BPA or vehicle alone for 14 days. Following 14 days cells were stained for lipid
droplets (green) and nuclei (blue). (D) hASCs were grown to confluency and treated with either 80 mM BPA or vehicle alone. After 9 days expression of
PPARc, C/EBPa, LPL and aP2 was quantified by qPCR. Data was corrected to GAPDH expression levels and normalized with respect to day0 controls.
doi:10.1371/journal.pone.0036109.g004
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Figure 5. LPL overexpression or exogenous addition significantly attenuates triglyceride accumulation during adipogenesis in
response to BPA treatment. (A) Expression of LPL in pCDH or pCDH/LPL transduced cells was quantified by qPCR on day 0 and day 14 of
adipogenic differentiation in vehicle treated cells. The relative qPCR values were corrected to GAPDH expression levels and normalized with respect
to pCDH controls on each day. Values are mean 6 S.D. of three independent experiments. *** P,0.0001 as compared with pCDH control for each
day. (B) Cells were grown to confluency (Day 0) and induced to differentiate with adipocyte differentiation media in the presence 80 mM BPA or
vehicle throughout differentiation. On day 14, cultures were fixed and subject to flourescent microscopy. Merged images of lipid droplets (green) and
nuclei (blue) were analyzed by image cytometric software. Data generated from (B) was expressed as adipogenic differentiation (C), and triglyceride
accumulation (D), as described in methods. (E) LPL (10 Units/ml) was added directly to the media of differentiating cells treated with vehicle or 80 mM
BPA throughout differentiation. On day 14, cultures were fixed and subject to fluorescent microscopy. Merged images of lipid droplets and nuclei
were analyzed by image cytometric software. Data generated was expressed as triglyceride accumulation. Data are expressed as means 6 SD (n = 3
independent experiments, .500 cells were analyzed for each experiment. * p,0.05, *** p,0.0001, n.s is p.0.05 (BPA vs. vehicle).
doi:10.1371/journal.pone.0036109.g005
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interest to identify any adipogenic/lipogenic effects estrogen might

have on the cell model used in this study. Preliminary data show

that estradiol (E2), the natural form of estrogen in humans, caused

a significant reduction in triglyceride accumulation at concentra-

tions of 8 mM and 80 mM (Fig. S1A). Paradoxically, all concen-

trations of E2 as low as 0.08 mM caused a reduction in aP2 and

LPL mRNA expression with only 80 mM E2 reducing PPAR c
and C/EBPa expression (Fig. S1B). Work is ongoing in our lab to

identify in more detail the effects of BPA and E2 on adipogenesis

and identify similarities between the two compounds during this

process.

The concentration of 80 mM BPA used in the study is within the

realm of human exposure. Microgram amounts of BPA are

liberated from baby bottles when subject to boiling [30]. Similar

high concentrations of BPA are found in the liquid of preserved

food in cans [10]. But perhaps the most convincing is the high

level of BPA detected in a patient after receiving a fissure sealant.

One hour after receiving a bis-GMA-based sealant, BPA in excess

of 900 mg was detected in 1 ml of saliva [31].

In summary, our studies demonstrates that BPA negatively

regulates components of the lipogenic pathway necessary for lipid

accumulation, and that this effect on adiposity is due to changes in

the amount of fat and not the amount of fat cells. The inability of

an adipocyte to store excess triglyceride can impair normal plasma

lipid profiles. Possible clinical implications of our findings could be

an increase in small adipocytes that are known to be more insulin

sensitive than larger adipocytes [32]. This impaired ability to

differentiate normally may seem to prevent obesity, however it is

more conceivable that any impairment in normal adipocyte

differentiation may play a role in the development of type 2

diabetes [33], possibly by promoting the storage of excess

circulating lipids in other organs such as the liver or pancreas

[34]. The novel findings presented herein will contribute to better

understanding of the possible in vivo actions of BPA at the

molecular level.

Supporting Information

Figure S1 E2 does reduce triglyceride accumulation and
regulates the mRNA expression of adipogenic marker
genes during adipogenesis. (A) hASCs were grown to

confluency (Day 0) and induced to differentiate with an optimised

adipocyte differentiation medium in the presence of vehicle, BPA

or E2 throughout differentiation. On day 14 of differentiation cells

were lysed and a triglyceride assay was preformed. Data are

expressed as mean 6SD. * p,0.05, ** p,0.005 (BPA/E2 vs.

vehicle). (B) hASCs were induced to differentiate with an optimised

adipocyte differentiation medium in the presence of E2 or vehicle.

qRT-PCR was performed on day 11 of differentiation using

specific primer pairs for PPAR c, C/EBP a, LPL and aP2. The

relative qRT-PCR values were corrected to GAPDH expression

levels and normalized with respect to vehicle controls on each day.

Values are mean 6 S.D. of three independent experiments. **

p,0.001, *** P,0.0001 as compared with vehicle control for each

day.
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