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Abstract

Background: The human lymphocyte antigen (HLA) encoded BAT3/BAG6 recently attracted interest as a regulator of
protein targeting and degradation, a function that could be exerted in the cytosol and in the nucleus. The BAT3 gene was
described to consist of 25 exons. Diversity of transcripts can be generated by alternative RNA splicing, which may control
subcellular distribution of BAT3.

Methodology/Principal Findings: By cDNA sequencing we identified a novel alternatively spliced sequence of the BAT3
gene located between exons 11 and 12, which was designated as exon 11B. Using PCR and colony hybridization we
identified six cDNA variants, which were produced by RNA splicing of BAT3 exons 5, 11B and 24. In four examined cell types
the content of BAT3 splice variants was examined. Most of the cDNA clones from monocyte-derived dendritic cells contain
exon 11B, whereas this sequence was almost absent in the B lymphoma Raji. Exon 5 was detected in most and exon 24 in
approximately half of the cDNA clones. The subcellular distribution of endogenous BAT3 largely correlates with a cell type
specific splicing pattern. In cells transfected with BAT3 variants, full-length and D24 BAT3 displayed nearly exclusive nuclear
staining, whereas variants deleted of exon 11B showed substantial cytosolic expression. We show here that BAT3 is mainly
expressed in the cytosol of Raji cells, while other cell types displayed both cytosolic and nuclear staining. Export of BAT3
from the nucleus to the cytosol is inhibited by treatment with leptomycin B, indicating that the Crm1 pathway is involved.
Nuclear expression of BAT3 containing exon 11B suggests that this sequence plays a role for nuclear retention of the
protein.

Conclusions/Significance: Cell type-specific subcellular expression of BAT3 suggests distinct functions in the cytosol and in
the nucleus. Differential expression of BAT3 variants may reconcile the multiple roles described for BAT3.
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Introduction

The Human Lymphocyte Antigen (HLA) locus on chromosome

6 is subdivided into a class I, II and III region. While the class I

and II regions contain genes encoding HLA peptide receptors, the

densely gene packed class III region is strongly associated with

inflammatory immune responses, autoimmune diseases and other

non-immune functions [1,2]. A group of genes within the class III

region is located adjacent to the HLA-B locus and these genes are

designated as B-associated transcripts (BAT) [3]. The BAT genes

are numbered from BAT1 to BAT9. The BAT3 locus recently

gained substantial interest. A first functional characterization

revealed that the Xenopus ortholog of BAT3 (Scythe) is a regulator

of Drosophila melanogaster protein Reaper-induced apoptosis [4].

Binding of Scythe to Reaper is followed by release of cytochrome c

from mitochondria [5]. Reaper has no vertebrate homolog.

However, the Reaper-response pathway appears to be conserved

in vertebrates. Inactivation of the BAT3 ortholog in mice is

associated with pronounced developmental defects in the lung,

kidney, and brain, which were ascribed to dysregulation of

apoptosis and cellular proliferation [6].

The BAT3 protein is rich in proline residues and shows

repeated domain structures with sequence homologies to domains

of other proteins. The presence of a BAG domain at the C-

terminus and an ubiquitin-like domain at the N-terminus of BAT3

suggests that BAT3 (BAG6) plays a role in protein folding and

proteasomal degradation [3,7]. Interaction of Xenopus-derived

BAT3 (Scythe) with a subunit of the proteasomal complex [8] and
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with the Xenopus elongation factor a1 (XEFIAO) indicates a role of

BAT3 for degradation of cytosolic proteins [9]. Scythe is required

for degradation of XEFIAO, which if accumulated in oocytes

induces apoptosis. Further studies demonstrated that BAT3 binds

to the acetyltransferase p300 and controls DNA damage-induced

acetylation of p53 [10]. In addition, BAT3 stabilises the apoptosis-

inducing factor (AIF), which relocates upon induction of apoptosis

from the mitochondrial intermembrane space to the nucleus [11].

In several recent reports BAT3 was shown to regulate cytosolic

protein targeting and proteasomal degradation [12,13,14,15].

Adding to the diverse roles of BAT3, the protein was identified

as a ligand of the cell surface NKp30 receptor, an activating

member of the NK receptor family [16]. Impact on the cytolytic

activity of NK cells had been demonstrated previously for another

member of the BAG family, BAG4. Stimulation of NK cell activity

was detected in conjunction of Hsp70 and BAG4. These molecules

were found attached to exosomes and thereby released to the

extracellular fluid [17].

BAG family members are detected in both, the nucleus and the

cytoplasm [7]. Identification of a nuclear localization signal (NLS)

in the BAT3 sequence was in agreement with detection of the

polypeptide in the nucleus [18]. In order to explain intracellular

shuttling of BAT3 between the nucleus and the cytosol, an N-

terminal nuclear export signal was suggested [11]. At present it is

not clear on what level the subcellular localization of BAT3 is

regulated.

Differential pre-mRNA splicing may contribute to expanding

protein diversity [19]. It is conceivable that some of the diverse

roles of BAT3 could be explained by BAT3 isoforms which are

generated by differentially spliced RNA. The BAT3 mRNA of the

human gene was described to be about 3.7 kb in length and

transcribed from 25 exons, of which 24 are translated [3]. The

intron-exon organisation of the BAT3 gene is conserved in

mammalian species [20]. Evaluation of cDNA database sequences

suggests that several splice products of the human BAT3 transcript

exist, but the presence of BAT3 splice variants is rarely considered

and their cellular expression has not been studied yet.

We inspected the diversity of BAT3 by identifying naturally

occurring splice products. By sequencing BAT3 cDNAs we

discovered a novel alternatively spliced BAT3 exon, located

between exon 11 and 12, which we designated as exon 11B. By

examining 100 BAT3 cDNA clones, we isolated six BAT3 variants

with variable content of exon 5, 11B and 24 derived sequences.

The BAT3 isoforms showed a cell type-specific expression pattern

and a different subcellular distribution. The translocation of BAT3

from the nucleus to the cytosol is blocked by treatment of cells with

leptomycin B, indicating Crm1-dependent nuclear export. Tissue-

specific expression of BAT3 splice variants and their variable

subcellular expression could be involved in the multifunctional

properties reported for BAT3.

Materials and Methods

Ethics statement
Primary monocyte-derived DCs (moDC) were a kind gift from

Dr. S. Koch, Dermatology Department, Bonn, Germany [21]. All

work with human primary cells was performed in adherence to the

Helsinki guidelines. The regional board of the district (cologne)

approved the generation of blood samples at the local blood bank,

Institute of Experimental Hematology and Transfusion Medicine,

University Hospital of Bonn (approval number: 24.30.12/02/Uni

Bonn-001). In accordance with the agreement of Dr. S. Koch and

the Institute of Experimental Hematology and Transfusion

Medicine, moDCs were generated from human monocytes

isolated from buffy coat preparations obtained anonymously from

the local blood bank. Buffy coats are a by-product from

erythrocyte concentrates which can be used for scientific purposes

without approval of the ethics committee.

Cell lines and antibodies
The human melanoma cell line MelJuSo and the T lymphoma

cell line CEMC7 were obtained from Dr. G. Moldenhauer

(Deutsches Krebsforschungszentrum, Heidelberg, Germany)

[22,23]. The adenocarcinoma line HeLa (ATCC: CCL-2), the

monkey kidney cell line COS-7 (ATCC: CRL-1651) and the B

lymphoma cell line Raji (ATCC: CCL-86) were purchased from

the ATCC Cell Biology Collection, LGC Standards (Wesel,

Germany). MelJuSo, HeLa and COS-7 were grown in Dulbecco’s

modified Eagle medium (DMEM) containing 10% fetal calf serum

and 1% antibiotics, sodium pyruvate and HEPES (PAA, Pasching,

Austria). The B lymphoma cell line Raji was cultured in RPMI

and dendritic cells were grown in VLE-RPMI supplemented with

antibiotics and glutamine (Biochrom AG, Berlin, Germany). V5

tag-specific monoclonal antibody was purchased from Invitrogen

(Karlsruhe, Germany), GADPH-specific antibody from Calbio-

chem (Darmstadt, Germany) and histone H3-specific antibody

from Santa Cruz (Heidelberg, Germany). HLA-DR was detected

with ISCR3 mAb [24]. The BAT3-specific rabbit antiserum was

generated by Pineda (Berlin, Germany) using the C-terminal

peptide RKVKPQPPLSDAYLSGMPAK [6] coupled to KLH as

antigen. In parallel, a pre-immune serum was applied to monitor

non-specific staining.

Generation of BAT3 cDNAs
BAT3 cDNAs were generated by RT-PCR (ThermoScriptTM

System, Invitrogen) with poly-A-mRNA from different cell types as

templates and oligonucleotide 59-AGGATCATCAGCAAAGGC-

39 as primer. BAT3 was amplified using the Expand Long

Template PCR System (Roche, Penzberg, Germany) with 59-

GCTAGCATGGAGCCTAATGATAGTA-39 as forward primer

and 59-AGGATCATCAGCAAAGGC-39 as reverse primer. The

obtained PCR fragments (exons 2–25) were cloned into

pcDNA3.1/V5-HisTOPO vector (Invitrogen, Karlsruhe, Ger-

many). BAT3 cDNA clones were tested by restriction analysis

using NheI and XbaI. Preselected DNA constructs were examined

by sequencing (GENterprise, Mainz, Germany).

Characterization of BAT3 cDNAs by PCR
To analyze the expression pattern of BAT3 splice variants in

different cell types, we determined the presence or absence of

alternatively spliced exon sequences based on the size of the

obtained PCR fragments (Figure 1B). The presence of exons 5 and

6 was inspected with oligonucleotides 59- GGAACCTT-

CAATCTTCCT -39 (d.f.) as forward and 59- GTTGGGTG-

CATTTGTTTC -39 (d.r.) as reverse primers. Amplification of

exon 9 was conducted with the oligonucleotides 59-

CATCCTTCCCCTGCG-39 (b.f.) as forward and 59-

TTGAATGTTCATGTGCATCAT-39 (b.r.) as reverse primers.

For exons 11 and 11B we used 59- GATTCTGGCACACAG-39

(a.f.) as forward and 59-CCACAAGGACTGGCTG-39 (a.r.) as

reverse primers. Exons 17 to 24 were analyzed by 59-

GGATTCTTTGGGGCC-39 (c.f.) as forward and 59- AGGAT-

CATCAGCAAAGGC-39 (c.r.) as reverse primers. PCR products

were subsequently separated by agarose gel electrophoresis

(Figure 1C). To identify the products containing exon 5 or the

deleted sequence, a control product without exon 5 was loaded for

size comparison adjacent to the examined clone onto the agarose

gel. The presence of alternatively spliced exons near the N- and C-

BAT3 Isoforms Impact on Subcellular Expression
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termini of BAT3 was additionally confirmed by DNA sequencing

(GENterprise, Mainz, Germany).

Colony hybridization assay
To identify BAT3 splice variants present in MelJuSo cells, we

employed a colony hybridization assay to analyze 100 BAT3

cDNA clones with exon-specific 32P-labelled DNA probes. To test

for the presence of certain exons, transformed bacteria were

inoculated on agar plates, transferred to membranes by replica

plating and probed with 32P-labelled DNA probes. Exon-specific

probes were generated using the Megaprime DNA Labelling Kit

(Amersham, Freiburg, Germany). The BAT3 templates were

amplified by PCR with the following oligonucleotides: 59-

CTTCCTAGTGACGGC-39 and 59-CTCACTCTGAATCGG-

39 for exon 5, 59- AGT GAGCCCCGGGTA-39 and 59- CTC-

CATCCGGGATAG-39 for exon 6, 59- CATCCT TCCC-

CTGCG-39 and 59- TTGAATGTTCATGTGCATCAT-39 for

exon 9, 59- GATTCTGGCACACAG-39 and 59-CCAGGGT-

TTGGCCAT-39 for exon 11, 59- GCT CCACCCTCATC-

CAGC-39 and 59- CTGCGGCCGCGGAGG-39 for exon 11B,

59- ATC CGGATGGCAACC-39 and 59- AAAACTCTCCCG-

CACATACTC-39 for exon 17, 59- CGTCGTATGTCTCGTG-

39 and 59- CTGGGGGGGATCCC-39 for exon 20, 59- CCC

CAGCCACTTCCT-39 and 59- CTCCCGCTGAGGCTC-39 for

exon 21, 59- CGGGAG AATGCTTCC-39 and 59- TGGG-

GGGACTGCAGC-39 for exon 22, 59- GAATGGGTC CCTAT-

TATC-39 and 59- CTTGCGTCTCTTCGC-39 for exon 23, 59-

ATGCCTGCCAAGAGA-39 and 59- GTATATCAGACCG-

GAG-39 for exon 24. Prior to hybridization of 32P-labelled exon-

specific DNA probes with cDNA from transformed bacteria, the

replica membranes were blocked with 5 ml UltrahybH hybridiza-

tion solution (Ambion, Austin, USA) at 42uC for 1 h. Subse-

quently, the 32P-labelled DNA probes were added to the

hybridization solution and incubated over night at 42uC. After

hybridization, membranes were washed with 26SSC/ 0.1% SDS

up to 0.26 SSC/ 0.1% SDS, shrink-wrapped and exposed to X-

ray films at 280uC.

Real-time PCR analysis
To quantify the expression of BAT3 exons, real-time PCR was

conducted as previously described [25]. For selective amplification

of products either devoid of or containing the respective exons, the

Figure 1. Detection of exon sequences in BAT3 cDNA clones by PCR. A. Exon-intron-structure of the BAT3 gene. Exon sequences are
indicated as arrows. The start codon for translation in exon 2 is indicated. Potentially spliced exons are numbered. Exon 1 and 7 exist in different
fragment lengths, 247 bp or 271 bp for exon 1 (NCBI) and 236, 254 or 278 bp for exon 7 (NCBI, ENSEMBL). Exons highlighted in grey could be deleted
without changing the reading frame. The novel exon 11B with a length of 108 bp is labeled by arrow. Exon 11B also can be deleted without a change
of the reading frame of the adjacent exon sequences. B. Schematic presentation of BAT3 cDNA. Exon boundaries are indicated and protein-encoding
exons are numbered from 2 to 25. Potentially spliced exons are highlighted in grey. The position of complementary primer pairs (a to d) for forward
(f) and reverse (r) PCR are indicated by arrows. C. Primers indicated in B were used to characterize BAT3 cDNA clones. Digestion of two BAT3 cDNAs is
shown for example. Lane M contains size standards with bp indicated on the left. Lanes a: PCR products of clones 1 and 2 exhibit a band of 280 bp
(no exon 11B) or of 380 bp (with exon 11B). Lanes b: Both clones generate a PCR product of 660 bp, indicating the presence of exon 9. Lanes c: The
sizes of PCR fragments from clone 1 and clone 2 are 800 bp or 950 bp, respectively. This size is consistent with the presence or absence of exon 24.
Lanes d: The presence of exon 5 is verified in clones 1 and 2 by a PCR product of 400 bp.
doi:10.1371/journal.pone.0035972.g001
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following primer pairs were used at an annealing temperature of

60uC: 59-GACCGGAATGCCAACAGCTAT-39 and 59-GCCT-

GTTCCATGTTGATGTGAAC-39 for exon 5, 59-TCCTCAGA-

CTCACCTCCCTTCT-39 and 59-GGCTCACTAGGAAGAT-

TGAAGGTT-39 for deleted exon 5, 59-GCTCCACCCTCATC-

CAGCTG-39 and 59-CCACCATGGCCTGATGAGTG-39 for

exon 11B, 59-AAACCCTGGGACAGCAGGTG-39 and 59-CG-

AGCCTGTGGAGGAGTGG-39 for deleted exon 11B, 59-

TGCTTCTCTCAGAGGCTGTGAG-39 and 59-TGCCTGTA-

GCTCTCCTGAACC-39 for exon 24, 59-GACGCAAGCTC-

CGGTCTGATAT-39 and 59-AAGGATCATCAGCAAAGGC-

CC-39 for deleted exon 24.

Transient transfection and western blotting
COS-7 and HeLa cells were grown to 60–70% confluence and

transfected using jetPEI (Biomol, Hamburg, Germany) in 6-well

plates according to the instructions of the distributor. The DNA

mixtures contained 2 mg of the BAT3 cDNAs. Cells were

harvested 48 h after transfection and used for western blot

analysis or for immunofluorescence microscopy [25].

Immunofluorescence microscopy
For immunofluorescence microscopy cells were grown on

coverslips. Cells were fixed with methanol (220uC) for at least

5 min, washed twice with phosphate-buffered saline (PBS) and

blocked using Roti-ImmunoBlock (Roth, Karlsruhe, Germany).

Coverslips were incubated for 1 h at room temperature with

indicated antibodies. After washing with PBS, incubation was

continued for 1 h at room temperature with AlexaFluorDye-

coupled secondary antibodies (Molecular Probes, Eugene, OR,

USA). Coverslips were washed with PBS and mounted onto slides

using PermaFluor (IMMUNOTECH, Marseille, France). Cellular

staining was visualized by confocal or standard immunofluores-

cence microscopy (LSM-510 META or Axiophot; Zeiss, Oberko-

chen, Germany). Quantitative evaluation of immunofluorescence

images was conducted with ImageJ (U.S. National Institutes of

Health, Bethesda, MD, USA).

Separation of nuclei and cytosol
The separation of cell nuclei and cytosol was carried out

following a modified protocol of Gaynor et al. [26]. 26107 cells

were harvested by centrifugation for 5 min at 3006 g and

subsequently suspended in 1 ml lysis buffer (10 mM Tris, pH 7.5,

0.25 M sucrose, 1 mM EDTA, 5 mg/ml aprotinin and 5 mg/ml

leupeptin). The cell suspension was incubated for 30 min on ice

and then transferred to a pre-chilled dounce homogenizer. Cells

were disrupted by 25 strokes with a tight-fitting pestle. Subse-

quently, nuclei were pelleted for 5 min at 8006 g at 4uC (p800).

Supernatants were collected and cytosolic proteins were precip-

itated with ethanolabs. at 4uC by centrifugation at 130006 g for

30 min. Cell nuclei (p800) and cytosolic precipitates were

resuspended in lysis buffer and subsequently subjected to SDS

gel electrophoresis and western blotting.

Leptomycin B treatment of cells
To investigate nuclear export of BAT3 proteins, cells were

transfected with DNA constructs for 24 h, or cells remained

untransfected. Subsequently cells were incubated with 10 ng

leptomycin B (Axxora, Lörrach, Germany) per ml of culture

medium for 2 h at 37uC. Cells were then fixed with methanol and

stained for immunofluorescence microscopy.

Results

Alternative RNA splicing results in expression of several
variant BAT3 transcripts

Database evaluation of cDNA clones and expressed sequence

tags (EST) suggested that several splicing events could occur in the

coding region of the human BAT3 transcript (Fig. 1A) [27]. Our

aim was to identify naturally occurring BAT3 species. By

sequencing BAT3 cDNAs we found a not yet described coding

sequence between exons 11 and 12, which was designated as exon

11B (Fig. 1A, Fig. S1). This exon sequence was found in PALSdb

(putative alternative splicing) but strikingly not in the NCBI

RefSeq databases [28]. According to this finding we suggest that in

contrast to previous reports the BAT3 gene is composed of 25

coding and one non-coding exon (exon 1). Evaluation of the BAT3

gene sequence revealed that 11 of the 25 protein coding exons

(grey), including exon 11B (black), could be deleted from the

primary transcript while maintaining the reading frame (Fig. 1A).

In cDNA databases it was also described that exon 1 and 7 can be

alternatively spliced resulting in a different length of 271 bp or

247 bp for exon 1 and of 236 bp, 254 bp or 278 bp for exon 7.

By reverse transcription of melanoma cell line MelJuSo mRNA

with a BAT3-specific primer we generated a cDNA pool as a

source to screen for naturally occurring BAT3 splice variants.

Since differential splicing of more than one exon could take place

within one transcript, we amplified BAT3 cDNAs using a forward

primer starting in exon 2 adjacent to the ATG and a reverse

primer at the end of exon 25 (compare MATERIALS AND

METHODS). The obtained BAT3 cDNAs were cloned into

pcDNA 3.1-V5-His-TOPO vector containing a C-terminal V5

tag. We selected 100 clones with a BAT3 insert of approximately

3.7 kb. To screen for the presence of the potentially spliced BAT3

exons 5, 6, 9, 11, 11B, 17, 20, 21, 22, 23 and 24 (compare Fig. 1A),

we generated 32P-labelled DNA probes specific for the respective

exons. Detection of exons was conducted by colony hybridisation.

To confirm the presence or absence of BAT3 exons in the isolated

cDNAs, the colony hybridisation assay was complemented by

PCR with exon-flanking primer combinations (Fig. 1B and C,

compare MATERIALS and METHODS). The screening result of

100 BAT3 cDNA clones is summarised in Table 1. Out of the

eleven examined BAT3 exon sequences we found exclusion of

exons 5, 11B and 24. Deletion of exon 24 was recently described in

cDNA databases (NCBI). The sequences of exons 6, 9, 11, 17, 20,

21, 22 and 23 were present in all of the 100 examined BAT3

cDNA clones. As a consequence of multiple splicing events, five

BAT3 variants were detected in addition to BAT3 containing all

exons (full-length BAT3), yielding altogether 6 variant BAT3

species. Deletion of exon 5 is a rare event and was found in only

one of the inspected cDNA clones from MelJuSo cells. Single exon

sequences 11B or 24 were absent in 23 or 22 of 100 cDNA clones.

Two splicing events were observed in D5,11B (2 clones) and in

D11B,24 (19 clones) variants. Thirty three clones contained all

coding exon sequences (full-length). The product of frequencies of

exon 11B (totally 44%) and of exon 24 (totally 41%) deletion yields

a probability for the abundance of the double splicing event of

about 18% (0.4460.41), which is consistent with the number of

19/100 isolated D11B,24 BAT3 cDNA clones. One interpretation

of this result is that there is no cooperative effect between splicing

of exons 11B and 24 in the BAT3 transcript.

This study with a sample of 100 BAT3 cDNA clones does not

exhaustively uncover the splice diversity of the BAT3 gene but

provides insight into naturally occurring BAT3 variants. To assess

the splicing of BAT3 exons 5, 11B and 24 by a second method, we

employed real-time PCR analysis. RNA was isolated from

BAT3 Isoforms Impact on Subcellular Expression

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e35972



MelJuSo cells and reversely transcribed to the corresponding

BAT3 cDNA. BAT3 exons 5, 11B and 24 were analyzed by

monitoring splicing of sequences with primers hybridising

respective exon boundaries (deleted) or within the exon sequence

(undeleted). The result in Fig. 2A indicates that the exon 5

sequence is abundantly present in PCR products, whereas exon

11B is spliced in about half of the RNA (Fig. 2B). Deletion of the

exon 24 sequence appears to be more frequent than the presence

of exon 24 (Fig. 2C). The results in Fig. 2 are comparable to our

data shown in Table 1. Both, colony hybridisation and real-time

PCR confirm the presence of BAT3 variants in MelJuSo cells.

Some quantitative differences for the presence or absence of BAT3

exon sequences appear, in particular for exon 24. Reverse

transcription of isolated mRNA yields a pool of cDNA species

with different lengths, which impacts on DNA amplification by

RT-PCR. Therefore, C-terminal sequences (Dexon 24, exon 24)

are more efficiently transcribed to cDNA. In contrast, the colony

hybridization assay was performed with 100 size-selected BAT3

cDNAs. An advantage of the colony hybridization screening is that

complete BAT3 species with variable spliced exon sequences were

identified.

Taken together, we isolated six BAT3 variants from the 100

inspected cDNA clones (Fig. 3A). Two presumably rare BAT3

species, D5,11B,24 and D5,24, which were additionally expected

by differential splicing events, were not detected. All variants

described here contain the short form of exon 7 with 236 bp

(NCBI). To demonstrate expression of the six BAT3 isoforms,

COS-7 cells were transfected with the indicated BAT3 cDNA

constructs. The viability of cells with over-expressed BAT3

isoforms is not affected, as could be suspected from a role of

BAT3 in apoptosis (not shown). Cell extracts were separated by

SDS PAGE and immunoblotted for the V5-tagged BAT3

isoforms. Fig. 3B displays the variant BAT3 products, which

migrate at approximately 120 to 130 kDa. To investigate whether

endogenous isoforms of the BAT3 protein exist, we performed a

SDS gradient gel electrophoresis of a MelJuSo cell lysate (Fig. S2).

The lysate was immunoblotted for BAT3 using a polyclonal anti-

BAT3 serum. We detected two protein bands demonstrating

diversity of naturally occurring BAT3 protein.

Distinct subcellular localization of BAT3 in various cell
types

In previous reports the BAT3 protein was found in the nucleus

and in the cytosol [9,10,11]. We inspected expression of

endogenous BAT3 in various cell lines and in primary cells by

immunofluorescence microscopy. For detection of BAT3, cells

were plated on coverslips and stained with antiserum against

BAT3. Expression of BAT3 was visualized with AlexaFluor488-

conjugated antibody and examined by fluorescence microscopy.

We monitored four human cell types, HeLa (Adenocarcinoma),

monocyte-derived dendritic cells (moDC), MelJuSo cells (Melano-

ma) and the B lymphoma cell line Raji for intracellular expression

of BAT3. The left panel of Fig. 4 A and B shows nuclear and the

middle panel BAT3 staining. On the right, both images were

merged. HeLa, moDCs and MelJuSo cells display both cytosolic

and nuclear staining of BAT3, albeit nuclear staining of moDCs

and MelJuSo cells is reduced compared to HeLa cells (Fig. 4A).

Due to the small size of Raji cells evaluation of staining with

standard fluorescence microscopy proved difficult. To monitor

subcellular labelling of Raji cells, we applied confocal microscopy

for detection of BAT3 (Fig. 4B). When opposed to the other

examined cell types, Raji cells mainly show cytosolic staining of

BAT3. Nuclear and cytosolic expression of BAT3 in Raji cells was

quantified by calculating the mean fluorescence intensity (MFI) in

the nucleus and in the cytosol (Fig. 4C). Compared to nuclear

BAT3 staining we detected a 10-fold increase of signal intensity in

the cytosol. To confirm the predominant cytosolic localization of

BAT3 in Raji cells, we prepared subcellular fractions of nuclei and

cytoplasm from Raji and HeLa cells. Western blotting of nuclear

and cytosolic fractions showed that the BAT3 protein was only

detected in the cytosol of Raji cells, but in nuclear and cytosolic

fractions of HeLa cells (Fig. 4D). In addition, the blot was stained

with cytosolic (GADPH) and nuclear (H3) markers. For a

quantitative evaluation of the four examined cell types, we

counted subcellular staining of 100 cells (Table 2). HeLa cells

showed both, nuclear and cytosolic staining for BAT3. MoDCs

and MelJuSo displayed exclusively cytosolic localization of BAT3

in 74 and 54% and both, nuclear and cytosolic staining in 26 and

46% of the inspected cells. Counting of Raji cells revealed almost

no nuclear staining of BAT3, but entire cytosolic localization. Our

studies indicate a cell type specific distribution of BAT3, either in

the cytosol or in both, the nucleus and the cytosol. Since the BAT3

gene gives rise to expression of several RNA splice variants, the

assessed intracellular distribution of BAT3 could emerge from a

variable expression of BAT3 isoforms.

Cell type-specific expression pattern of BAT3 splice
variants

To explore whether expression of BAT3 variants is tissue-

specific, we inspected the splicing pattern in Raji, HeLa and in

primary moDCs. From each cell type, 20 BAT3 cDNA clones with

a size of 3.7 kb were isolated. Subsequently, the exon composition

of these cDNA clones was inspected by PCR (compare Fig. 1B and

C). The result from evaluation of BAT3 cDNA clones is shown in

Table 3. In 20 cDNA clones derived from Raji cells, we found two

and from HeLa and moDCs, 9 and 11 clones, which show no

deletion of exon sequences and therefore encode full-length BAT3.

Exclusion of the exon 11B sequence was detected in 17 of the Raji,

but only in 3 of the moDC cDNA clones. In eight of the HeLa

cDNA clones the sequence of exon 11B is omitted. Splicing of

exon 24 occurred in 7, 6 or 7 clones derived from the B

lymphoma, from HeLa cells or from moDC derived BAT3

cDNAs. Alternative splicing of exon 5 was not found in any of the

60 (3620) inspected cDNA clones. Sequences derived from exons

5, 6, 9, 11, 17, 20, 21, 22 and 23 (compare Fig. 1A) were detected

in all examined cDNA clones (not shown). Our screening for

tissue-specific expression of BAT3 splice variants yielded a

significant difference in the number of variants, particulary in

Raji cells and moDCs. The B lymphoma Raji contains BAT3

variants mainly without exon 11B, whereas full-length and

deletion of exon 24 were predominantly found in moDCs as a

source of primary cells.

Table 1. Frequency of spliced exons in MelJuSo cells.

spliced exons frequency of alternative splicing*

exon 5 1/100

exon 11B 23/100

exon 24 22/100

exons 5 and 11B 2/100

exons 11b and 24 19/100

no alternative splicing 33/100

*A total number of 100 clones was analyzed.
doi:10.1371/journal.pone.0035972.t001
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The presence of BAT3 exon 11B splice variant in different cell

types was further investigated by real-time PCR analysis (DDCt

method with actin as endogenous control). Therefore, mRNAs of

MelJuSo cells, primary monocytes and of T lymphoid CEMC7

cells were tested for exon 11B sequences using exon 11B-specific

oligonucleotides (Fig. S3). The relative levels of exon 11B

transcripts in monocytes and CEMC7 cells were calculated in

relation to those in MelJuSo cells (RQ = 1). In CEMC7 we found

reduced amounts of exon 11B sequences compared to MelJuSo

cells.

Subcellular localization of BAT3 splice variants in
transfected HeLa cells

To inspect the intracellular localization of BAT3 variants, we

transfected HeLa cells with each of the six V5-tagged BAT3 cDNA

species. Cells were plated on coverslips and stained with a

monoclonal antibody against the V5 tag. Expression of BAT3 was

visualized with AlexaFluor488-conjugated antibody and inspected

by fluorescence microscopy. Fig. 5 displays three examples of

transfected splice variants with a characteristic subcellular

distribution. The upper panel shows that full-length BAT3 is

almost exclusively expressed in the nucleus of HeLa cells. BAT3

D11B (middle panel) shows nuclear expression but in addition

nuclear and cytosolic staining. HeLa cells transfected with the

D11B,24 variant (lower panel) display enhanced cytosolic labelling

of BAT3 in comparison to cells transfected with BAT3 D11B.

Table 4 displays an evaluation of the subcellular distribution of 6

variant BAT3 proteins in 100 cells. In HeLa cells, BAT3 full-

length and BAT3 D24 were mainly found in the nucleus. When

single exons 5 or 11B were deleted, we detected in about 50% of

the cells nuclear localization, 10% with sole cytosolic, and in

almost 40% of the cells staining of both, the nucleus and the

cytoplasm. The BAT3 variants D5,11B and D11B,24 showed sole

cytosolic expression for 14 or 25% of the transfected cells and for

46 or 63% staining of both, nucleus and cytosol. Comparable

results were obtained by expression of BAT3 variants in MelJuSo

cells (data not shown), suggesting that expression of splice variants

yields the observed subcellular localization of BAT3 in different

cell types.

Export of BAT3 from the nucleus to the cytosol is
impaired by leptomycin B treatment

Since the identified BAT3 splice variants contain a nuclear

localization signal at the C-terminus encoded in exon 23 [18], we

assume that all variants should be translocated from the cytosol to

the nucleus by a similar mechanism. To examine whether the

observed elevated cytosolic expression of BAT3 splice variants

without exon 11B may depend on nuclear export, we employed

the inhibitor leptomycin B (LMB), which impairs the Crm1-

dependent nuclear export of proteins [29]. HeLa cells were

transfected with V5-tagged BAT3 cDNA species and incubated for

2 h with LMB. The subcellular distribution of transfected BAT3

variants was inspected by immunofluorescence microscopy. An

example is shown for BAT3 D11B,24 (Fig. 6A). BAT3 D11B,24

displays nuclear and cytosolic labelling, but upon incubation with

LMB for 2 h sole nuclear staining was obtained. The other BAT3

variants, which show cytosolic expression, also localize to the

nucleus after treatment with LMB (data not shown).

As a consequence of impaired nuclear export of BAT3 upon

LMB treatment, we expected that the B lymphoma cell line Raji,

which displays prominent cytosolic expression of BAT3, should

strongly respond to incubation with LMB. Raji cells were plated

on coverslips, treated for 2 h with LMB and stained for BAT3

(Fig. 6B). To visualize the extranuclear space of Raji cells, we

Figure 2. Real-time PCR analysis of BAT3 exons 5, 11B and 24. MelJuSo cells were subjected to RNA isolation and cDNA synthesis. BAT3
sequences were amplified by real-time PCR with specific oligonucleotides and examined for the presence of an exon (primers amplify DNA within the
exon sequence) and for the absence of an exon (primers bind to exon boundaries). The presence or absence of exon 5 (A), exon 11B (B) and exon 24
(C) is shown as relative numbers of transcripts. Data are means 6 SD of 5 experiments.
doi:10.1371/journal.pone.0035972.g002
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performed a co-staining of BAT3 and HLA-DR (Fig. 6B). As a

result of LMB incubation, we detected predominant nuclear

staining of endogenous BAT3 in Raji cells (Fig. 6B, lower panel),

compared to non-treated cells (upper panel). Thus, when nuclear

export is blocked in Raji cells, nuclear import of BAT3 yields

complete nuclear localization.

LMB inhibition indicates that the nuclear export of BAT3

depends on the Crm1 pathway. Crm1 mediated nuclear export of

BAT3 is impaired by a sequence encoded by exon 11B, because

BAT3 variants deleted of exon 11B are frequently located in the

cytoplasm, whereas BAT3 full-length and D24 are predominantly

expressed in the nucleus. Therefore, the dual localization of BAT3

isoforms in the cytosol and the nucleus may be controlled on the

level of nuclear export.

Discussion

Differential splicing of transcripts occurs in about 80% of genes

in the human genome [30]. Alternative RNA splicing results in

various protein species from the same primary transcript but may

maintain structural elements (e.g. ligand-binding domains) in the

variant splice products. A set of such splice variants can

simultaneously exert unique and diverse functions. Regulation of

splicing pattern is based on phosphorylation, shuttling of splicing

factors between the nucleus and the cytosol, assembly of the

splicing complex, the influence of extracellular stimuli on specific

RNA-binding proteins and other stages of pre-mRNA processing

[30,31,32]. Our data suggest that alternative pre-mRNA splicing

also contributes to the extensive diversity of a gene in the HLA

complex, which encodes the class III protein BAT3. BAT3 is

capable of multiple functions and differential splicing of BAT3 pre-

mRNA suggests that the splicing pattern implicates various cellular

activities. Since not all splice variants are translated to proteins,

expression of BAT3 isoforms should be adjusted to cellular

functions.

In our study, we discovered six BAT3 splice variants which

display a cell type specific expression pattern in human cell lines

and in primary cells. Moreover, we detected the novel alternatively

spliced BAT3 exon sequence 11B. In order to investigate whether

the splicing pattern of BAT3 correlates with cytosolic or nuclear/

cytosolic staining of the endogenous protein in examined cell

types, we found that some BAT3 isoforms are preferentially

localized in the nucleus (BAT3 full-length and BAT3 D24),

whereas BAT3 deleted of exon 11B is frequently located in the

cytoplasm (Fig. 5). The examined cells express similar levels of

BAT3 (not shown). Therefore, the subcellular distribution of

BAT3 reflects properties of the individual isoforms or of associated

cofactors. Previous studies suggested that BAT3 is dominantly

targeted to the nucleus [11,18]. In recent years, BAT3 was shown

to have in addition multiple roles in the cytosol [13,15]. Shuttling

between the nucleus and the cytoplasm is mediated by import and

export signals [33]. The import/export cycle determines the

subcellular localization of proteins. In most cases, the nuclear

import is a rapid process. Factors binding to a nuclear localization

signal (NLS) promote translocation of the cytosolic protein to the

nucleus. The BAG domain encoded by exons 24 and 25 of the

BAT3 gene is in close proximity to the NLS encoded by exon 23

[7,18]. It is conceivable that masking of exons such as 24 and 25

by a ligand impacts on nuclear localization of the BAT3

polypeptide. The BAG domain was shown to interact with the

ATPase domain of the heat shock protein Hsc70/HSP70 family

[34,35]. Scythe/BAT3 directly inhibits Hsp70 protein folding

activity [35]. Interaction with HSP70 possibly affects the

recruitment of NLS binding factors and thereby regulates nuclear

import of BAT3. Our results indicate that the presence or absence

of exon 24 has no impact on the nuclear localization of the BAT3

protein since both, full-length protein and BAT3 D24 are

predominantly expressed in the nucleus. Shuttling of BAT3

between the nucleus and the cytoplasm may also require a nuclear

export signal (NES), which was proposed to localize in exon 8 [11].

Our data suggest that nuclear export of BAT3 is mediated by the

Crm1 pathway and may be influenced by the exon 11B sequence.

BAT3 isoforms lacking exon 11B show intense cytosolic

localization, which is abrogated by LMB treatment. A possible

role of specific exon sequences for subcellular distribution of the

BAT3 isoforms has to be further explored. It is conceivable that

the presence or absence of sequences adjacent to the NES impacts

on the molecular structure of BAT3 leading to a modified

accessibility of the NES. We demonstrated that 2 h of LMB

treatment completely abolishes cytosolic BAT3 expression,

indicating that nuclear export rather than a delayed import

determines the cytosolic localization of BAT3.

We suppose that cell type-specific expression of BAT3 arises

from the cell type-specific pattern of splice variants with a distinct

subcellular localization of BAT3 isoforms. Isolation of cDNA

clones from HeLa cells indicated expression of four different

BAT3 variants (Table 3). Subcellular distribution of the four

Figure 3. Identification of BAT3 splice variants. A. Schematic
presentation of BAT3 variants. BAT3 full-length containing exons 2 to 25
is shown on top (translation starts with exon 2). Identified BAT3 variants
with deleted sequences are shown below. Deleted exons are indicated
by triangles. Designation of the variants is shown on the right and the
calculated number of amino acids (AA) of the BAT3 proteins is indicated
on the left. UBL: ubiquitin-like domain, NLS: nuclear localization signal,
BAG: Bcl-2 associated athanogene-domain, B. Expression of BAT3
isoforms. COS-7 cells were transfected with V5-tagged BAT3 cDNAs,
lysed, separated by SDS-PAGE and immunoblotted for BAT3 with anti
V5 antibody. BAT3 variants are indicated on the top and a molecular
weight marker is shown on the left. Compared to the full length BAT3
with a molecular weight of about 130 kDa, the calculated sizes of the
variants are the following: BAT3 D5 (128 kDa), BAT3 D11b (127 kDa),
BAT3 D24 (125 kDa), BAT3 D5, 11b (125 kDa) and BAT3 D11b, 24
(122 kDa).
doi:10.1371/journal.pone.0035972.g003
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BAT3 variants is consistent with cytosolic and nuclear staining of

endogenous BAT3 in HeLa cells (summarised in Table 2). The B

lymphoma cell line Raji mainly exhibits cytosolic staining of BAT3

as shown in Fig. 4B–D. Isolation of the numerous BAT3 variants

with deleted exon 11B from Raji cells is in agreement with

cytosolic staining of the isoforms in transfected HeLa cells.

However, expression of two BAT3 variants, BAT3 full-length

and BAT3 D24 (Table 3) should yield more nuclear staining of the

B lymphoma cells than observed by immunofluorescence micros-

copy. This would also be predicted for moDCs, which show

substantial cytosolic expression but high levels of BAT3 full-length

and D24 (Table 2 and 3). One would expect a higher level of

nuclear staining for BAT3 in moDCs, if the intracellular

localization is solely dependent on expression of the BAT3

variants. Thus, tissue-specific factors may additionally impact on

the intracellular localization of BAT3.

Shuttling of proteins between the nucleus and the cytoplasm

was described as a mechanism for regulation of apoptosis and to

maintain a basal activity of transcription factors by signalling

molecules [36,37,38]. In concert with this mechanism, BAT3 was

suggested to act as a nucleus-cytoplasm shuttling protein

regulating apoptotic cell death induced by papillomavirus binding

factor (PBF) in human osteosarcoma [39]. It is conceivable that

BAT3 variants which localize in the nucleus or in the nucleus/

cytosol have distinct roles in controlling folding and activity of

various signalling molecules regulating apoptosis, cell cycle and

proliferation. Physical interaction with BAT3 has been demon-

strated for apoptosis modulating protein X1-1, for AIF and for

reaper [11,40], for cell division controlling human small

glutamine-rich TPR-containing protein (hSGT) and for a MAK-

related kinase [34,41]. Previously, BAT3 was identified as a

substrate of the apoptosis-inducing caspase-3. The cleavage site for

caspase-3 was found at the C-terminus of BAT3 encoded by exon

22 [42]. Three novel proteins, which contain domains that are

Figure 4. Subcellular localization of endogenous BAT3 in four cell types. HeLa cells (Adenocarcinoma), the human melanoma cell line
MelJuSo, the B lymphoma Raji and monocyte-derived dendritic cells (moDCs) were plated on coverslips and stained for BAT3 using a polyclonal
serum against a C-terminal peptide (middle lane). Cell nuclei (left lane) were visualized with DAPI (A) or 7AAD (B). Merged images are shown in the
right lane. A. Immunofluorescence staining was evaluated with a standard fluorescence microscope and B. by confocal microscopy. Scale
bars = 10 mm. C. Nuclear and cytosolic staining of endogenous BAT3 in Raji cells was evaluated in 10 single cells using ImageJ. MFI, mean
fluorescence intensity per region of interest D. Western blot analysis of subcellular fractions from Raji and HeLa cells. Nuclei (N) and cytoplasm (C)
were separated by SDS-PAGE and immunoblotted for BAT3, GADPH (cytosolic marker) and histone H3 (nuclear marker).
doi:10.1371/journal.pone.0035972.g004

Table 2. Subcellular localization of endogenous BAT3 in % of
cells.

cell type unique cytosolic staining nuclear and cytosolic staining

HeLa 0 100

moDC 74 26

MelJuSo 54 46

Raji 100 0

doi:10.1371/journal.pone.0035972.t002

Table 3. Tissue specific expression of BAT3 splice variants.

BAT3 variant Raji cells HeLa cells moDCs

full-length 2 9 11

D 11B 11 5 2

D 24 1 3 6

D 11B,24 6 3 1

doi:10.1371/journal.pone.0035972.t003
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involved in protein degradation, were detected by yeast two-

hybrid screening to interact with the N-terminus of BAT3 [43].

Recently, it was demonstrated that BAT3 forms a complex with

TRC35 and Ubl4A, which is recruited to ribosomes and acts as a

chaperone that channels tail-anchored proteins to the TRC40

insertion pathway [13]. In addition, this BAT3 complex was

shown to link targeting and degradation of mislocalized proteins

(MLPs) by recognizing hydrophobic domains that distinguish

MLPs from potential cytosolic proteins [15]. Moreover, BAT3 was

found to be involved in endoplasmic reticulum-associated

degradation of misfolded proteins by maintaining polypeptide

solubility to avoid aggregation before reaching the proteasome

[14]. In this process, one role of TRC35 is to retain BAT3 in the

cytosol. At present, it is unclear whether retention of the BAT3

isoforms correlates with interaction to TRC35. Recently, we

demonstrated that BAT3 chaperones the HLA class II transacti-

vator (CIITA) and thereby modulates the expression of compo-

nents of the HLA class II antigen presentation pathway [25].

Another study with immunologic implications revealed that BAT3

serves as a target during the course of Legionella pneumophila

infection and is modulated by multiple translocated bacterial

substrates [44], possibly to escape antigen presentation by HLA

class II.

In conclusion, variants of BAT3 may differ in their network of

interactions with other proteins. Proposing that BAT3 stabilizes

and targets cellular proteins, it will be important to identify

substrates and interaction profiles of the various BAT3 proteins.

Aberrant alternative pre-mRNA splicing plays a role in human

pathologies. Experimental and computational studies revealed

examples for specific splice variants that are detectable only in

cancerous tissues [45,46]. Diseases such as Myasthenia gravis,

thymus hyperplasia and some adverse drug reactions were linked

to the BAT3 locus [47,48]. A rare BAT3 allele was found in three

‘‘diabetogenic’’ HLA haplotypes [49]. It is not yet uncovered,

whether abnormal splicing in the BAT3 locus is linked to

autoimmunity. Evaluation of the diversity of BAT3 transcripts

may help to understand the role of this protein in various cellular

functions as well as under pathological conditions.

Figure 5. Subcellular localization of BAT3 variants in transfected HeLa cells. Cells were transfected with BAT3 splice variants and stained
after 24 hours with a monoclonal V5 antibody for evaluation by immunofluorescence microscopy. Left panel displays DAPI staining, second panel
BAT3 staining, third panel merging of images and right panel shows corresponding phase contrast images. The displayed transfected cells show
examples for nuclear (BAT3 full-length, upper panel), for nuclear and cytosolic (BAT3 D11B, middle panel) and for enhanced cytosolic staining (BAT3
D11B, 24, lower panel). Scale bars = 10 mm.
doi:10.1371/journal.pone.0035972.g005

Table 4. Subcellular localization of the BAT3 variants in % of transfected HeLa cells.

BAT3 variant unique nuclear staining unique cytosolic staining nuclear/cytosolic staining

full-length 85 0 15

D 5 51 11 38

D 11 55 9 36

D 24 90 0 10

D 5,11B 40 14 46

D 11B,24 12 25 63

doi:10.1371/journal.pone.0035972.t004
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Supporting Information

Figure S1 Exon-intron-organization of the BAT3 gene
between exons 10 and 13. BAT3 exons 11, 11B and 12 are

highlighted in bold.

(TIF)

Figure S2 SDS gradient gel electrophoresis of a MelJuSo
lysate. A MelJuSo lysate was separated by SDS gradient

electrophoresis (7–12%) and transferred to nitrocellulose mem-

brane, which was probed with rabbit anti-BAT3 serum.

(TIF)

Figure S3 Relative quantification of exon 11B expres-
sion. MelJuSo cells, primary human monocytes and the lymphoid

cell line CEMC7 were subjected to mRNA isolation and cDNA

synthesis. The presence of exon 11B transcripts was analyzed by

real-time PCR (DDCt method) using indicated oligonucleotides

(Materials and Methods). Relative quantification (RQ) of exon

11B transcripts is shown for three independent experiments (1–3)

and was calculated on the exon 11B level in MelJuSo cells.

(TIF)
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