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Abstract

Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino
acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other
LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of
the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after
intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than
conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other
neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP2) in two strains of
mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to
other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels
after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in
BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did
not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central
serotonergic function. These results also demonstrate a strain- specific effect of ATD Moja-De on anxiety-like behavior.
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Introduction

The neurotransmitter serotonin (5-HT) plays a key role in many

physiological processes, including cognition and mood, which are

typically affected in clinical depression and anxiety disorder. A

well-established method to study the effects of 5-HT in the human

brain is to lower the central nervous 5-HT synthesis rate by

diminishing the availability of tryptophan (TRP), the amino acid

precursor of 5-HT. This technique is called acute tryptophan

depletion (ATD). The rate controlling step in central nervous 5-

HT synthesis is the conversion of TRP into L-5-hydroxytrypto-

phan (5-HTP) by tryptophan hydroxylase (TPH) [1]. As TPH is

not saturated at physiological concentrations of TRP, diminished

substrate availability for TPH decreases brain 5-HT synthesis and

release [1]. Therefore, serotonergic function can be temporarily

suppressed by using ATD, a method that is widely used in

psychiatric and pharmacological research [2,3]. Ingestion of a

TRP-free amino acid mixture provides a dose of large neutral

amino acids which compete with endogenous TRP for transport

across the blood-brain barrier, and subsequently lowers brain TRP

levels, 5-HT synthesis and levels of 5-HIAA, the primary

metabolite of 5-HT [4,5,6].

ATD has been used widely to probe serotonergic function in

humans. It can induce relapses in patients in remission from major

depression and other psychiatric disorders [3]. It can also lower

mood in healthy patients with a family history of depression [7].

Some authors even suggest using ATD as a predictive test for

personalized antidepressant treatment [8]. The limiting side effect

of ATD in human studies is the marked nausea that the amino

acid mixture can cause. A modified mixture, ATD Moja-De,

involves a body weight adapted administration of amino acids and

lower concentration of methionine relative to conventional

mixtures, which makes it less nauseating in humans. Its use has

proven to be a safe and effective method of TRP depletion even in
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children and adolescents [9,10,11,12,13,14,15]. It has been shown

that ATD Moja-De significantly lowers influx of TRP into the

brain in humans [16], but its specific effect on brain 5-HT has not

yet been established, which was the aim of this study. Another goal

of this study was to adapt ATD to mice in order to conduct

mechanistic studies of this widely used physiological manipulation.

There is a current debate about the efficacy and specificity of

ATD as regards the central nervous 5-HT system. ATD with

complex amino acid mixtures has been widely shown to decrease

5-HT synthesis and release in rat models [4,17,18,19]. However,

Van Donkelaar et al. [20] state that a TRP balanced control

condition (TRP+) has not yet been investigated thoroughly enough

to state it is a valid control condition in behavioral studies [20]. In

contrast, Crockett et al. [21] argue that the specificity of ATD

effects is clearly established [20]. Clinical data show that only

vulnerable human subjects show a change in behavior after ATD,

which may point to an individual vulnerability [20].

The purpose of the present study was to verify in an animal

model that ATD Moja-De, a revised mixture containing a

restricted set of amino acids (phenylalanine, leucine, isoleucine,

methionine, valine, threonine and lysine) significantly decreases

brain TRP and lowers 5-HT synthesis and release and to test the

possibility that individuals or populations with vulnerable 5-HT

systems are more sensitive to ATD. Numerous animal studies have

documented that ATD can be effective in rats [4,22] but none

have documented the efficacy of this treatment in mice. We used

mice in the present study in order to validate this model for future

studies in genetically manipulated animals. Only one study has

reported the effects of ATD in mice [23], but this study did not

verify inhibition of 5-HT synthesis. We evaluated 5-HT synthesis

by measuring the accumulation of the precursor 5-HTP after

decarboxylase inhibition with NSD 1015, and also quantitated 5-

HT and 5-HIAA content, as an indirect measure of 5-HT release

[24,25].

To test the effects of ATD Moja-De we used two strains of mice

that were predicted to respond differently to ATD based on

previously reported behavioral and neurochemical differences.

C57BL/6J (C57) mice have been reported to be resistant to the

effects of ATD [23] while BALB/cJ mice (BALBc) have a

mutation in TPH2 which lowers their baseline 5-HT production

[26,27] and would be predicted to exhibit an exaggerated response

to ATD. We hypothesized that ATD Moja-De would significantly

lower brain 5-HT synthesis and serotonergic activity, without

affecting dopamine or norepinephrine [28] and that BALBc mice

would exhibit a larger neurochemical response to ATD than C57

mice.

Materials and Methods

ATD Moja-De
The quantities of the Moja-De amino acid mixture lacking TRP

(TRP2) were as follows: L-phenylalanine 1.32 g, L-leucine 1.32 g,

L-isoleucine 0.84 g, L-methionine 0.5 g, L-valine 0.96 g, L-

threonine 0.6 g, L-lysine 0.96 g (quantities refer to a dose in

humans per 10 kg body weight). For the control balanced amino

acid mixture (TRP+), 0.7 g of L-TRP (per 10 kg body weight

corresponding to an administration in humans) were added to the

mix. The mixture was suspended in deionized water at a

concentration of 0.2 g/mL using a polytron and sonication bath.

Mice were treated with 2 g/kg BW delivered by oral gavage in two

doses of 10 mL/kg BW spaced 30 minutes apart. All amino acid

mixtures were prepared by the Pharmacy of University Hospital of

RWTH Aachen, Germany.

Animals
Male BALB/cJ mice and male C57BL/6J mice from Jackson

Laboratory (Bar Harbor, Maine, USA) were used. They were

given one week to acclimate to Duke University’s AALAC -

accredited vivarium before the study was initiated. The mice were

postnatal day (PD) 75 at the time of euthanasia. All procedures

were reviewed and approved by the Animal Care and Use

Committee at Duke University Medical Center. Mice were housed

in groups of 4 to 6 and maintained on a 12:12-h light-dark

schedule (lights on from 6.00 to 18.00 h), in a temperature-

controlled (2161uC) and air conditioned housing room. Food

(LabDiet, USA) and water were available ad libitum, except for the

nights before testing. Animal cages were provided with nestlets for

environmental enrichment. Clean cages were provided weekly.

Animals received two tests with the amino acid mixture separated

by two weeks. For the present study, they were food deprived

overnight, treated by gavage with TRP+, TRP2 or water followed

by saline or 3-hydroxybenzylhydrazine (NSD1015), and were

killed for determination of blood and brain TRP and neurotrans-

mitter levels.

Time Course
The time point of blood and brain collection was chosen based

on one previous study which reported on ATD in mice [23], and a

pilot time course in both strains of mice performed here to assess

the time course of maximal suppression of brain serotonergic

measures. Blood and brain samples were collected at the time of

gavage (0 minutes) or 90, 150, 210, 270 or 330 minutes after the

first gavage (n = 3–4/group for C57, n = 4–8/group for BALBc).

Blood and brains were processed as described below.

Behavior
The time course of the behavioral experiment is shown in

Table 1. Anxiety-like behavior was measured using the Light/

Dark-Test 2.5 hours after a treatment with the TRP+ mixture,

TRP2 or water. The test apparatus consisted of a clear Plexiglas

box lit at 450 lux and a dark Plexiglas insert. Both compartments

(40640620 cm) were connected by an 8.5 by 7.5 cm aperture.

Each mouse was placed in the dark compartment with the

aperture closed. The automatic recording was started as soon as

the door was lifted. Percent time spent in light, percent distance

traveled in light, latency to emerge into the light, entries into light,

total ambulations and pokes into light were automatically recorded

using an infrared beam frame and the Hamilton Kinder Motor

Monitor software.

Blood samples and brain tissue
The time course of the neurochemistry experiment is outlined in

Table 2 and was as follows: at t = 0, the first dose of TRP+, TRP2

or water was administered by gavage and repeated at t = 30 min.

Two hours after the first dose of amino acids or water, the animals

were injected i.p. with saline (1 ml/g BW) or the decarboxylase

inhibitor NSD-1015 (100 mg/kg BW in saline, 1 ml/g BW) to

inhibit TPH2. Measuring the accumulation of 5-HTP after

decarboxylase inhibition provides an estimate of TPH activity

[29]. Mice were anesthetized with isoflurane 150 min after the first

dose and blood was collected via cardiac puncture. Animals were

decapitated, brains collected and immediately dissected on ice.

Brains were sectioned in a brain block, and brain areas dissected

from 1 mm brain slices based on a mouse brain atlas. Prefrontal

cortex, frontal cortex and hippocampus were collected bilaterally,

immediately weighed and subsequently frozen on dry ice.

Prefrontal cortex was taken from slices of the most frontal part

Acute Tryptophan Depletion in Mice

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e35916



of the brain, which included only cortex and olfactory bulb. The

frontal cortex was set to be the cortex over the most frontal part of

the corpus callosum. Brain tissue was stored at 280uC until assay.

The average weight of PFC tissue in BALBc mice was

10.862.7 mg, in C57 mice it was 10.363.1 mg; the FC tissue

weighed 10.161.5 mg on average in BALBc mice and

11.162.2 mg on average in C57 mice; the hippocampus tissue

collected weighed 10.962.3 mg in BALBc mice and 10.562.0 mg

in C57 mice.

Biochemistry
Blood for assessment of TRP content was collected in

Eppendorf vials and kept on ice until centrifuged (16,0006g for

20 minutes at 4u Celsius) in order to separate the plasma. Plasma

samples were stored at 280uC. For brain TRP, 5-HTP, 5-HT, 5-

HIAA, norepinephrine (NE) and dopamine (DA) determination,

250 ml of an ice-cold buffer (0.5 mM sodium metabisulfate, 0.2N

perchloric acid and 0.5 mM EDTA) was added to the tissue. The

tissue was then homogenized by sonication. After a 10 minute spin

(16,0006g at 4uC) the supernatant was kept on ice until analysis.

The aliquot was used for two separate analyses of 5-HTP,

monoamines and their metabolites and for TRP-levels.

Brain neurotransmitter and metabolite content and 5 HTP

levels were quantified using a reverse phase high-performance

liquid chromatography (RP-HPLC) system with electrochemical

detection. The mobile phase for tissue content determination

contained 0.1 M sodium phosphate, 0.8 mM octanesulphonic

acid, 0.1 mM Na2EDTA and 18% methanol; the pH was adjusted

to 3.10 using hydrochloric acid and the flow rate was 0.7 ml/min.

Samples were quantified with a BAS Epsilon Electrochemical

Detector with dual 3 mm glassy carbon electrode (MF-1000) set to

0.70V.

A separate RP-HPLC system was used to measure TRP. The

mobile phase included 0.05 M citric acid, 0.05 M sodium

phosphate, 0.1 mM Na2EDTA and 8% acetonitrile; the pH was

not adjusted, and the flow rate was 1 ml/min. Samples were

quantitated with a BAS LC-4B detector set to 0.85V.

An external standard curve of all compounds was run on each

analysis day. The concentrations for total plasma TRP were

expressed in mg/ml plasma. The amount of brain TRP was

expressed as mg/mg tissue. The amount of 5-HT, DA and their

precursors and metabolites were expressed as ng/mg tissue.

Statistics
Mean and SEM concentrations were calculated for each

treatment group separately. Each dependent measure was

analyzed for all groups (water, TRP2, TRP+) using a global 4-

way ANOVA repeated measures analysis of variance (ANOVA)

with between factors strain, treatment and NSD and region as a

within factor (Table S1). Lower level ANOVAs were then

conducted to compare the TRP2 group to the TRP+ group to

the optimal test of the effects of ATD. Data from animals treated

with water alone were also analyzed using a repeated measures

ANOVA with the same factors but disregarding the treatment as a

between factor to identify strain differences in the baseline values

and response to NSD1015. Additional details about lower level

ANOVAs are provided in supplementary online materials

(Materials S1).

A post-hoc Fisher least protected significant difference test

(pLSD) was used to identify differences between specific treatment

groups. Outliers in biochemical data were identified by means of

GRUBBS. In all cases the level of statistical significance was set at

p,0.05. Analyses were performed using the Number Cruncher

Statistical System (NCSS) for Windows. Graphs were drawn using

Graph Pad Prism, version 5 for Windows (GraphPad Software,

San Diego, California, USA).

Results

Time Course
Data for plasma and hippocampus are shown in Figure 1. Data

for other brain areas were comparable. Dotted lines indicate times

at which TRP2 was administered. Two-way ANOVA of plasma

TRP yielded a significant effect of time (F (5,40) = 3.44, p,.012).

Post-hoc tests showed that time 0 was different from all other

times. For hippocampal TRP, ANOVA indicated a significant

Table 1. Time Course of Behavioral Experiment.

Time (min)

Overnight (4.30 p.m. until 9 a.m.) Food deprivation with water ad libitum

t = 0 First dose of TRP2, TRP+ (2 g/kg) or water (10 ml/kg BW)

t = 30 Second dose of TRP2, TRP+ (2 g/kg) or water (10 ml/kg BW)

t = 150 Testing in Light/Dark-Box

doi:10.1371/journal.pone.0035916.t001

Table 2. Time Course of Biochemistry Experiment.

Time (min)

Overnight (4.30 p.m. until 9 a.m.) Food deprivation with water ad libitum

t = 0 First dose of TRP+, TRP2 or water (10 ml/kg BW)

t = 30 Second dose of TRP+, TRP2 or water(10 ml/kg BW)

t = 120 Injection with NSD1015 or vehicle

t = 150 Blood draw via cardiac stick, then decapitation

doi:10.1371/journal.pone.0035916.t002
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effect of both strain (F (5,34) = 8.41, p,.006) and time (F

(5,34) = 23.81, p,.000001). Post-hoc tests showed that under

depletion hippocampal TRP in BALBc mice was slightly higher

than in C57 mice especially at later time points, although plasma

TRP was the same for both strains. Time 0 was different from all

other times. Finally, for 5-HIAA, ANOVA yielded a significant

effect of strain (F (5,40) = 11.96, p,.0014) and time (F

(5,40) = 6.54, p,.0002). Post-hoc tests showed that 5-HIAA was

lower in BALBc than in C57 mice and that time 0 was different

from time 90, 150 and 210. 5-HIAA was decreased more

consistently in C57 mice than in BALBc mice. This study showed

that plasma and hippocampal TRP remained suppressed for the

entire time course, but that 5-HIAA was decreased only at the

later times. Subsequent behavioral and biochemical studies were

conducted at 150 minutes, when effects on brain serotonergic

function were expected to be maximal.

Tryptophan
The effect of the amino acid mixtures on TRP relative to each

other and water are shown in Figure 2 (a, b, c) (the data have been

collapsed for NSD 1015 treatment since no effect was either

observed or expected). All data from both vehicle and NSD-

treated animals and details of the statistical results (lower level

ANOVAs, interactions, p and F values) are available as

supplementary online materials. TRP+ increased TRP relative

to water in all brain regions and strains, and TRP2 lowered TRP

comparably in all brain regions and strains relative to water (main

effect of treatment by ANOVA). Post-hoc tests showed that TRP

content of prefrontal cortex was lower than frontal cortex and

hippocampus. Overall, the results show that TRP+ and TRP2

amino acid mixtures effectively raised and lowered TRP in the

brain respectively, although the depletion condition was more

consistently effective than the control condition. The effects of the

TRP manipulations were similar in both the BALBc and C57

strains.

5-HTP
The effects of amino acid mixtures on 5-HTP relative to each

other and water after the administration of NSD 1015 are shown

in Figure 3 (a, b, c). This figure shows only values after NSD 1015,

as basal 5-HTP was at the limit of detection, as was expected. All

values from both saline and NSD-treated animals are available as

supplementary online material (Table S2). The ANOVA showed

main effects of strain, treatment, and region and interactions of

strain, treatment and region. TRP2 treatment differed from both

TRP+ and water, BALBc mice differed from C57 mice and

hippocampus varied from other regions. Lower level ANOVAs

and post-hoc analyses showed that: (1) TRP2 decreases 5-HT

synthesis in all assessed brain regions of C57 mice but not BALBc

mice as revealed by a treatment by strain interaction, (2) TRP+ did

not increase 5-HT synthesis as shown by a lack of an effect of

treatment on synthesis, and (3) at baseline, BALBc mice have a

lower level of 5-HT synthesis in the hippocampus and the

prefrontal cortex, but not in the frontal cortex as shown by a strain

by region interaction.

5-HT
The effects of the amino acid mixtures on 5-HT relative to each

other and water in vehicle-treated animals are shown in Figure 4

(a,b,c). All values from both saline and NSD-treated animals are

available as supplementary online materials. In summary, the 5-

HT findings show that (1) ANOVA showed main effects of strain,

treatment (TRP2 different from TRP+ and water) and region as

well as interactions of strain by region. Post-hoc tests showed that

(1) 5-HT content was lower at baseline in BALBc relative to C57

mice in the hippocampus, (2) TRP2 significantly decreased 5-HT

content relative to TRP+ in the hippocampus, but (3) TRP+ did

not consistently increase 5-HT content.

5-HIAA
The effect of the amino acid mixtures on 5-HIAA relative to

water and each other in vehicle-treated animals are shown in

Figure 5 (a, b, c). To summarize these overall findings it can be said

that (1) ANOVA showed significant effects of strain, treatment,

region and interactions of strain by region, treatment by region,

and their three-way interaction (strain by treatment by region). (2)

5-HIAA was decreased by TRP2 relative to TRP+ in every brain

region investigated and (3) 5-HIAA levels at baseline in BALBc

mice were lower than C57 mice in hippocampus and frontal

cortex, but not in the prefrontal cortex.

Other monoamines
DA, DOPAC and HVA did not show any strain differences

(p = .36, p = .53 and p = .50 respectively, data not shown) or effects

of treatment. Norepinephrine was not affected by any treatment

but was significantly lower in BALBc than C57 mice, which held

true for all treatment groups (water: F (1,20) = 27.09, p,.00005).

All values are available as supplementary online material.

Figure 1. Time course of ATD Moja-De in both strains. (a) Plasma = plasma tryptophan (mg/ml plasma) (b) HPC TRP = tryptophan in
hippocampus (mg/mg tissue) (c) HPC-5-HIAA = 5-HIAA in hippocampus (ng/mg tissue). N = 3–4/group for C57, N = 4–8/group for BALBc. * different
from Time 0 and ¤ different from corresponding group in BALBc mice.
doi:10.1371/journal.pone.0035916.g001

Acute Tryptophan Depletion in Mice

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e35916



Behavior
The effects of ATD on anxiety-like behavior (time in light) are

shown in Figure 6. Time in light and percent time in light yielded

similar results. None of the other parameters were different and

are not shown. Two-way ANOVA showed that the strains

responded differently to TRP2 (F (1,52) = 15.25, p,.0003 for

strain by treatment interaction). BALBc mice spent significantly

less time in the light than C57 mice, but after TRP2 BALBc mice

increased the time spent in light while C57 mice were not affected.

These data suggest that TRP2 was anxiolytic in BALBc but not

C57 mice.

Discussion

The main finding of this study is that the treatment with ATD

Moja-De (TRP2) decreased brain TRP and subsequently brain 5-

HT synthesis as shown by 5-HTP after decarboxylase inhibition

and by decreases in 5-HT and 5-HIAA levels of both strains of

mice relative to TRP+. The treatment was most effective in the

hippocampus, but also decreased serotonergic function in frontal

and prefrontal cortex. TRP2 decreased serotonergic function

more in C57 than in BALBc mice, in contrast to our prediction.

ATD did not affect dopamine, its metabolites or norepinephrine in

either of the two strains.

Although the ability of ATD to decrease 5-HT synthesis and

content is well established in rats and in humans [1,2,8], one

report in mice yielded equivocal results [23]. This may be due to

the differences in amino acid mixtures, since the other study used a

TRP-free protein-carbohydrate nutritional mixture. This mixture

contained more amino acids than Moja-De, which reduces the

fraction of TRP in the control mixture. That mixture was also not

administered based on body weight. The present results show that

5-HT synthesis was decreased, and that 5-HIAA levels decreased

more than 5-HT levels. These data suggest that 5-HT release was

reduced by this treatment. Although it has been proposed that

ATD might influence MAO activity [23], such an effect would not

explain the present results, as it would result in a concomitant

decrease in 5-HIAA and increase in 5-HT. Numerous (but not all)

rodent studies support the ability of ATD to decrease 5-HT

content [18,30]. The present results provide at least indirect

support for the latter finding that ATD transiently lowers

serotonergic function in the brain.

The effects of ATD were substantially greater in the

hippocampus than in cortical regions. There are several possible

explanations for this. First, it has been shown in mice and rats that

5-HT turnover varies by region [31,32]. This is likely due to

varying levels of afferent input for the specific raphe cell groups

that project to different areas as well as varying levels of

autoreceptor inhibition of cell firing. Studies with 5-HT1a agonists

and antagonists show that these effects are greatest in hippocam-

pus, which might explain the more rapid response to synthesis

inhibition [33,34].

Figure 2. Brain tryptophan. Brain tryptophan content in mg/mg tissue (a) prefrontal cortex (b) frontal cortex and (c) hippocampus. BALBc and C57
mice received two treatments by gavage of TRP+, TRP2 mixtures or water vehicle at 30 minute intervals followed by saline or NSD 1015 to inhibit
amion acid decarboxylase at 2 hours. Animals were killed 2.5 hours after the first treatment. Data are collapsed for NSD treatment as no significant
effects were predicted or observed. N = 11–12/group. * different from Water. +different from TRP+, ¤ different from corresponding group in BALBc
mice. TRP+ and TRP2 effectively raised and lowered TRP respectively, although the depletion condition was more consistently effective than the
control condition. Similar effects were detected in both strains.
doi:10.1371/journal.pone.0035916.g002

Figure 3. Brain 5-HTP. Brain 5-HTP content in ng/mg tissue in (a) prefrontal cortex (b) frontal cortex and (c) hippocampus. Animals were treated as
described in Figure 2. Only NSD 1015-treated animals are shown. N = 6/group. * different from Water, +different from TRP+, ¤ different from
corresponding group in BALBc mice. TRP2 decreased 5-HT synthesis in all brain regions, but the results were only statistically relevant in C57 mice;
TRP+ did not increase 5-HT synthesis; at baseline, BALBc mice had a lower level of 5-HT synthesis in the hippocampus and the prefrontal cortex, but
not in the frontal cortex.
doi:10.1371/journal.pone.0035916.g003

Acute Tryptophan Depletion in Mice
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The deficient 5-HT synthesis in BALBc mice relative to other

strains was confirmed in this study. 5-HT synthesis and content

have been reported to be lower in BALBc mice than in strains

without a TPH2 mutation [26,27]. In the present study, 5-HT

synthesis was lower in BALBc than C57 mice, but 5-HT content

was lower only in hippocampus. This regional specificity has been

reported elsewhere [26], and may reflect strain-dependent

adaptations to the lower rate of 5-HT synthesis. In addition, the

affinity of this mutant form of the enzyme TPH2 has a higher

affinity for the substrate TRP [35], which could offset its lower

Vmax, especially under conditions of lower TRP availability.

Another possible explanation for the smaller strain difference in

the present study could be the food deprivation prior to testing or

differences in the time of day at sampling as TRP levels vary

significantly over the course of a day, mainly due to the timing of

meals [36].

The balanced amino acid mixture (TRP+) increased TRP

levels, but did not enhance 5-HT synthesis consistently. This was

unexpected, in particular because TPH2 is not saturated with

TRP under baseline conditions and due to animals having been

food deprived [37,38]. However, such studies have not been

conducted in mice. The TRP+ treatment did cause an increase of

5-HT content in BALBc mice, as predicted based on their lower

levels of 5-HT synthesis at baseline. The finding that TRP+ did

not consistently enhance 5-HT synthesis is of particular impor-

tance for human studies, as the latter employ the same amino acid

formulations as a control condition.

The depletion paradigm was more effective in C57 mice than in

BALBc mice, which contradicts our hypothesis. We predicted that

BALBc mice would be more affected by ATD since their 5-HT

synthesis is slowed by a TPH2 mutation [39]. There are several

possible explanations for this outcome. First, this study only looked

at one time point. However, the time course showed comparable

TRP depletion in both strains. More plausibly, the increased

affinity for TRP [35] exhibited by this mutation might render it

less sensitive to physiologic variation in TRP availability. BALBc

mice might also have developed a mechanism to compensate for

the lifelong decrease in TPH2 function. Alternatively, there might

be a threshold level below which 5-HT content cannot be

decreased with dietary manipulations. As BALBc mice are closer

to the threshold at baseline, they would reach this ‘‘floor effect’’

faster.

We found that BALBc mice have significantly lower norepi-

nephrine levels in all brain regions compared to C57 mice. This

could be a supplementary explanation for the anxious phenotype

of BALBc mice reported previously, especially since additional

impairment of 5-HT function by TRP depletion relieved rather

than exacerbated anxiety [40,41]. A slight (15%) difference in

norepinephrine content between these two strains has been

reported previously [42,43]. The larger difference reported here

may be due to starvation, but could also be an effect of strain

differences that have emerged since the studies were published.

Behavioral results showed strain selectivity in the effects of ATD

Moja-De on anxiety-like behavior. At baseline, BALBc are more

anxious then C57 mice, as one would expect based on previous

studies with this strain [44,45]. However, impairment of seroto-

nergic function has an anxiolytic effect on BALBc, but not on C57

mice, suggesting the BALBc mice have an increased vulnerability

towards a 5-HT imbalance while mice without a TPH2 mutation

can compensate for the impairment in synthesis. The directionality

Figure 4. Brain 5-HT. Brain 5-HT content in ng/mg tissue in (a) prefrontal cortex (b) frontal cortex and (c) hippocampus. Animals were treated as
described in Figure 2. Only vehicle treated animals are shown. N = 5–6/group. * different from Water, +different from TRP+, ¤ different from
corresponding group in BALBc mice. 5-HT content was lower at baseline in BALBc in the hippocampus; TRP2 significantly decreased 5-HT content in
the hippocampus; TRP+ did not consistently increase 5-HT content; TRP2 was consistently lower than TRP+ in all regions.
doi:10.1371/journal.pone.0035916.g004

Figure 5. Brain 5-HIAA. Brain 5-HIAA content in ng/mg tissue in (a) prefrontal cortex (b) frontal cortex and (c) hippocampus. Animals were treated
as described in Figure 2. Only vehicle treated animals are shown. N = 5–6/group. * different from Water, +different from TRP+, ¤ different from
corresponding group in BALBc mice. 5-HIAA was decreased by TRP2 in every brain region; a strain difference in 5-HIAA levels at baseline was seen in
hippocampus and frontal cortex, but not in the prefrontal cortex.
doi:10.1371/journal.pone.0035916.g005
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of the behavioral effects was unexpected, as we predicted 5-HT

depletion would have worsened anxiety-like behavior in BALBc

mice given their baseline 5-HT deficit. Adaptations to the lifelong

reduction in 5-HT synthesis might have contributed to the

observed responses after acute manipulations. Alternatively, the

behavioral results could reflect behavioral disinhibition in a

threatening situation, which is relieved by lowering serotonergic

function [46,47]. The latter scenario would predict greater effects

of ATD in the vulnerable (BALBc) genotype. Future experiments

will be necessary to resolve these two possibilities.

In summary, the major finding of this study was that ATD

Moja-De effectively impaired 5-HT synthesis and lowered 5-

HIAA content (an indirect measure of 5-HT release) in mice. The

establishment of this paradigm provides a model with which to

study the effects of mild serotonergic impairment in genetically

manipulated animals. Moreover, the present study suggested that

the TRP+ condition may not alter brain 5-HT synthesis, which

could make it a valid control condition for studies in humans. The

present results show that ATD Moja-De did not affect dopamine,

its metabolites or norepinephrine. The data of the present study

strongly support the conclusion that ATD Moja-De significantly

decreases central serotonergic function in mice and that this

decrease is specific for 5-HT relative to other monoaminergic

systems.
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