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Abstract

MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in
pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs
for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO) mouse which resulted in
significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor
preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced
depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed
a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The
ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western
blotting demonstrated reduced contents of calponin and desmin. Smooth muscle a-actin, SM22a and myocardin were
unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially
reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting
demonstrated reduced expression of Cav1.2 (Cacna1c). It is concluded that smooth muscle miRNAs play an important role
for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of
smooth muscle differentiation markers and L-type Ca2+ channels in the detrusor.
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Introduction

Emptying of the urinary bladder depends on coordinated

contraction of the detrusor and relaxation of the urethra [1,2].

Contraction follows the release of neurotransmitters from motor

nerves that are dispersed in the muscle bundles [3]. This results in

a rapid elevation of the sarcoplasmic Ca2+ concentration,

activation of myosin light chain kinase, phosphorylation of myosin,

and, after a brief delay, force development [4]. Acetylcholine is

central among the transmitters released from neural varicosities in

the detrusor, and the muscarinic Gq-coupled M3 receptor is

primarily responsible for cholinergic detrusor activation [5]. M2

receptors also contribute by inhibiting the formation of cyclic

AMP [6]. In addition to muscarinic mechanisms, purinergic

signalling plays a role [7], and the relative contribution of

purinergic versus cholinergic excitation varies between species and

in pathological situations. In humans, for example, the relative size

of the muscarinic component of neurogenic activation decreases

with age and in bladder disturbances [7,8,9,10]; this so called

‘‘atropine resistance’’ is accompanied by an increase in the relative

dependence on purinergic activation.

Recently, microRNAs have emerged as promising targets for

therapeutic intervention in various disease states [11–14]. miRNAs

are short non-coding RNAs that regulate protein expression and

cellular function [15]. Mature miRNAs are generated from

cleavage of pre-miRNAs by the endonuclease Dicer and are then

incorporated into the RNA-induced silencing complex, which

mediates degradation or translational repression/activation of the

target mRNA. MiRNAs were recently identified to have an

important role for vascular smooth muscle development and

function by regulating phenotypic modulation, contractile function

and neointimal hyperplasia [16–23]. Dramatic effects of miRNA

depletion on smooth muscle differentiation and remodelling has

also been reported for gastrointestinal smooth muscle [24]. In

urinary bladder, a role of miRNAs in cancer has been identified

[25]. However, the importance of miRNAs for detrusor smooth

muscle function and phenotype modulation is unknown.
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In this study we have used an inducible and smooth muscle

specific Dicer knockout (KO) mouse to investigate the role of

miRNAs for bladder function. We found that loss of miRNAs

resulted in a decreased contractile function in response to

depolarization, which was associated with reduced expression of

contractile marker proteins and L-type Ca2+ channels. Our

findings also imply that miRNAs in smooth muscle may play

a role for cholinergic neuro-effector transmission in the urinary

bladder.

Materials and Methods

Animals
Adult mice with inducible and smooth muscle cell specific

inactivation of Dicer were generated as described previously [26].

At the age of 4 weeks, male SMMHC-CreERT2/Dicerflox/flox

(SM-Dicer KO) mice were treated with intraperitoneal injections

of 0.1 ml Tamoxifen (50 mg/kg/day) or vehicle (1:10 EtOH in

sunflower oil) for 5 consecutive days. Vehicle treated male

littermate mice were used as controls. Experiments were

performed 5 or 10 weeks post tamoxifen injections. Mice were

on a mixed C57Bl/6;129 background and all animal experiments

were approved by the Lund/Malmö Ethics Committee (M167-

09).

MiRNA Arrays and Quantitative RT-PCR
Mice were sacrificed by increasing CO2 and whole bladders

were excised and cleaned in HEPES buffered Krebs solution

(nominally Ca2+-free). Bladders were cut open from the urethra

and pinned to the bottom of Sylgard-covered dissection dishes

containing physiological buffer. The mucosa was removed by

pulling using fine forceps in combination with sharp micro-

dissection. Following freezing in liquid N2, isolation of mRNA and

miRNA from six pooled control and Dicer KO bladders without

mucosa was performed using miRNeasy kit and RNeasy MinElute

Cleanup Kit (Qiagen) according to the manufacturer’s recom-

mendations. Whole genome, qPCR based, miRNA arrays (RT2

miRNA PCR Array mouse, #MAM-200C-2, SA Biosciences)

were used according to the manufacturer’s instructions. Individual

miRNAs and mRNAs were analyzed using miScript primer assays

(Qiagen) and QuantiTect Primer assays (Qiagen), respectively.

Voiding Patterns of Freely Moving Mice
Mice were housed individually in standard cages and 24 h urine

output was collected on filter papers covering the whole cage area

[27]. Papers were photographed under ultraviolet light. Spots were

analyzed by blinded counting of the total number of spots, the

number of spots bordering the edge of the filter paper (edge), and

those that did not touch the edge of the paper (center).

Isolated Bladder Preparation
The ureters of isolated bladders were ligated and the bladder

was catheterized via the urethra. The catheter was connected to

a pressure transducer (Living Systems Instrumentation) and

a peristaltic pump. The bladder was then positioned in a 50 ml

water jacketed bath containing aerated HEPES buffered Krebs

solution (2.5 mM Ca2+, 37uC). Intravesicular pressure was

continuously recorded using the PM4 perfusion pressure monitor

(Living Systems Instrumentation) and WinDaq waveform re-

cording software (Dataq Instruments). Buffer was injected through

the catheter (50, 100 and 200 ml) in a stepwise fashion. After

stabilization of passive pressure at each volume, 60 mM K+

(obtained by exchange of NaCl for KCl) was added to the bathing

solution. Active pressure was maintained for 5 min and integrated

over the entire stimulation period.

Strip Preparations and Length-tension Relationship
Force measurements were done essentially as described [28]

using equatorial bladder strips without mucosa. In brief, prepara-

tions were mounted in myographs with open organ baths (three

610 M, Danish MyoTechnology, Aarhus, Denmark) filled with

aerated HEPES buffered Krebs solution (2.5 mM Ca2+, 37uC).
Length was systematically increased and strips were contracted

with 60 mM K+ at each length followed by relaxation in Ca2+-free

HEPES buffered Krebs solution. The preparations were then

stretched to a new length and allowed to equilibrate in Ca2+-

containing buffer prior to contraction with 60 mM K+.

Electrical field stimulation, carbachol concentration-response

relationships, and ATP responses were recorded at the optimal

length for force development (L0). After each experiment the

lengths and weights of the individual preparations were de-

termined to allow for calculation of stress (force per cross-sectional

area).

Electrical Field Stimulation
Bladder smooth muscle strips without mucosa were prepared

and mounted as described [29]. Full frequency response curves

(5 s activation, pulse duration 0.5 ms, at 2 min intervals) were

generated in control conditions, in the presence of scopolamine

(1 mM), and after desensitization of purine receptors using a,b-
methylene-ATP (10 mM) in the continued presence of scopol-

amine [28]. Each experiment was started and ended by

depolarizing the smooth muscle with 125 mM KCl.

Electron Microscopy
All bladders were filled with 0.3 ml saline through the urethra

[21]. Processing for fixation and electron microscopy was

performed as described [28]. 100 digital micrographs at three

levels of magnification (10, 30, and 60 K) were acquired (600 in

total) and analyzed using ImageJ (NIH, Bethesda, MD, USA).

Western Blotting
Detrusor muscle homogenates were prepared from control and

Dicer KO bladders as described previously [28]. Briefly, the

samples were frozen in liquid N2, dissolved in Laemmli buffer

containing phosphatase and protease inhibitor cocktails (Bio-Rad).

Following determination of protein concentration, equal amounts

of protein were loaded on TGX Criterion gels (Biorad). Proteins

were then transferred using either wet transfer over-night or semi-

dry transfer for 10 min using the Trans-Blot Turbo system

(Biorad). Proteins were detected using commercially available

primary antibodies: Desmin (Cell Signaling, 1:1000), Calponin

(1:1000) and SM22 (1:2000) and Myocardin (Abcam, 1:500), a-
actin (Sigma, 1:1000), HSP90 (BD Transduction labs., 1:1000),

Ca2+/calmodulin-dependent protein kinase (CamKIId, R&D

Systems, 1:500), and Cav1.2 (Alomone labs, 1:500). HRP-

conjugated or fluorescently labeled DyLight800 and DyLight680

secondary antibodies (Cell Signaling, 1:5000) were used and

images were acquired using the LI-COR Odyssey Fc instrument

(LI-COR Biosciences).

Statistical Analysis
All data are presented as means 6 SEM and single comparisons

between two groups were performed using student’s t-test.

Multiple comparisons were performed using ANOVA followed

MicroRNAs Control Detrusor Function

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e35882



by the Bonferroni post-hoc test. n$3 for all experiments.

* = p,0.05, ** = p,0.01, *** = p,0.001.

Results

Deletion of Dicer Results in a General Loss of miRNAs in
the Bladder
To assess the effect of smooth muscle specific Dicer knockout

(KO) on the miRNA expression pattern in the urinary bladder,

miRNA arrays were run using pooled samples from control and

KO bladders without mucosa. MiR-145, miR-22, miR-125b-5p,

miR-27a and miR-1 appeared to be most highly expressed in the

bladder muscle layer, and their knockdown level ranged between

68 and 99% (Table S1). We chose 11 highly expressed miRNAs

from the array for validation by quantitative RT-PCR. MiR-143

was not on the array but was included because it is generated

together with miR-145 from a bicistronic transcript [16]. MiR-451

was included as a negative control as it is known to be generated in

a Dicer independent manner [30,31]. With the exception for miR-

451, Dicer deletion resulted in significant reduction of all of these

miRNAs (Figure 1A, 10 weeks post tamoxifen). Taken together,

this demonstrates efficient knockdown of miRNAs in detrusor

smooth muscle following deletion of Dicer.

Loss of miRNAs did not significantly affect bladder weight

(Figure 1B) or bladder to body weight ratio (Figure 1C). As

reported previously [32], the body weight was reduced 10 weeks

following tamoxifen treatment (Figure 1D).

Altered Micturition Pattern in the Absence of Smooth
Muscle miRNAs
To test if the loss of miRNAs affected the voiding pattern of

freely moving mice, urine was collected on filter papers that were

subsequently photographed under UV light (Figure 2A). Analysis

of the number of spots demonstrated an increased number of spots

for the KO compared to the control mice (Figure 2B). Mice tend

to void in the corners or along the edge of the cage and this pattern

changes in micturition disturbances [27]. In fact, the increased

micturition frequency was accounted for by the increase in the

centrally localized spots (Figure 2B). To address whether motor

function of the KO detrusor was altered, bladders were fitted with

pressure transducers. Bladder volume was then increased in a step-

wise fashion to 200 ml. In resting bladders the pressure changed

little with filling and no spontaneously generated pressure peaks

were observed. Depolarization (60 mM K+) resulted in prompt

increases in pressure. The amplitude of this response declined with

increasing volume as expected from the law of Laplace. The

attained pressure on activation with K+ was lower in KO bladders

at all filling volumes (Figure 2C).

Detrusor Muscle Contractile Function is Impaired in the
Absence of miRNAs
To confirm that the reduced ability of whole bladder

preparations to generate pressure was due to impaired contractility

we mounted strips of bladder smooth muscle in myographs and

generated length-tension relationships. As shown in Figure 3A,

active force in response to depolarization with 60 mM K+ was

reduced in Dicer KO strips at all muscle lengths. Passive force on

the other hand was not altered (Figure 3B). Stress (force per cross-

sectional area) was reduced at circumferences exceeding 12 mm

Figure 1. Reduced levels of detrusor miRNAs and maintained wet weight in Dicer KO urinary bladder. Highly expressed miRNAs were
selected in an array experiment and analyzed here by qPCR in control (black bars) and Dicer KO (white bars) urinary bladders excised 10 weeks
following tamoxifen treatment (A) (n = 6). MiR-451 is generated in Dicer independent manner and was included as a negative control. The bladder
wet weights, bladder to body weight ratios, and body weights of control and Dicer KO bladders is shown in B-D (n = 13).
doi:10.1371/journal.pone.0035882.g001
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(Figure 3C). The optimal length for force development (L0) was

not changed (Figure 3D), whereas force at L0 was reduced

(Figure 3E). Taken together these findings confirm reduced

contractility in the absence of detrusor miRNAs and additionally

show that this occurs without remodeling.

Altered Responsiveness to Electrical Field Stimulation in
Dicer KO Detrusor Muscle
Electrical field stimulation ex vivo causes release of neurotrans-

mitter substances from autonomic nerves and subsequent muscle

Figure 2. Disturbed micturition pattern and impaired pressure generation in the isolated bladder. Voided urine was collected on filter
papers. Panel A shows filter papers photographed under UV light. Panel B shows summarized data. Panel C shows pressure of isolated and
cannulated bladders during 5 min of stimulation with 60 mM K+ at different volumes (6–8).
doi:10.1371/journal.pone.0035882.g002

Figure 3. Reduced active stress in Dicer KO detrusor strips. Active (A) and passive (B) length-tension relationships were generated using strips
from control and Dicer KO bladders. The muscle strips were stimulated in 60 mM K+ and relaxed in nominally calcium-free solution. Stress (C) was
calculated using the length and weight of the individual preparations. The calculated circumference at which the bladder generated maximal active
force (L0) was not different in Dicer KO bladders (D). Stress at L0 is shown in E (n = 11).
doi:10.1371/journal.pone.0035882.g003
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Figure 4. Deletion of Dicer in smooth muscle impairs the cholinergic component of the neurogenic contraction. Detrusor muscle strips
from control and Dicer KO mice were activated by electrical field stimulation in the absence and presence of scopolamine and after desensitization of
purinergic receptors using a,b-methylene-ATP in the continued presence of scopolamine. Full frequency response curves in control conditions, in the
presence of scopolamine (1 mM), and after desensitization of purinergic receptors using a,b-methylene-ATP (10 mM) in the continued presence of
scopolamine are shown for control and Dicer KO bladders in A and B, respectively, 10 weeks following Tamoxifen treatment. The cholinergic
component of activation (C) was calculated by subtracting the force in the presence of scopolamine from force in control conditions. The purinergic
component of activation (D) was calculated by subtracting residual force (after a,b-methylene-ATP and in the presence of scopolamine) from force in
the presence of scopolamine. The stress (force per cross-sectional area) for the different components was calculated using absolute force values, strip
length, strip weight, and assuming a density of 1.06; the resulting data is shown in E-F. Stress was then calculated for the scopolamine sensitive
(cholinergic, E) and the a,b-methylene-ATP sensitive (purinergic, F) components (n = 10).
doi:10.1371/journal.pone.0035882.g004
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activation. Full frequency response relationships were generated in

control and KO detrusor strips under control conditions, after

inhibition of muscarinic receptors using scopolamine and after

desensitization of purine receptors using a,b-methylene-ATP

(Figure 4A-4D; c.f. Figure S1 for a merged version of 4A and

4B). We plotted the scopolamine-sensitive (cholinergic) and a,b-
methylene-ATP-sensitive (purinergic) components of activation for

control and Dicer KO bladders as stress (Figure 4E and 4F). A

striking reduction of the muscarinic component was seen in Dicer

KO compared to control detrusor. The purinergic component of

activation on the other hand was unchanged. When force was

normalized to K+ contraction (or maximal nerve-induced

activation) rather than being expressed as stress, the cholinergic

component remained reduced whereas the purinergic component

was increased (Figure 4C and 4D). A similar, albeit less

pronounced, increase of the relative purinergic component was

evident already 5 w post Tamoxifen (Figure S2). Taken together,

a state of ‘‘scopolamine resistance’’ is evident in the Dicer KO

detrusor together with a relative increase of the purinergic

component of neurogenic activation, i.e. changes known to occur

in many pathological bladder disturbances.

Electron Microscopy Analysis of Smooth Muscle Cells in
Dicer KO Bladder
In order to examine if the disturbed contractility was associated

with ultrastructural changes, detrusor smooth muscle was

examined using electron microscopy (Figure 5A-5F). We used

three control and three KO detrusors fixed at identical volumes to

measure cell cross-sectional area, the percentage of the cell

membrane length that was occupied by dense bands, the density of

caveolae, the nerve terminal distances, the size of the synaptic

clefts, and the distance between cells (Figure 5G-5L). Overall, the

ultrastructure was well maintained in KO bladders. Except for an

increase in the distance between smooth muscle cells, all other

parameters remained similar in KO and control bladders

(Figure 5G-5L). Thus, the reduced contractility in response to

nerve activation occurs without a change in the density of neurons

reaching the bladder and without conspicuous changes in the

overall morphology or cross-sectional area of smooth muscle cells.

Phenotypic Modulation of Detrusor Smooth Muscle in
the Absence of miRNAs
In vascular smooth muscle, deletion of Dicer results in a general

reduction of differentiation as characterized by a lower expression

of smooth muscle differentiation markers. To examine if this

occurs in the detrusor upon deletion of Dicer we determined the

expression of calponin, desmin, a-actin, and SM22 by western

blotting (Figure 6A-6E). Clear-cut reductions were seen in

calponin and desmin whereas the levels of a-actin and SM22

were unchanged. Myocardin levels were similarly unchanged

(Figure 6E). Quantitative RT PCR results mirrored the changes at

the protein level and additionally showed a modest reduction of

myosin heavy chain (Myh11) but unchanged SRF expression

(Figure 6F-6J and data not shown). These findings indicate

Figure 5. Electron microscopy reveals normal cell morphology and innervation but increased distance between cells in Dicer KO
urinary bladder. Smooth muscle cells in control (A, C, E) and Dicer KO (B, D, F) bladders were analyzed by electron microscopy. 600 EM micrographs
in total were used for quantitative analysis of the density of caveolae (G), the relative proportion of each cell profile that was occupied by dense
bands (H), the cell cross sectional area (I), the distance between nerve terminals (J), the width of the synaptic cleft at sites with no Schwann cell
coating (K), and the cell to cell distance (L) (n = 3–4).
doi:10.1371/journal.pone.0035882.g005
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reduced expression of two contractile marker proteins, but they do

not readily explain the selective reduction of depolarization-

induced stress (Figure 3) relative to the purinergic component of

nerve-induced stress (Figure 4F).

Response of Dicer KO Detrusor Strips to Exogenous
Agonists
In order to confirm that depolarization-induced contraction is

indeed selectively impaired in the Dicer KO detrusor we

contracted bladder strips with 60 mM K+. After washout and

relaxation preparations were contracted with exogenous ATP

(3 mM, Figure 7A). As predicted from the results in Figure 3 and

4, the depolarization-induced response was drastically reduced in

comparison to the peak of the subsequent ATP response

(p,0.001). ATP-induced stress on the other hand was un-

changed (Figure 7B). Similar results were obtained for a,b-
methylene-ATP (Figure 7C). We next generated full concentra-

tion-response curves for the muscarinic agonist carbachol. A

modest reduction of stress was seen at saturating concentrations

of carbachol (Figure 7D). However, carbachol contraction was

increased following normalization to K+ contraction in the same

strip (p,0.01, not shown), contrasting with the cholinergic

neurogenic component. These findings verify a selective re-

duction of depolarization-induced contractility not only relative

to ATP, but also relative to carbachol. In further support of this

specificity we found that direct activation of the contractile

machinery using the phosphatase inhibitor calyculin A resulted in

similar contraction in control and Dicer KO detrusor strips

(70610 vs. 63616 mN/mm2, n.s.).

Reduced Expression of L-type Ca2+ Channels in Dicer KO
Detrusor
Genetic ablation of L-type Ca2+ channels leads to selective

impairment of KCl-induced contraction as compared to

stimulation with carbachol (,90% vs. ,35% inhibition of

tonic phase, [33]). Moreover, P2X1 channels, which are

involved in detrusor activation by ATP, are directly permeable

to Ca2+ which implies a less critical role of L-type channels in

the ATP response compared to the KCl response. To test the

validity of this concept under our assay conditions we pre-

incubated bladder strips with the L-type Ca2+-channel blocker

nifedipine (1 mM) and then contracted the strips with either

60 mM KCl or 3 mM ATP. As shown in Figure 8A, nifedipine

inhibited KCl-induced contraction by 9061%; ATP-induced

contraction was inhibited by only 5464% (p,0.001 vs. KCl).

Reduced expression of L-type Ca2+-channels in Dicer KO

bladder could thus potentially explain the specificity of miRNA

deletion for KCl-induced contraction. We therefore assayed the

level of transcript for the pore-forming subunit of the L-type

Ca2+-channel (cacna1c) and the level of protein (Cav1.2). Both

Figure 6. Reduced contents of calponin and desmin in Dicer KO detrusor. Expression of the differentiation related proteins calponin (A),
desmin (B), smooth muscle a-actin (C), SM22 (D), and myocardin (E) was analyzed in control (black bars) and Dicer KO (white bars) bladders by
western blotting 10 weeks post tamoxifen treatment. Original blots are shown below the individual bar graphs. HSP90 was used as loading control
throughout (n = 6–8). Transcript levels for selected genes were examined in control and Dicer KO detrusor by qPCR 10 weeks post tamoxifen
treatment. Primers for genes encoding calponin (Cnn1, F), Desmin (Des, G), smooth muscle a-actin (Acta2, H), SM22 (Tagln, I), Myocardin (Myocd, J)
were used (n = 5–11).
doi:10.1371/journal.pone.0035882.g006
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were reduced in Dicer KO detrusor (Figure 8B and 8C). Taken

together, these findings argue that impaired motor function of

the Dicer KO detrusor can be traced back to a reduced

expression of L-type Ca2+ channels.

Recent work has indicated that cacna1c/Cav1.2 expression is

negatively regulated by CamKIId activity [34,35]. Because

CamKIId is a predicted and validated target for the highly

expressed miR-145 [16], we examined the expression of CamKIId
by western blotting. The CamKIId level tended to be increased in

KO detrusor, but this difference did not reach statistical

significance (Figure 8D).

Discussion

In the present study we used smooth muscle-specific and

Tamoxifen-inducible knockout of Dicer to evaluate the impor-

tance of miRNAs for urinary bladder function in mice. We found

that loss of miRNAs affected the voiding pattern of un-

anaesthetized and freely moving animals and impaired the motor

function of the intact bladder. These effects were associated with

reduced contractile differentiation of the detrusor muscle and

reduced expression of L-type Ca2+ channels. Our findings also

imply that cholinergic neuro-effector transmission must be affected

at a junctional or pre-junctional level. This is because the

cholinergic component of neural activation was more drastically

affected than the response to exogenous carbachol (reduced and

increased relative to K+, respectively).

The effect of Dicer KO on detrusor smooth muscle marker

expression is milder than previously reported by us for Dicer-

deficient vascular smooth muscle [26,32]. In vascular smooth

muscle the effects are due in part to miR-145, which regulates

smooth muscle differentiation via multiple mechanisms including

myocardin expression [19], actin polymerization [18,32], and

angiotensin signaling [17]. Accordingly, robust reductions of

smooth muscle a-actin, SM22, calponin and myosin heavy chain

were previously found in Dicer-deficient vascular smooth muscle

[26]. Here we find reductions of calponin and desmin, whereas the

levels of smooth muscle a-actin, SM22 and myocardin were

unchanged. Findings in the literature nonetheless support the idea

that the changes that we observe may contribute to the contractile

deficit. Genetic ablation of smooth muscle calponin, which is an

actin binding protein that regulates actin-myosin interaction [36],

was found to result in a 40% reduction of depolarization-induced

force in aorta and vas deferens [37,38]. Lack of the desmin

similarly resulted in a 50% reduction of depolarization-induced

stress in the urinary bladder [39].

A cause and effect relationship between the reduced levels of

calponin and desmin and the impaired detrusor contractility is

challenged by a number of observations. The first and most

important observation was that Dicer deletion showed marked

specificity for depolarization-induced force. Indeed, carbachol and

ATP-induced contractions were much less affected or largely

unaffected. When the membrane activation step was bypassed

using the potent phosphatase inhibitor Calyculin A, no difference

was observed between control and Dicer KO bladder, arguing for

a largely functional contractile machinery. The ultrastructure of

the smooth muscle moreover appeared normal, with normal cross-

sectional areas of the muscle cells, thin and thick filaments, and no

expansion of rough endoplasmic reticulum; that is, no hallmarks of

the so called synthetic phenotype were evident. Taken together,

this argues for additional effects of Dicer deletion at the level of

membrane excitation.

Detrusor contraction shows a high degree of sensitivity to L-type

Ca2+ channel blockers [40]. Here, we found that expression of the

pore-forming subunit of the L-type Ca2+ channel (Cav1.2, Cacna1c)

was reduced by ,50% in Dicer KO detrusor. Work on smooth

muscle-specific Cav1.2 knockout mice demonstrated that lack of

these channels resulted in a ,90% reduction of the tonic KCl

response in detrusor strips. The tonic carbachol response on the

other hand was reduced by only ,35% [33]. Reduced expression

Cav1.2 thus represents a likely reason for the preferential effect of

Dicer deletion on KCl-induced contraction, and our finding that

ATP responses were more resistant to nifedipine than were KCl

responses concurs with this view. Previous work in smooth muscle

has demonstrated reduced expression of L-type Ca2+ channels in

phenotypically modulated smooth muscle cells [41]. Our own

Figure 7. Selective reduction of depolarization-induced stress
in Dicer KO bladder. Panel A shows original force records of control
(black line) and Dicer KO (gray line) bladder strips. Following
contraction in response to 60 mM K+ (HK) and relaxation, 3 mM ATP
was added every 10 min. The preparations were washed three times
following each ATP challenge. Insets show representative ATP
responses on an expanded time scale (n = 4–7). B and C show
summarized data for the peak ATP- and a,b-methylene-ATP-induced
stress in control (black bar) and Dicer KO (white bar) bladders. Panel D
shows cumulative concentration-response relationship for carbachol for
control and Dicer KO bladders (n = 10–11).
doi:10.1371/journal.pone.0035882.g007
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work on gastro-intestinal smooth muscle indicated that organ

culture reduced L-type Ca2+ current in a Ca2+-dependent manner

[42]. Since L-type Ca2+ channels directly contribute to the

differentiation process [43,44], their reduced expression may

constitute an initial and critical step in the phenotype switch that is

initiated by deletion of miRNAs from smooth muscle. The

differential loss of smooth muscle marker expression in detrusor

versus vascular smooth muscle at 10 weeks following Dicer

deletion may therefore reflect different time-courses of L-type

calcium channel expression in these tissues.

The basis of the reduced expression of L-type Ca2+ channels in

Dicer KO bladder is not known. Recent work on cardiomyocytes

has shown that overexpression and deletion, respectively, of

CamKIId results in reduced and increased L-type Ca2+ channel

expression [34,35]. Increased CamKIId expression is moreover

a signature feature of the phenotype switch in vascular smooth

muscle [45], and recent work has identified CamKIId as a direct

target of miR-145 [16]. Upregulation of CamKIId is thus an

appealing candidate mechanism by which L-type Ca2+ channel

expression drops in Dicer KO bladder. However, we did not

detect a significantly altered expression of CamKIId in the Dicer

KO bladder. We cannot rule out significant changes at earlier time

points, but this finding suggests additional, or completely different,

mechanisms. One possibility is that NFkB, which has been

proposed to play a role for L-type Ca2+ channel expression in the

vasculature [46], is involved. Additional work is required to test

these possibilities.

The reduced scopolamine-sensitive (cholinergic) component of

activation during electrical field stimulation in Dicer KO bladder

is intriguing. This reduction was significantly more pronounced

than was the reduction of contractility in response to carbachol.

We interpret this to reflect impaired cholinergic neuro-effector

transmission. Electron microscopy did not indicate an altered

density of detrusor nerve terminals or overt changes in the size of

the synaptic clefts, ruling out partial denervation. One remaining

possibility is reduced release of acetylcholine from neural

varicosities. Previous work has demonstrated important roles of

miRNAs in neuronal differentiation and synaptic function [47,48],

but neuronal miRNAs are not targeted in our model so any pre-

junctional effects must be indirect. Putative neuronal changes

could, for example, depend on transfer (or loss thereof) of miRNAs

from smooth muscle to neurons where proteins that play a role in

synthesis and release of acetylcholine are targeted. A primary

deficit in the smooth muscle cells, on the other hand, may involve

Figure 8. Reduced expression of L-type Ca2+ channels in Dicer KO bladder. Panel A shows contractile responses to 60 mM K+ and 3 mM
ATP, respectively, before (black trace) and after (gray trace) addition of the L-type Ca2+ channel blocker nifedipine (1 mM). Both K+ (not shown) and
ATP (Figure 7A) responses were highly reproducible (n = 4). Panels B and C show the mRNA and protein levels for the pore-forming subunit of the L-
type Ca2+ channel (Cacna1c and Cav1.2) in control (black bars) and Dicer KO (white bars) bladder. Expression of CamKIId is shown in D (n = 6–10).
doi:10.1371/journal.pone.0035882.g008
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secreted factors that signal to nearby neurons, matrix changes, or

expression of acetylcholine esterase in the synaptic cleft. Whatever

the case, it must be considered that a neurotransmission defect

may in part be responsible for the reduced KCl responses. This is

because depolarization is expected to cause release of transmitters

and neuropeptides from peripheral nerve endings, including

acetylcholine and neurokinins. Reduced neuronal release might

therefore contribute less to KCl-induced force development in the

KO bladder.

In summary, knockdown of miRNAs in the urinary bladder

affects spontaneous micturition as well as contractile function of

the isolated bladder. This is associated with reduced expression of

contractile marker proteins and L-type Ca2+ channels. A reduction

of the atropine/scopolamine-sensitive component of neurogenic

activation together with an increased relative purinergic compo-

nent has been reported for bladder instability [8], interstitial

cystitis [9], and normal ageing [10]. The current study thus

provides proof of principle that smooth muscle cells can be

primary culprits in the chain of events that leads to detrusor

instability as defined by the increased spontaneous micturition and

the characteristic changes in neuro-effector transmission and

contractility.

Supporting Information

Figure S1 Combined data on contraction induced by
electrical field stimulation at 10 weeks post tamoxifen.
Data in Figure 4 A and B were merged in one panel to facilitate

direct comparison of WT and KO data.

(TIF)

Figure S2 Effect of Dicer deletion on electrical field
stimulation-induced contraction at 5 weeks. Full frequency
response curves in control conditions, in the presence of

scopolamine (1 mM), and after desensitization of purinergic

receptors using a,b-methylene-ATP (10 mM) in the continued

presence of scopolamine are shown for control and Dicer KO

bladders in A and B, respectively, 5 weeks following Tamoxifen

treatment. The cholinergic component of activation (C) was

calculated by subtracting the force in the presence of scopolamine

from force in control conditions. The purinergic component of

activation (D) was calculated by subtracting residual force (after

a,b-methylene-ATP and in the presence of scopolamine) from

force in the presence of scopolamine. E shows the relative peak

force on addition of a,b-methylene-ATP (n= 8–9).

(TIF)

Table S1 MicroRNA (miRNA) qPCR-arrays define high-
ly expressed miRNAs in the detrusor and demonstrate
effective knock down of most miRNAs. QPCR based

miRNA arrays were run on pooled detrusor samples from control

and smooth muscle-specific Dicer KO mice. Fold expression

relative to housekeeping genes is shown in the middle column and

the percentage of knockdown in Dicer KO bladders is shown in

the right column. The expression levels shown are assuming equal

efficiency of the primers. The data are from a single experiment

from six pooled bladders of each genotype.

(TIF)
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