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Abstract

Neurons in the nucleus laminaris (NL) of birds act as coincidence detectors and encode interaural time difference to localize
the sound source in the azimuth plane. GABAergic transmission in a number of CNS nuclei including the NL is subject to a
dual modulation by presynaptic GABAB receptors (GABABRs) and metabotropic glutamate receptors (mGluRs). Here, using in
vitro whole-cell patch clamp recordings from acute brain slices of the chick, we characterized the following important but
unknown properties pertaining to such a dual modulation: (1) emergence of functional GABA synapses in NL neurons; (2)
the temporal onset of neuromodulation mediated by GABABRs and mGluRs; and (3) the physiological conditions under
which GABABRs and mGluRs are activated by endogenous transmitters. We found that (1) GABAAR-mediated synaptic
responses were observed in about half of the neurons at embryonic day 11 (E11); (2) GABABR-mediated modulation of the
GABAergic transmission was detectable at E11, whereas the modulation by mGluRs did not emerge until E15; and (3)
endogenous activity of GABABRs was induced by both low- (5 or 10 Hz) and high-frequency (200 Hz) stimulation of the
GABAergic pathway, whereas endogenous activity of mGluRs was induced by high- (200 Hz) but not low-frequency (5 or
10 Hz) stimulation of the glutamatergic pathway. Furthermore, the endogenous activity of mGluRs was mediated by group
II but not group III members. Therefore, autoreceptor-mediated modulation of GABAergic transmission emerges at the
same time when the GABA synapses become functional. Heteroreceptor-mediated modulation appears at a later time and is
receptor type dependent in vitro.
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Introduction

Synaptic transmission is dynamically modulated by G-protein-

coupled receptors (GPCRs) acting as autoreceptors or hetero-

receptors [1,2]. Commonly found among these receptors are

metabotropic glutamate receptors (mGluRs) [3,4,5] and type-B

GABA receptors (GABABRs) [6,7], which are activated by the two

most prevalent excitatory and inhibitory neurotransmitters in the

vertebrate CNS, glutamate and GABA, respectively. These

receptors play important modulatory roles in a variety of auditory

nuclei by mediating long-term plasticity, regulating transmitter

release, and altering neuronal response properties [8,9,10]. A dual

modulation of GABA release by both presynaptic GABABRs and

mGluRs has been found in a number of CNS nuclei including two

avian auditory nuclei involved in coding of temporal information

of sounds [11,12,13]. In such cases, GABABRs function as

autoreceptors modulating GABA release via a use-dependent

feedback mechanism, whereas mGluRs function as heterorecep-

tors modulating GABA release. Because these previous studies

have been mainly focused on characterizing the neuromodulation

in relatively mature tissues, a number of important questions

pertaining to the development of such a dual modulation remain

unanswered. Does the autoreceptor-mediated modulation emerge

at the same time when the GABA synapses start functioning

through postsynaptic ionotropic receptors? Which one appears

first, the modulation mediated by autoreceptors or the modulation

mediated by heteroreceptors? Are the physiological conditions,

under which the heteroreceptors are activated by endogenous

glutamate and exert their modulatory effects, similar to those for

autoreceptors?

The avian nucleus laminaris (NL) circuit constitutes an excellent

model system to address these questions. Both the anatomy and

the physiological function of the NL have been well characterized

[14,15]. NL neurons receive both glutamatergic and GABAergic

inputs, providing the sources for the two native neurotransmitters

that activate mGluRs and GABABRs involved in the dual

modulation of GABA release. The development of the glutama-

tergic input to the NL, which originates from bushy cells in the

cochlear nucleus magnocellularis (NM), has been well established.

Synaptic connections between NM and NL form at E8/9 when

these two nuclei originating from the auditory anlage start to be

structurally separated [16,17]. Physiological recordings in brain

slices have demonstrated that these synapses become functional

(defined as the appearance of synaptic responses mediated by

postsynaptic ionotropic receptors evoked by activating their

afferent fibers) at E10/11, a few days after synapse formation

[18,19]. In contrast, the development of the GABAergic input to

the NL, which originates primarily from the superior olivary

nucleus (SON), is not fully understood. While anatomical data

have shown that GABA terminals to the NL have little presence at

E9–11 and a few GABAergic fibers are present at E12–14 [20],
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physiological data about the onset of functional GABA synapses

are lacking. Therefore one of the goals of this study was to

determine when the GABA synapses in NL became functional.

Regarding the temporal onset of GABABR- and mGluR-

mediated modulation of GABA release, two intriguing and

intuitive hypotheses can be formed. First, modulation mediated

by the autoreceptors starts functioning prior to that by hetero-

receptors. Even before synaptogenesis, both GABABRs and

GABAARs are expressed on neuronal membranes and the GABA

signaling via these receptors participates in many cellular events in

early development such as cell growth, survival, migration, and

synaptogenesis [21]. The presence of both GABABRs and

GABAARs in early development renders the possibility of

autoreceptor-mediated modulation to appear immediately after

the synapses become functional. Therefore, we predicted that

GABABR-mediated modulation took place prior to mGluR-

mediated modulation of GABAergic transmission in the NL.

The second hypothesis predicted that the physiological conditions

that induced the endogenous activity of GABABRs in neuromo-

dulation differed from those for mGluRs. Multiple factors, such as

the spiking activity level of the presynaptic terminals, the spatial-

temporal features of the transmitter diffusion, clearance mecha-

nisms of transmitters, receptor affinity, and subcellular location of

the receptors, may be involved in determining the extent of

activation of these receptors [22,23]. Being present on the

presynaptic terminal membranes surrounding the synaptic cleft

or sometimes located directly in the cleft area, autoreceptors are

physically close to the transmitter release sites, enhancing the

chance for activation of the autoreceptors by spilled over

transmitter molecules. In contrast, heteroreceptors are generally

located farther in distance from the release sites of their

endogenous transmitter, and the chance of direct synapsing onto

the synaptic terminals where these heteroreceptors are located is

rare [22,23]. Therefore, modulation mediated by endogenous

activity of heteroreceptors may require more intense synaptic

activity of the corresponding inputs than that mediated by

autoreceptors.

Methods

Slice preparation and in vitro whole-cell recordings
Fertilized chicken eggs were purchased from Meyers Hatchery.

Eggs were incubated using an RX2 Auto Turner and a Clearview

Brooder (Lyon Electric Co., Chula Vista, CA). Brainstem slices

(250–300 mm in thickness) were prepared from chicken embryos,

as described previously [24], with modification of the components

of the artificial cerebrospinal fluid (ACSF) used for dissecting and

cutting the brain tissue. The modified ACSF, which is a glycerol-

based solution [25], contained (in mM): 250 glycerol, 3 KCl, 1.2

KH2PO4, 20 NaHCO3, 3 HEPES, 1.2 CaCl2, 5 MgCl2, and 10

dextrose, pH 7.4 when gassed with 95% O2 and 5% CO2. The

procedures were approved by the Institutional Animal Care and

Use Committee (IACUC) at Northeast Ohio Medical University,

and are in accordance with NIH policies on animal use. Slices

were incubated at 34–36uC for 1 hr in normal ACSF containing

(in mM): 130 NaCl, 26 NaHCO3, 3 KCl, 3 CaCl2, 1 MgCl2, 1.25

NaH2PO4 and 10 dextrose. ACSF was constantly gassed with 95%

O2 and 5% CO2 (pH 7.4). For recording, slices were transferred to

a 0.5 ml chamber mounted on a Zeiss Axioskop 2 FS Plus

microscope (Zeiss, Germany) with a 406- water-immersion

objective and infrared, differential interference contrast optics.

The chamber was continuously superfused with ACSF (2–2.5 ml/

min) by gravity. The microscope was positioned on the top center

of an Isolator CleanTop II and housed inside a Type II Faraday

cage (Technical Manufacturing Corporation, Peabody, MA).

Recordings were performed at 34–36uC, controlled by a Single

Channel Temperature Controller TC324B (Warner Instruments,

Hamden, CT).

Patch pipettes were drawn on an Electrode Puller PP-830

(Narishige, Japan) to 1–2 mm tip diameter using borosilicate glass

Micropipets (inner diameter of 0.86 mm, outer diameter of

1.60 mm) (VWR Scientific, Seattle, WA). The electrodes had

resistances between 3 and 7 MV when filled with a solution

containing (in mM): 105 K-gluconate, 35 KCl, 5 EGTA, 10

HEPES, 1 MgCl2, 4 ATP-Mg, and 0.3 GTP-Na, with pH of 7.2

(adjusted with KOH) and osmolarity between 280 and 290

mOsm. The Cl2 concentration (37 mM) in the internal solution

approximated the physiological Cl2 concentration in NL neurons,

measured previously [13]. Placement of the recording electrodes

was controlled by a motorized micromanipulator MP-225 (Sutter

Instrument, Novato, CA). The liquid junction potential was

10 mV, calculated using a software package by Barry [26], and

data were corrected accordingly.

The voltage clamp experiments were performed with an

AxoPatch 200B amplifier (Molecular Devices, Union City, CA).

Data were low-pass filtered at 3–10 kHz, and digitized using a

Data Acquisition Interface ITC-18 (Instrutech, Great Neck, NY)

at 20 kHz. Recording protocols were written and run using the

acquisition and analysis software AxoGraph X (AxoGraph

Scientific, Australia).

All chemicals and drugs were obtained from Sigma (St Louis,

MO) except for (6)-1-Aminocyclopentane-trans-1,3-dicarboxylic

acid (tACPD), 3-[[(3,4-Dichlorophenyl)methyl]amino]propyl]

diethoxymethyl)phosphinic acid (CGP52432), (RS)-a-Cyclopro-

pyl-4-phosphonophenylglycine (CPPG), (2S)-2-Amino-2-[(1S,2S)-

2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid

(LY341495), 1,2,5,6-Tetrahydro-1-[2-[[(diphenylmethylene)ami-

no]oxy]ethyl]-3-pyridinecarboxylic acid hydrochloride (NNC

711), DL-threo-b-Benzyloxyaspartic acid (DL-TBOA), and (3S)-3-

[[3-[[4-(Trifluoromethyl)benzoyl]amino]phenyl]methoxy]-L-as-

partic acid (TFB-TBOA), which were obtained from Tocris

(Ballwin, MO). All drugs were bath-applied except for 5-

Aminomethyl-3-hydroxyisoxazole (muscimol), which was applied

with pressure ejection (puff application) by using a multi-channel

picospritzer (General Valve, Fairfield, NJ). Muscimol (10 mM) was

prepared in ACSF containing 6,7-Dinitroquinoxaline-2,3-dione

(DNQX, 50 mM) and D-(-)-2-Amino-5-phosphonopentanoic acid

(APV, 100 mM), antagonists for ionotropic glutamate receptors

(AMPA and NMDA receptors, respectively). Puff electrodes were

prepared using the same pulling methods as producing recording

electrodes except that the puff electrodes had larger tip diameter

(2–5 mm). The puff electrode was placed above and lateral to the

recoded cell at a distance of 50–100 mm. Positive pressure (30–

70 kPa, duration of 200 ms) was used to eject the muscimol-

containing solution.

Synaptic stimulation and recordings of synaptic
responses

Extracellular synaptic stimulation was performed using concen-

tric bipolar electrodes with a tip core diameter of 127 mm (World

Precision Instruments, Sarasota, FL). Because of the small size of

NL and limited number of slices that can be obtained from young

embryos (e.g., 1–2 slices at E11–13 that contain distinguishable

NL) [18], we did not classify cells based on frequency regions. In

relatively older embryos (.E15), we intentionally recorded cells

from approximately the mid/high-frequency regions in order to

avoid complications in our interpretation introduced by tonotopic

distribution of neuronal properties. Neurons in the NL receive
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GABAergic inhibitory inputs primarily from the ipsilateral SON

[27,28,29]. To activate the GABAergic pathway, the stimulation

electrode was placed using a Micromanipulator NMN-25

(Narishige, Japan) in the area immediately lateral to the NL

where the ipsilateral SON fibers travel to innervate the NL. To

activate both the GABAergic and the glutamatergic pathways, the

stimulation electrode was placed in an area dorsal and lateral to

the NL, where fibers from the ipsilateral NM and SON fibers are

mixed. Single or train stimulations at different frequencies (pulse

duration of 200 ms) were delivered through a Stimulator A320RC

(World Precision Instruments, Sarasota, FL). Optimal stimulus

parameters were selected for each cell to give rise to reliable

postsynaptic currents. Before each synaptic stimulation protocol

was applied, a 5 mV hyperpolarizing command (duration of 5 ms)

was given to monitor series resistance and input resistance during

the experiment. Cells with .20% changes in their series resistance

during the recordings were discarded.

Evoked inhibitory postsynaptic currents (IPSCs) were recorded

in the presence of DNQX (50 mM) and APV (100 mM). The

synaptic stimulation was repeated 6–12 times under each

experimental condition. The raw traces were averaged off-line

and the peak values of IPSCs were measured. The average of the

peak values of the IPSCs was considered as one data point,

representing the averaged IPSC under the experimental condition.

These methods have been established in our previous studies

[11,12].

Graphs were constructed in Igor (Wavemetrics, Lake Oswego,

OR). Means and standard errors of the mean (SEM) are reported

(n in parenthesis indicates number of cells). ANOVA post hoc

Fisher’s test was used for statistical analyses, and p,0.05 was

considered statistically significant.

Results

Onset of GABAAR responses in NL neurons
Because neuromodulation mediated by GABABRs activated by

endogenous GABA relies on the presence of functional GABA

synapses, we first characterized the onset of GABAergic

transmission in the NL. Based on the anatomical data showing

that GABA terminals to the NL have little presence at E9–11 and

a few GABAergic fibers are present at E12–14 [20], we chose E11

as the earliest age to study the onset of physiological responses

mediated by GABAARs in NL neuron. After obtaining whole-cell

voltage clamp recordings from NL neurons, we used a series of

stimulating approaches combined with pharmacological agents to

evoke whole-cell responses sensitive to GABAAR blockers (Fig. 1).

Ionotropic glutamate receptor blockers (50 mM DNQX and

100 mM APV) were present in all experiments. Puff application

of a selective GABAAR agonist muscimol (10 mM), which was used

to bypass the presynaptic GABA terminals and activate postsyn-

aptic receptors directly, evoked inward currents (termed I-

muscimol) in all cells studied. The inward currents were nearly

completely blocked by 6-Imino-3-(4-methoxyphenyl)-1(6H)-pyri-

dazinebutanoic acid (SR95531, 10 mM), an antagonist specific for

GABAARs (Fig. 1A, D), indicating the presence of functional

postsynaptic GABAARs on NL cell membrane at E11. Some

spontaneous IPSCs (sIPSCs) were readily observed in the sample

cell (Fig. 1A). This observation was further confirmed by

prolonged recordings, in which 5 out of 15 cells showed sparsely

distributed sIPSCs within a five-minute recording window. The

sIPSCs were eliminated by SR95531, indicating that GABAARs

mediated the currents (Fig. 1B, D) and GABA synapses started

functioning in at least some NL cells at E11. Electrical shocks

delivered to the presumably GABAergic afferents to the NL also

evoked inward currents sensitive to SR95531 (Fig. 1C), further

confirming the presence of functional GABAergic synapses. Cells

were more reliably responsive to train stimulation (10 Hz 5 pulses)

(6 out of 8 cells) than single-pulse stimulation (3 out of 6 cells)

(Fig. 1D), possibly caused by facilitation of transmitter release

under the train stimulation.

Modulation of GABAergic transmission mediated by
GABABRs emerges prior to that by mGluRs

Modulation of GABA release in NL neurons by autoreceptors

(GABABRs) starts prior to that by heteroreceptors (mGluRs). This

conclusion is based on the experiments in which we studied the

effects of respective agonists for GABABRs and mGluRs on IPSCs

of NL neurons obtained from animals of different ages. We elicited

IPSCs with a low frequency (5 or 10 Hz, 5 pulses) train

stimulation, and then a potent GABABR agonist baclofen at its

saturating concentration (100 mM) was applied. Significant

suppression of the IPSCs was observed at the earliest age we

studied (E11), and the suppression became stronger at E13, and

remained strong in later ages (Fig. 2A, B; Table 1; n = 6, 7, 7, and

5 cells for E11, E13, E15, and E18, respectively).

To date, there are 8 members of mGluRs identified, and they

are further divided into 3 groups (group I: mGluR1 and 5; II:

mGluR2 and 3; and III: mGluR4, 6, 7, and 8) based on their

homology, pharmacology, and signal transduction pathways

[3,4,5]. To determine the temporal onset of mGluR-mediated

modulation of GABA release in NL, we studied the effects of

tACPD (100 mM), an agonist that can activate non-selectively most

members of mGluRs [3], on IPSCs of NL neurons obtained at

different ages. In contrast to the early onset of baclofen effects,

significant suppression of IPSCs by tACPD (100 mM) was detected

in E15 and E18 but not in earlier embryos (E12 or E13) (Fig. 2C,

D; Table 1; n = 6, 5, 8, and 7 cells for E12, E13, E15, and E18,

respectively). Because modulatory effects of tACPD were not

observed at E12/13, studies using animals of earlier ages were

unnecessary. It is noted that the time course of the IPSCs was

different among the sampled cells. This is possibly due to the

combined effects of two factors, one being developmental changes

and the other being tonotopic specializations of neuronal

properties. Supporting the effects of the second factor, we recently

found that the time course of the postsynaptic GABAA currents in

NL neurons differed between different characteristic frequency

(CF) regions. Compared to low-CF (LF) neurons, middle/high-CF

(MF/HF) neurons had significantly slower IPSCs. To account for

these distinct GABAA responses, we showed that MF/HF neurons

exhibited more prominent asynchronous release of GABA (our

unpublished observations).

Endogenous activity of GABABRs is stimulus frequency
dependent

Because higher input frequencies are expected to trigger strong

and long-lasting release of GABA and likely subsequent activation

of presynaptic GABABRs via transmitter spillover, we predicted

that the level of endogenous GABABR activity was stimulus

frequency dependent. To test this hypothesis, we elicited IPSCs in

NL neurons (E16–17) using train stimulations at low (5 or 10 Hz)

and high (200 Hz) frequencies, and examined the effects on the

IPSCs of a GABABR antagonist CGP52432. At the concentration

used (10 mM), CGP52432 is supposed to achieve saturating block

of GABABRs [30]. In response to low frequency stimulation (5 or

10 Hz, 5 pulses), IPSC amplitude was unchanged when

CGP52432 (10 mM) was applied (Fig. 3A, B; control:

2479.4689.7 pA; CGP52432: 2468.0679.5 pA, washout:
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2498.26102.6 pA, n = 7, p.0.05), indicating lack of GABABR

activity induced by endogenous GABA under this stimulus

condition. To enhance the chance of observing endogenous

GABABR activity on IPSCs elicited at low stimulating frequencies,

we blocked the uptake of GABA, expecting that the transmitter

molecules may have longer life span in the synaptic cleft and

surrounding areas, facilitating the activation of presynaptic

GABABRs. Inhibition of GABA uptake by NNC 711 (20 mM)

reduced IPSCs elicited at 5 or 10 Hz (control: 2746.36119.9 pA;

NNC 711: 2364.0656.7 pA, n = 7, p,0.001), suggesting the

possibility of endogenous activity of GABABRs in depressing

GABA release. Such effects induced by blocking uptake mecha-

nisms have been observed at glutamate synapses [31]. In the

presence of NNC 711, blockade of GABABRs by CGP52432

(10 mM) increased IPSC amplitude significantly (Fig. 3C, D; NNC

711: 2364.0656.7 pA; NNC 711 plus CGP52432:

2599.46116.6 pA, n = 7, p,0.05), revealing endogenous GA-

BABR activity. When tested at a high stimulating frequency of

200 Hz, which approximates the sound-evoked discharge rates of

SON neurons in vivo [32], NL neurons generated temporally

summated IPSCs with a long decay time course. CGP52432

(10 mM) alone (without blocking GABA uptake) significantly

increased the normalized IPSC amplitude by 49.7616.8%

(Fig. 3E, F; control: 21171.66374.9 pA; CGP52432:

21529.86445.0 pA, washout: 2855.66179.2 pA, n = 8,

p,0.05), indicating activation of the autoreceptors by synaptically

released GABA under physiologically relevant stimulations. Along

with our previous data showing that CGP52432 significantly

increased the IPSCs evoked at 100 Hz [13], these results indicate

that activation of presynaptic GABABRs is stimulus frequency

dependent, and presynaptic GABABRs are activated in response to

increased GABA release at high stimulation frequencies, forming a

feedback mechanism controlling the GABAergic strength in NL

neurons.

Endogenous activity of mGluRs is stimulus frequency
dependent and receptor specific

Although exogenous agonists of mGluRs induced inhibition of

GABA release, the physiological significance of such effects can be

questioned if endogenous activity of mGluRs cannot be detected

[33]. However, when present, endogenous activity of hetero-

receptors (mGluRs in this case) may be induced under different

Figure 1. GABAergic transmission starts functioning in about half of the NL neurons at E11. A, Puff application of a selective GABAAR
agonist muscimol (10 mM) evoked an inward current that was nearly completely blocked by SR95531 (10 mM), an antagonist specific for GABAARs,
indicating the presence of functional GABAARs on NL cell membrane. Spontaneous IPSCs (sIPSCs) are indicated by the symbol #. B, Voltage clamp
recordings from a sample cell showing sparsely distributed sIPSCs that were eliminated by SR95531, indicating that GABAARs mediated the sIPSCs.
Shown on the right are superimposed sIPSCs at an enlarged time scale. C, Electrical shocks (upper panel: single pulse stimulation; lower panel: train
stimulation at 10 Hz) delivered to the GABAergic afferents to the NL evoked inward currents sensitive to SR95531, indicating the presence of
functional GABA synapses. Stimulus artifacts are blanked for clarity. D, Percent of responsive cells under different recording conditions. All cells
showed responses to muscimol, 5 out of 15 cells expressed sIPSCs, 3 out of 6 cells responded to the single pulse stimulation, and 6 out of 8 cells
responded to the train stimulation. Cells were voltage clamped at 260 mV. DNQX (50 mM) and APV (100 mM), AMPAR and NMDAR blockers,
respectively, were present in all experiments.
doi:10.1371/journal.pone.0035831.g001
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stimulation conditions from those of autoreceptors. In order to

study the activity of mGluRs activated by synaptically released

glutamate, we placed the stimulation electrode in an area dorsal

and lateral to the NL to activate both the GABAergic and

glutamatergic pathways. Concurrent activation of GABAergic and

glutamatergic pathways to NL neurons (E15–19) was observed in

response to the same single stimulus (Fig. 4A). Then we examined

the effects of mGluR antagonists under different stimulation

conditions.

Antagonists at concentrations that are able to block all mGluRs

(4 mM LY341495 plus 10 mM CPPG) [4,5] did not have significant

effects on the IPSCs elicited at 5 or 10 Hz (Fig. 4B, C, control:

2383.6674.6 pA; LY341495 plus CPPG: 2409.6685.9 pA,

washout: 2361.0676.9 pA, n = 5, p.0.05), indicating lack of

endogenous mGluR activity under low frequency stimulus condi-

tions. Increasing the stimulating frequency to 200 Hz, which

approximates the discharge rates of NM neurons in vivo [34,35],

still failed to induce any significant endogenous mGluR activity

Figure 2. Modulation of GABAergic transmission in NL neurons by autoreceptors emerges prior to that by heteroreceptors. A,
Effects of GABABR agonist baclofen (100 mM) on IPSCs of NL neurons obtained from chicken embryos ages of E11, E13, E15, and E18. Inhibition of the
IPSCs by baclofen was observed in all cells. B, Summary data showing that baclofen (100 mM) reduced IPSCs significantly in all ages tested (n = 6, 7, 7,
and 5 for E11, E13, E15, and E18, respectively). C, Effects of mGluR agonist tACPD (100 mM) on IPSCs of NL neurons obtained from chicken embryos
ages of E12, E13, E15, and E18. D, Significant suppression of IPSCs by tACPD (100 mM) was detected in E15 and E18 but not at E12 or E13 (n = 6, 5, 8,
and 7 for E12, E13, E15, and E18, respectively). In this and subsequent figures, bars represent means 6 SEM. NS: not significant (p.0.05), *p,0.05,
**p,0.01, and ***p,0.001 (ANOVA post hoc Fisher’s test).
doi:10.1371/journal.pone.0035831.g002
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(Fig. 4D, E, control: 21118.46359.7 pA; LY341495 plus CPPG:

21117.86367.8 pA, washout: 2910.86279.6 pA, n = 5, p.0.05).

These results suggest highly efficient clearance mechanisms for

released glutamate at the synapses in NL, even though high-rate

synaptic activity may delay the clearance process [36]. In order to

enhance the chance of detecting endogenous mGluR activity, we

blocked glutamate uptake systems, expecting to increase glutamate

accumulation in the synaptic cleft and induce activation of mGluRs

on GABAergic terminals by glutamate spillover [31,37,38].

Endogenous activity of mGluRs was indeed observed under the

condition of high frequency stimulation (200 Hz) combined with full

inhibition of glutamate uptake by perfusion of DL-TBOA (50 mM)

and TFB-TBOA (10 mM) (Fig. 4F, G), both of which are glutamate

transporter blockers, with the later being more glial specific.

Furthermore, such endogenous activity was mGluR type specific.

Inhibition of glutamate uptake by TBOA (DL-TBOA 50 mM plus

TFB-TBOA 10 mM) significantly reduced IPSC elicited at 200 Hz

(Fig. 4G, control: 21063.06327.2 pA; TBOA: 2567.26193.3 pA,

n = 5, p,0.01; Fig. 4I, control: 2705.46100.6 pA; TBOA:

2360.8694.0 pA, n = 5, p,0.01). In the presence of TBOA,

specific blockade of group II mGluRs by low concentration of

LY341495 (10 nM) [5] increased IPSC significantly (TBOA:

2567.26193.3 pA; TBOA plus LY341495: 2819.86243.7 pA,

n = 5, p,0.01). In contrast, in the presence of TBOA, specific

blockade of group III mGluRs by low concentration of CPPG

(5 nM) [5,39] had no effects on IPSCs (Fig. 4 H, I, TBOA:

2360.8694.0 pA; TBOA plus CPPG: 2318.2696.0 pA, n = 5,

p.0.05).

Discussion

We report that: 1) the GABAergic transmission in NL neurons

starts functioning at E11; 2) the modulation of GABAergic

transmission by autoreceptors takes place prior to that by

heteroreceptors; and 3) endogenous activity of GABABRs and

mGluRs is stimulus frequency dependent, and the endogenous

activity of mGluRs is group specific.

The emergence of functional GABA synapses shows a short

time delay in relative to that of glutamate synapses in NL neurons.

Postsynaptic ionotropic glutamate receptors [19] and postsynaptic

GABAARs (present study) were detectable in all cells at the earliest

ages studied (E9 and E11, respectively). The early appearance of

ionotropic glutamate and GABAA receptors is not surprising

because postsynaptic receptor-mediated signaling exists well before

presynaptic terminals arrive to innervate developing neurons [21].

Soon after formation of glutamate synapses, synaptic responses

emerge. At E10, evoked EPSCs mediated by both AMPARs and

NMDARs are observed in about 75% cells [19], and evoked

EPSPs are present in all cells studied at E11 [18,19]. In contrast,

synaptic GABAAR activity, either in the form of spontaneous or

stimulus-evoked IPSCs, was detected in only about half of the

neurons at E11, indicating that the development of the

GABAergic transmission has a roughly 1-day delay relative to

the development of the glutamatergic transmission. We cannot

exclude the possibility that functional GABA synapses might

appear in some cells at earlier ages, however, based on the present

study, the proportion of cells that express functional GABA

synapses is expected to be much lower than that at E11. Although

the functional GABA synapses emerged with a time delay

compared to glutamate synapses, the GABABR-mediated modu-

lation of GABA release took place a few days earlier than mGluR-

mediated modulation (E11 vs. E15). The later appearance of

heteroreceptor-mediated modulation may correlate with the

functional expression of mGluRs, the time of hearing onset,

and/or the development of the glutamatergic synapses. Although

all three groups of mGluRs are expressed in NL at E13 (our

unpublished observation), signaling transduction pathways linking

mGluRs to the regulation mechanisms of GABA release may not

be present at E13 and earlier ages. The emergence of mGluR

activity on regulating GABA release at E15 may reflect the

establishment of such signaling pathways, likely driven by the fast

maturation of the glutamatergic inputs during the period of

development after hearing onset, which occurs at about E11/12

[40]. The increase in synaptic activity mediated by glutamate,

especially the patterned spontaneous spiking activity between

E13–18 in NM and NL neurons [41], may facilitate expression of

membrane mGluRs and establishment of their signaling trans-

duction pathways.

GABABRs and mGluRs belong to the same subfamily of

GPCRs, and share many structural and functional similarities

Table 1. Summary of numerical data on the effects of baclofen (100 mM) and tACPD (100 mM) on the amplitude (pA) of IPSCs of NL
neurons obtained at different ages.

age (n) control drug washout

baclofen

E11 (6) 2191.3628.9 291.0614.9** * 2148.0618.2

E13 (7) 2269.4672.2 251.0610.2*** 2150.1634.5

E15 (7) 2547.0684.8 289.0615.8*** 2419.3677.9

E18 (5) 2526.46162.8 2107.8632.6*** 2329.0680.5

tACPD

E12 (6) 2171.9638.5 2137.8627.2 2160.7638.5

E13 (5) 2260.4664.4 2156.0653.0 2321.56103.6

E15 (8) 2517.3673.4 2195.1626.1*** 2291.8660.4

E18 (7) 2730.76208.4 2168.0632.2*** 2473.0651.7

Means 61 SEM are shown. n: number of cells.
*p,0.05,
**p,0.01, and
***p,0.001 (ANOVA post hoc Fisher’s test).
doi:10.1371/journal.pone.0035831.t001
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including signaling transduction pathways [1–7]. While it awaits to

be demonstrated whether these two different types of receptors co-

localize on the presynaptic terminals of the GABA synapses in NL

neurons, and whether they exert their modulatory actions

independently and/or synergistically, we can make some implica-

tions based on our results of percent inhibitions of IPSCs induced

by the respective agonists of GABABRs and mGluRs at different

ages (Fig. 2). At E11–12, baclofen caused a significant inhibition

(53%) of IPSCs while tACPD caused a statistically non-significant

inhibition (13%). The total inhibition (66%) could imply two

independent pathways for these two different types of receptors, if

the total inhibition continued to be less than 100% in older ages.

However, at E13, E15 and E18, the total inhibition increased to

111%, 142% and 142%, respectively, exceeding the predicted

value (about 100%) if the two pathways were completely

independent. These results suggest that GABABRs and mGluRs

at the GABA synapses of NL neurons may share at least some

signaling transduction pathways in modulation of GABA release.

Endogenous activity of both GABABR- and mGluR-mediated

modulation of GABAergic transmission expressed stimulus

frequency dependence. However, the stimulus conditions under

which such endogenous activity was detected differed. Specifically,

the requirements to activate autoreceptors seemed to be less robust

than those to activate heteroreceptors. Endogenous GABABR

activity at low stimulus frequencies was detected when GABA

uptake was blocked. In contrast, endogenous mGluR activity was

not elicited by low frequency stimulations of the glutamatergic

pathway, even in the presence of glutamate uptake blockers. At

more physiological relevant stimulus frequencies such as 100 Hz

[13] or 200 Hz (present study), endogenous GABABR activity was

detectable even without blocking GABA uptake. In contrast,

endogenous mGluR activity was not detected at high frequencies

of 100 Hz [13] or 200 Hz (present study), unless glutamate uptake

was blocked. The relative ease of activation of the autoreceptors

has been observed at glutamate synapses as well [42,43].

To be physiologically relevant, the regulation of GABA release

by endogenous mGluRs must rely on glutamate spillover from

glutamatergic terminals located nearby the GABA synapses. Since

glutamate spillover was first discovered in 1997 in the hippocam-

pus [44], it is commonly found in numerous CNS nuclei

[45,46,47]. However, because of the strong uptake mechanisms

of glutamate into glial cells [22], spillover of glutamate may only

Figure 3. Endogenous activity of GABABRs is stimulus frequency dependent. A, Average IPSC traces of one NL neuron (E16–17) in response
to train stimulations at 5 Hz (5 pulses) under the conditions of control, GABABR antagonist CGP52432 (10 mM), and washout. B, IPSC peak amplitude
normalized to the control showed that CGP52432 did not have significant effects on the IPSCs elicited at 5 Hz (n = 7), indicating lack of endogenous
GABABR activity under this stimulation condition. C & D, Blocking GABA uptake by NNC 711 (20 mM) reduced IPSCs elicited at 5 Hz. In the presence of
NNC 711, CGP52432 (10 mM) increased IPSC amplitude significantly (n = 7), revealing endogenous GABABR activity. E & F, In response to blockade of
GABABRs by CGP52432 (10 mM), a significant increase in IPSC amplitude was observed at the stimulus frequency of 200 Hz (n = 8). The inset in panel E
shows six superimposed individual IPSCs obtained under control conditions, at enlarged scales. Only the responses to the first five stimulus pulses
(without blanking the stimulus artifacts) are shown to indicate low noise levels of the recordings.
doi:10.1371/journal.pone.0035831.g003

Development of GPCR Modulation of GABA Release

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e35831



occur when a burst of spike activity is present, especially in vitro

[45]. Presumably, the appearance of endogenous activity of

mGluRs as heteroreceptors modulating GABA release in the NL

may be facilitated by the morphological development of the

dendrites in NL. In early developmental stages (E8/9), NL

dendrites are of about equal length across different characteristic

frequency (CF) regions. After a tremendous growth in dendritic

arborization combined with apoptosis of NL cells during

Figure 4. Endogenous activity of mGluRs is stimulus frequency dependent and receptor specific. A, Concurrent activation of
glutamatergic and GABAergic pathways to NL neurons (E15–19). Cells used in this figure responded to the synaptic stimulation with both a fast EPSC
and a slow IPSC. DNQX and APV eliminated the EPSC, and a specific GABAAR antagonist bicuculline (40 mM) eliminated the IPSC. B & C, Antagonists
able to block all mGluRs (4 mM LY341495 plus 10 mM CPPG) did not have significant effects on the IPSCs elicited at 5 or 10 Hz (n = 5), indicating lack of
endogenous mGluR activity under low frequency stimulation conditions. D & E, Further increasing the stimulating frequency to 200 Hz still failed to
induce endogenous mGluR activity (n = 5). F & G, Endogenous activity of mGluRs was observed under the condition of high frequency (200 Hz)
stimulation combined with inhibition of glutamate uptake. Furthermore, such endogenous activity was mGluR type specific. Inhibition of glutamate
uptake by TBOA (DL-TBOA 50 mM plus TFB-TBOA 10 mM) reduced IPSCs elicited at 200 Hz. In the presence of TBOA, blockade of group II mGluRs by
low concentration of LY341495 (10 nM) increased IPSC amplitude significantly (n = 5). H & I, In contrast, in the presence of TBOA, blockade of group III
mGluRs by CPPG (5 nM) had no effects on IPSC (n = 5).
doi:10.1371/journal.pone.0035831.g004
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development, the dendrites in middle/high-CF regions shrink

while those in low-CF regions grow in length, forming a gradient

in dendritic length along the tonotopic axis [48,49], a process

influenced by astrocyte-secreted factors [50]. In addition, the

inhibitory inputs to NL neurons are distributed on the soma as

well as along the dendrites, where the glutamatergic synapses are

located [51,52]. These morphological changes could bring the two

synaptic inputs closer in space, enhancing the chance of activation

of mGluRs located on presynaptic terminals of the GABA

synapses, and rendering heteroreceptor-mediated modulation of

GABAergic transmission possible. In our present study, we

intentionally recorded cells from slices obtained in older embryos

(.E15) in approximately the mid/high-frequency regions in order

to avoid complications in our interpretation introduced by

tonotopic distribution of neuronal properties. It remains interest-

ing for future studies to examine whether NL neurons from high

CF regions display stronger endogenous mGluR activity than

neurons from low CF regions. Such a notion can be supported by

the observation that endogenous activity of mGluRs in regulating

GABA release in NM neurons is readily detected under low

frequency (10 Hz) stimulation without blocking glutamate uptake

[12]. The ease of inducing mGluR activity in NM neurons is

possibly due to the fact that NM neurons receive morphologically

huge [53] and physiologically powerful [54] glutamatergic inputs

(Endbulb of Held synapses) onto their cell bodies, where the

inhibitory synapses are also located [55].

Finally, both groups II and III mGluRs suppress GABA release

in NL via presynaptic mechanisms, and endogenous activity of

mGluRs was demonstrated when antagonists able to block all

mGluRs were applied [13]. The present study extended these

previous findings by revealing that the endogenous activity was

group specific in that group II antagonist LY341495 but not group

III antagonist CPPG produced significant increases in IPSCs in

the presence of glutamate uptake blockers (Fig. 4). Different

signaling pathways involved in these two groups of mGluRs in

modulating neurotransmission may account partly for this

observation. Both group II and III mGluRs can regulate

transmitter release via affecting presynaptic voltage-gated calcium

channels [3,4,5]. However, group III mGluRs may cause

presynaptic modulation of GABA release evoked only by neuronal

activity, while additional mechanisms for the modulation mediated

by group II mGluRs could exist [13], increasing the chance of

detecting endogenous activity of group II mGluRs. Both groups of

receptors have high affinity for glutamate, with group II receptors

being more sensitive than group III receptors [3,56]. We speculate

that under in vivo conditions, if activation of both groups is

possible, group II mGluRs may be activated under low-frequency

activity, exerting a tonic modulation of GABA release and the

activation of group III receptors may require more intense activity

of glutamate synapses. Once being activated, these mGluRs work

in synergy to prevent saturation of heteroreceptor-mediated

regulation of GABA release in NL, ensuring proper synaptic

strength of the GABAergic input and its modulatory function on

ITD coding.
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