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Abstract

A simple, nonparametric and distribution free method was developed for quick identification of the most meaningful
biomarkers among a number of candidates in complex biological phenomena, especially in relatively small samples. This
method is independent of rigid model forms or other link functions. It may be applied both to metric and non-metric data
as well as to independent or matched parallel samples. With this method identification of the most relevant biomarkers is
not based on inferential methods; therefore, its application does not require corrections of the level of significance, even in
cases of thousands of variables. Hence, the introduced method is appropriate to analyze and evaluate data of complex
investigations in clinical and pre-clinical basic research, such as gene or protein expressions, phenotype-genotype
associations in case-control studies on the basis of thousands of genes and SNPs (single nucleotide polymorphism), search
of prevalence in sleep EEG-Data, functional magnetic resonance imaging (fMRI) or others.
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Introduction

Biomarker Searching: The statistical challenge of clinical
and preclinical basic research

There is no doubt that the more facets of a complex

phenomenon we can illuminate, the better we can explain the

structure, mechanisms and alterations of this phenomenon. On the

other hand, art of science is the ability to configure and describe a

complex phenomenon with as few variables as possible but with a

sufficient degree of detail, in order to make it comprehensible,

plastic and operational. Therefore, when studying complex

phenomena we must sail in both directions: firstly, to collect as

much information as possible in order to explain the phenomena

adequately and, secondly, to reduce the data abundance

appropriately by identifying the most informative variables.

Obviously, the restriction to the most informative data or to the

most relevant factors that influence a complex phenomenon

implies the renunciation of its complete and perfect explanation.

At the same time, however, this restriction allows for a great gain

in attractiveness and plasticity and makes such a complex

phenomenon useful for practical simulations and further scientific

investigations.

Higher biological organisms generally possess complex struc-

tures and are characterized by extreme intra- and inter-individual

variability. This variability is not only due to thousands and

thousands of genetic and epigenetic factors, but also to the fact that

many of these factors vary with time, location and situation.

Therefore, approaches to explain structures and behavioral

mechanisms of biological organisms are of a difficult nature.

Without exaggeration, we can ascertain, that in sciences, e.g.

biology, psychiatry, physiology, econometrics etc., concerning

behavioral investigations of such organisms, it is extremely

difficult, if not impossible to find absolute and universally valid

laws. Even in cases where the focus is on specific behavioral

characteristics or alterations, we have to spend immense time and

effort to explain them well and adequately. The required expense

would be even larger if the topic of these investigations is the most

intelligent and complicated biolog ical organism on earth, to wit

the human being.

Being aware of the enormous complexity of higher biological

organisms, scientists who investigate biological phenomena hope

to identify those influential factors, that are able to characterize

disturbed or extraordinary behavioral changes. The search for

such relevant influential factors, known in the broader sense as

‘biomarkers’, is, therefore, an essential objective of almost all

modern biological studies. This search, however, is not only from a

biological but also from a statistical point of view a challenge per

se.

It is well-known that the Achilles heel of the statistical inference

is the hypothesis-testing via a statistical test. This is in principle a

decision process (see [1]) of choosing between two possibilities (null

versus alternative hypothesis) and the result of it like any decision

may be either correct or incorrect. An incorrect decision in the

statistical inference is associated with two risks known as Type I

and II errors and denoted with the Greek letters a and b,

respectively. Type I error is the risk of rejecting the null hypothesis

when it is true, and type II error is the risk of accepting the null

hypothesis when it is false. Close connected to the statistical

inference is also the test power or simply, power. Test power

denotes the ability of a statistical test to reject a false null
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hypothesis, or in the case of a location test, its ability to detect true

differences. From the definition of Type II error it follows that the

test power is equal to 1{b.

But what are true differences and at which amount may they be

declared relevant? In biomedical research one uses for the mean

differences between two populations the term biological difference.

The meaning and amount of biological differences are the basis for

contention in many scientific conflicts. Here exist no unambiguous

and clear answers. The amount of differences that have to be

declared as relevant depends on many factors, e.g. on experimen-

tal and financial requirements, on the data types and scales, on

sample heterogeneity, etc. Therefore, a great arbitrariness exists in

the definition of relevant differences and just this arbitrariness

extenuates the generalization of statistical inference to more

complicated situations, for example, when more variables,

different scales, more or multilevel factors exist.

Researchers behind basic-research investigations are not

disposed to retrench scientific hypotheses concerning only one or

a few variables. For scientists in this field all considered variables

are a-priori important and, therefore, they relate their scientific

assumptions to all of them, even in cases where some of the

variables are declared as primary variables. Naturally, they hope

to detect via statistical methods those few relevant variables or

features that are interpretable, can help to explain well the

variability of the investigated phenomenon and parallely could

contribute to a reduction of noise effects and computational costs.

A simple way in such situations is to postulate a complete or

omnibus statistical hypothesis, taking into account all variables and

selecting relevant variables by making statistical inference for each

one of them on the basis of a procedure similar to multiple testing.

Generally, statistical inference on a large number of variables is

questionable, especially when the variables are measured in

different scales and/or show dependencies (see e.g. [2]). Even

under the assumption of independence and with the use of a

uniform metric scale, statistical inference of multivariate data is

liable to two risks: an inflation of the type I error and a deflation

(weakness) of the overall power. To keep these risks small one has

to strongly correct the level of significance and simultaneously

operate with large sample sizes. The last task is usually not possible

and strong corrections of the level of significance imply a very

conservative detection procedure. This means, a lot of variables

contributing to the explanation of an observed phenomenon may

fail to be statistically significant and remain uncovered. Another

way favored by some modern approaches (see more details in the

discussion) make use of association models and pass thereon to

variable selection and dimensional reduction. However, these

approaches are also not completely free of statistical inference.

When hypothesis testing is focused to a-priori defined subset of

variables or factor levels, a noteworthy suggestion in the field of

statistical inference is to refer to a partial null hypothesis and to

partial or P-subset power (see e.g. [3] or [4]). But how can we

know a-priori which e.g. genes are influenced by a disease?

Therefore, the only promising solution in searching for biomarkers

by complex biological investigations is a selective statistical

inference applied to an adequate partial statistical hypothesis that

concerns only of few of the most relevant (informative) variables

detected in advance. The conception of an appropriate explor-

atory method that leads in an uncomplicated and reliable way to

the identification of the most informative variables (biomarker

candidates), independently of sample type, data nature, distribu-

tion requirements and so on, is the work and the challenge

discussed below.

Methods

A new ‘distribution-free’ approach
We focus on the detection of relevant biomarkers in the two-

samples situation, which implies an influential factor of two levels

(two groups, two treatments, two time points, two experimental

conditions, etc.). The generalization to more complicated situa-

tions and more factors is discussed in the end of this section.

Following list summarizes the desired properties of the new

method:

N Avoidance of statistical inference

N Possibility to also work in cases where there are strong

dependencies between variables (collinearity, interactions)

N Applicable to different data types (metric, ordinal, categorical)

and to different scales of measurement

N Applicable to different experimental designs

How does the new method work in order to accommodate these

requirements?

Measure of Relevance
Let us first address the question of which kind of information

might be relevant in describing the difference of a variable in a

two-sample problem and why. The graphs in figure (1) help us find

the answer convincingly and objectively. Figures (1a), (1b) and (1c)

represent three possibilities for the distributions of two continuous

random variables, X1 and X2, from two independent samples. The

distributions of X1 and X2 have identical shape in figures (1a) and

(1c), however, the difference between their mean locations is larger

in figure (1a). Because of the different degree of overlap a

comparison of X1 and X2 by means of a nonparametric test would

yield a smaller p-value for the situation in figure (1a) than for that

in figure (1c).

The distributions from figure (1a) differ from those in figure (1b)

in shape as well as in location. The difference of the mean location

in situation (1b) is larger than that one in situation (1a). In

biomedical research one would speak of a larger biological

difference in the case of (1b). If we consider, at the same time, the

different variability degree of the variables and form the

normalized biological difference, i.e. the ratio of observed

difference and pooled standard deviation, the situations depicted

in figure (1a) and (1b) might not be so different after all.

Figures (1d) and (1e) depict two situations for dependent

samples. Obviously the mean differences for the two groups in

figure (1e) are large compared to those in (1d). However, when

applying a nonparametric test for dependent samples one will

obtain significant results (small p-values) for both situations,

although location and deviation of the two situations differ

essentially from each other.

Summarizing the facts, from the above comparisons, we

conclude that an adequate quantitative measure or function that

would contain or reflect relevant information about sample

differences in a variable, must maintain the following properties:

N it should incorporate a possible overlap in the distributions of

the two samples

N it should express the biological difference on a uniform scale, at

best on the interval ½{1,1�
N it should incorporate the variance of the biological differences

in an inverse relation in order to attenuate the effect of

different metric scales on the biological difference

N it should incorporate the corresponding sample size in an

inverse relation. This property will accommodate situations

Identifying Biomarkers in Biomedical Research
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with missing values as well the fact that when sample sizes

increase the probability of detecting small effect sizes as

relevant should also increase

The principle of the new method
In a two-groups situation let

=~ (Xi,yi),Di~1,2,:::,nf g ð1Þ

be a sample of n items, on each of which a vector Xi of p features

Xi~(X
(1)
i ,X

(2)
i ,:::,X (p)

i

h i
and a group-membership variable yi,

yi[ k1,k2f g½ � are considered.

In decision tree analysis, like CART (Classification And

Regression Trees), Random Forest, AdaBoost, etc. (for an

overview see [5]), which offer, in the explorative field, powerful

ways to detect significant features and associations between them

and the group variable, one generally searches for a function

f (Xi,=) over the feature vectors Xi, which fits the observed group

variables yi, i~1,2,:::,n in the sample well. In mathematical

notation it means that f (Xi,=) has to fulfill the condition:

e=~
Xn

i~1
(yi{f (Xi,=))?min:

where e= indicates the total prediction error.

The growth of the decision trees uses algorithms which

determine by successive steps the best split-variable (feature) and

its best splitting-value that could further improve prediction.

Although greedy algorithms are very ingenious and fast, we can

imagine how laborious decision tree analysis could be if p is very

large (pww20,000). Moreover, when the two groups represent

two dependent samples the fitting of f (Xi,=) creates additional

difficulties.

By our method we digress from the fitting principle used in the

decision-tree analysis and follow another one working as follows:

Instead of searching for a function f (Xi,=) over the p features that

approximates the sample values yi, we first search for a function

F (X(j),=), which for each feature (variable) j (j~1,2,:::,p) delivers

important information about its differences between the two

groups and then look for the features with the largest information

values. We assign the wanted function F (X(j),=), the name

‘measure of relevance’ (MoR). Therefore, the principle of the new

method is not to search for the best classifiers, that enable optimal

fitting in a sample, but rather to search for the best informators

that give the best information over a sample’s irregularities and

distinctive characteristics. In a mathematical notation this

principle could be outlined in three steps:

N definition of a function F (X(j),=) reflecting for all features j

(j~1,2,:::,p) relevant information about the group or sample

differences

N construction of an information chain by sorting the absolute

values of F (X(j),=) over j

N definition of a selection- and evaluation criterion on the

information chain

Dependencies between the features are in the first instance not

of particular interest, because we are primarily focused on

identifying features with information about the group difference

and not on dependencies between features. Only after identifying

features with relevant information (biomarker candidates) would it

be advisable and interesting to further study dependencies between

them and the other features.

Considering the aforementioned desired properties of a

quantitative and informative measure towards sample differences,

we find that a function, say F , of form

F (X(j),=)~g:
C(j):L(j)

S(j)
, ð2Þ

where C(j),L(j) and S(j) represent indicators for the distribution-

overlap, the biological difference and the standard deviation of the

pooled sample, contains the most useful information about the

Figure 1. Example of different distributions of two random variables. Location and shape of two independent (1a, 1b, 1c) and two
dependent random variables (1d and 1e).
doi:10.1371/journal.pone.0035741.g001

Identifying Biomarkers in Biomedical Research

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e35741



differences in feature j between the two samples. g in the above

formula indicates a weighting factor common to all features.

To meet the method’s requirements (listed at the beginning of

this section) the factors C(j),L(j) and S(j), which have to be

determined from the sampled data, must have on F (X(j),=) the

same range values for all features j irrespective of the data type

and sample design and guarantee comparisons in F between

features and/or between other samples. A good way to supply F
with these properties offers the rank- and U-transformations

applied in succession. For each feature j, (j~1,2,:::,p) we first

transform its values in the whole sample into ranks, say R(j), and then

transform the corresponding ranks into the interval ½0,1� by using

the formula U (j)~
R(j){R

(j)
min

R
(j)
max{R

(j)
min

. In the end we obtain a new

sample

~ (Ui,yi),ji~1,2,:::,nf g ð3Þ

with Ui~(U
(1)
i ,U

(2)
i ,:::,U (p)

i ).

Now let

km~ (Ui,yi),Di~1,2,:::,nmf g ð4Þ

denote the two subsamples of Ł with values Ui corresponding to

the group km (m~1,2). For dependent samples n1~n2~n=2.

Based on the samples Łkm
, (m~1,2) the factors L(j), S(j) and

C(j) in (2) are defined as follows:

L(j)~(U
(j)
k1

{U
(j)
k2

) ð5Þ

S(j)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

U
(j)
k1

zs2
U

(j)
k2

{2s
U

(j)
k1

U
(j)
k2

r
, ð6Þ

where U
(j)
km

, s2

U
(j)
km

and s
U

(j)
k1

U
(j)
k2

denote means, variances and

covariance of the U
(j)
km

over the samples km , (m = 1,2; j = 1,2,…,p),

respectively. For independent samples s
U

(j)
k1

U
(j)
k2

obviously equals 0.

In contrast to the definitions of L(j) and S(j), which are valid to

any data type and any sample design, the definition and

determination of C(j) (j~1,2,:::,p) needs to differentiate between

dependent and independent samples. By using the indicator I(z)
which equals 1 if z is true and 0 elsewhere, we define C(j) as

follows:

C(j)~
Dp(j)

1 {p
(j)
2 Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(j):(1{p(j)):(
1

n1
z

1

n2
)

r ð7Þ

where p(j)~
n1p

(j)
1 zn2p

(j)
2

n1zn2
and

p
(j)
m,( m~1,2)~

Xnm

i~1

1

nm

I(U
(j)
i §

n1

n1zn2

), for independent samples

Xn=2

i~1

1

n=2
(I(U

(j)
1i {U

(j)
2i ) inq 0), for dependent samples

where inq refers to 0w’ for m~1 and 0v’ for m~2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
ð8Þ

The expression in the right of (7) is identical to the statistic used

for the parameter comparison of two binomial distributions when

n1 and n2 are large (see [6]). We use this formula for the

calculation of MoR irrespective of sample size by differentiating

between sample designs only. According to the underlying sample

designs the p(j)
m (m~1,2) have to be determined differently.

Formula (8) means the following: For independent samples, p
(j)
1

and p
(j)
2 in the above formulas represent the proportions of the

transformed data U (j) in the sample Ł that are larger than the

quantile ~uu(j)
q of the pooled sample, where q~

n1

n1zn2
. Since for the

feature j, U (j) represent transformed values of consecutive ranks in

the interval ½0,1� we can find after some algebra that ~uu(j)
q is equal to

q for any j. For n1~n2, ~uuq equals the median of the pooled sample,

which is here 0:5.

For dependent samples p
(j)
1 and p

(j)
2 refer to the proportion of

positive or negative differences, respectively. Ties will not be

considered. Since for dependent samples n1~n2, it is easy to

conclude that p(j) is here equal to 0:5 for any j.

Substituting the factors C(j),L(j) and S(j) in formula (2) with the

related expressions of (5)–(8) concerning to transformed data and

setting for the weighting factor g~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n1zn2)=2
p we obtain for

each feature j, (j~1,2,:::,p) of the original sample = the

corresponding MoR. The complete and compact MOR-formula

looks so:

MoR(j)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n1zn2)=2
p : jp(j)

1 {p
(j)
2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(j):(1{p(j)):(
1

n1
z

1

n2
)

r

: ( �UU (j)
1 { �UU (j)

2 )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

U
(j)
k1

zs2

U
(j)
k2

{2s
U

(j)
k1

U
(j)
k2

r
ð9Þ

If we ignore the index j, (j~1,2,:::,p) and focus on one feature

(variable) only, the formula of the MoR looks very simple. This

formula is shown in Appendix S1 and can be used in calculation

software programs for an easy determination of the measure of

significance via algorithms.

Please note, while the L(j)’s are unbiased estimators of the

difference between population means, S(j)’s are not unbiased

estimators of the pooled standard deviation. The factors L(j)

S(j) that

represents the normalized biological differences are similar to the

Hedges’ g (see [7]). However, g is an unbiased estimator of the

effect size only by a multiplication with a certain factor. Besides

Hedges’ g there are further estimators of effect size, for example,

Cohen’s d (see [8]) or Glass’ D (see [9]) as well as other

correlational effect-size indicators. Most of these effect-size

indicators which include the factors
L(j)

S(j)
are characterized with

small-sample biases. Nevertheless, provided that we are predom-

inantly interested in an adequate measure of the information

content and not in the development of a statistic and its

distribution, the question of optimality and unbiased effect-size

estimators does not affect the new method substantially.

Notes
(a) Categorical data. Using the transformed sample values

U (j) instead of the observed data values and determining therewith

the unknown parameters in (9) we are able to calculate the

measure of relevance for almost all common situations in a two

Ł

Ł
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sample-problem, namely for dependent or independent samples

and for metric, ordinal and binary data as well, when binary data

are coded by the numbers 0 and 1. Exceptional situations may

expose only nominal data with more than two outcomes. Of

course, nominal data can be handled as ordinal categorical data

too, but assigning numbers to their outcomes is an arbitrary act.

However, for nominal data with more than two categories, this

process should not be pursued. In reality we deal with multinomial

distributions, and the transformation of their location and

dispersion parameters into an one-dimensional parameter, like

the measure of relevance, creates some difficulties. Provided that

the sample sizes are sufficient, we suggest not considering nominal

variables as predictors, but rather as influential or control

variables.

(b) Avoiding ties in MoR. When operating with very small

sample sizes and very large numbers of continuous variables,

which for example is often the case in gene expression analyses, it

is recommendable to use the original data to calculate L and S in

formula 2 rather than using ranks and U-transformations. This is

because for very small sample sizes the use of ranks and U-

transformations will often produce normalized biological differ-

ences L=S with equal values (ties) (It is easy to understand that the

number of possible values of L=R is equal to N : ~
(n1zn2)

n1

� �
).

Also, N will be the maximal number of different MoR values,

since the factor C in 2 is transformation-invariant. In these cases,

the discriminative power of MoR suffers and the only way to avoid

this shortcoming is to operate with the original values. By doing so

we take the risk of outlier effects which we accept, since clearing-

up outliers is not particularly useful in very small samples.

Selection Criteria
After receiving the MoR’s for each feature j, (j~1,2,:::,p) and

constructing with their absolute values the information chain over

j in the 2nd step, we then have to go to the last step of our method,

which is to define a suitable selection and evaluation criterion in

the information chain. We give below several selection criteria

which help to determine the extent of relevant variables.

(a) Entropy. We are using entropy as a metric which

describes the mean information content of a set of variables. It is

a function which depends on the total number of variables in the

considered set and the according relevance measure values.

Changing the content of the set leads to a change in the entropy.

Let us assume that the set consists of k variables Xj , (j~1,:::,k)
with kvvp (: ~ number of all considered variables), each of

them featuring an information content of size dj . In our case, dj

corresponds to MoR of the variable Xj . Assuming equal

probability for all variables to be chosen as relevant, the entropy

of the set of variables of size k is given by

Ek~
Xk

j~1

xj

Pk
j~1

xj

:ln
xj

Pk
j~1

xj

0
BBB@

1
CCCA

���������

���������
ð10Þ

By sorting the absolute MoR-values of the variables

X1,X2, . . . ,Xp in decreasing order, we build m sets of variables,

the first set, K½1� containing the variable X½1� with the largest

relevance value (first value of the information chain), the second

set, K½2� containing variables X½1� and X½2� with the two largest

relevance values and so on. For each of the sets we determine the

entropy amount E. This value grows by adding more and more

variables to the set. We stop adding variables to the set as soon as

the change of entropy becomes negligible.

The following formula measures the adjusted change of entropy

when adding the variable with the next smallest relevance value.

DjE~
Ej{Ej{1

Pj
r~1

Er

, j~2,:::,p: ð11Þ

Therefore, when the condition DjEƒe, where e indicates a very

small number, is for the first time fulfilled by the index j�, all

variables in the information chain with index less than j� should be

selected as informative.

(b) Permutation distribution. Another way to identify the

number of relevant variables could be created by a permutation

procedure.

For this purpose the group variable is permuted to derive a

random group assignment among the observations. Thereby

attention has to be paid that the original sample sizes remain stable

for all permutations. Based on any new random grouping, we

conduct the calculation of the relevance measure for all considered

variables. The permutation procedure and calculation of the MoR

under random group assignment is repeated N : ~
(n1zn2)

n1

� �
times. By exhausting all possible permutations, we obtain for each

variable N MoR-values. We then determine for each variable

among its N MoR-values a p�-interval containing its N:p� greatest

MoR-values, where p� may be equal to a corrected or uncorrected

a, according to scientist’s choice. Variables whose observed MoR-

value are within the p�-intervals should be declared as relevant.

We made us aware of that for the selection of informative variables

by means of permutations we do not implicitly want the

information chain. However, to avoid too many calculations with

the permutation method, it is advisable to focus only on variables

that are at the first fragment of the information chain when MoR’s

are sorted in decreasing order.

(c) Cut-off criteria: Subjective cut-off criteria. By this

approach, we are considering the following cut-off criteria:

N Sort the absolute MoR-values of the variables X1,X2, . . . ,Xp in

decreasing order. X½1�, . . . ,X½p� denote the corresponding

ordered variables. Choose the first variables X½1�, . . . ,X½k�
whose corresponding absolute MoR-values (dj) fulfill for the

first time the condition d�~

Pk

j~1
djPp

j~1
dj

§d, where d indicates a

number less than 1. It is required that the information of the

first k selected variable must be at least equal to a predefined

fraction d of the information supplied by all features.

N Choose a constant less than 1, e.g. c~0:10, that will represent

a proportion of the total number of desirable informative

variables and choose the c:p variables with the largest absolute

MoRj .

(d) Cut-off criteria: Sample-related objective cut-off

criterion

N Choose all variables with dj§
2:45:hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n1zn2)=2
p ,

where h is a weighting factor equal to 0:2,0:5 or 0:8 for small,

moderate or large effects (see e.g. [8]). It is noteworthy that small,

moderate or large effects should be desirable with large, moderate

or small sample sizes corresponding to less than 30, between 30

and 60 or more than 60 observations in both samples, respectively.

Since for large samples the factor C(j) tends to increase (because its
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denominator decreases), the weighting factor h acts as a pedant

and braking factor to the C(j)’s. The number 2:45 is indeed a

product of simulations, but it can also be derived after some

consideration. Because the factor L(j)

S(j) looks like to a Z-statistic, we

expect that for large samples it will also have similar properties to

this statistic. The 5%- and 20%-quantiles of the standard normal

distribution give together about 2:45. Compared to the entropy

criterion the cut-off criteria are easy to conduct.

An interesting question regarding the stop-criteria is how to

proceed with thse criteria as an optimal way to detect relevant

biomarkers? After creating the information chain with the

relevance measures of the considered variables it is recommended

to first deal with an objective criterion that facilitates the decision

of whether the information chain indeed contains informative

variables or not. For this purpose, a good objective criterion is the

sample-related objective cut-off criterion mentioned above. When

the maximal absolute MoR-value in the peak of the information

chain is less than
2:45:hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n1zn2)=2
p , then the absolute MoR-values of

all other variables will also be less than these criterion-barrier. This

implies that none of the investigated variables are informative. In

such a case we do not want to make any further effort for the

detection of biomarkers. However, if we find variables along the

information chain with absolute MoR-values greater than the

corresponding threshold, then the search for biomarkers should be

continued as follows:

If the number of variables whose relevance measure is greater

than the criterion-barrier is too large then it is advisable to further

use some subjective cut-off criterion to reduce the selection of the

informative variables into a desirable amount. Again: an objective

stop criterion should not be considered the ultimate ratio for

selecting the most relevant biomarker candidates. In many

situations we have to align the amount of the relevant biomarkers

to practicability requirements and not to those of the stop criteria,

independently of how objective the latter are. When, for example,

in investigating allele frequency-distribution for 300,000 SNPs

(single nucleotide polymorphism) between two sample populations

we find, by a selection criterion, 300 or more relevant SNPs, it

would be impractical to consider all these SNPs as biomarker

candidates for further analysis, especially not in cases with

comparatively small sample sizes.

Simulation studies
Provided that the measure of relevance represents a new metric

scale it is absolutely essential to proof whether, and to which

extent, it satisfies the three fundamental properties objectivity,

reliability and validity. To examine these properties we conducted

extensive simulation studies:

Since objectivity of a measure or a metric scale is its ability to

reflect the information contained in the measured objects, we first

simulated situations where 1,000 variables among which 10 are

informative and the rest non-informative have to be compared

between two samples. We consider for the 10 variables three

degrees of information content: high, moderate and negligible.

High informative variables are generally variables whose absolute

amount of biological differences between two samples is higher

than their pooled standard deviation, variables also with a

normalized biological deviation larger than 1. Variables with

normalized biological differences near 1 are semi-informative and

those with normalized biological differences close to 0 non-

informative. However, as already mentioned, the normalized

biological differences alone may not describe the relevance of the

variables. One has to also consider the sample sizes to better

analyze the degree of relevance. Therefore, we performed the

simulation runs with different sample sizes. All variables (infor-

mative or not) are derived from the same distribution, but with

different parameters, in order to assign them the desirable degree

of information. If the MoR enables the identification of

informative and non-informative variables correctly, independent

of data structure, sample size and sample design, then the

objectivity of the measure of relevance is highly guaranteed.

Reliability is more or less the answer to the question of how

good a measure or metric scale can bear up against the practical

test. In some scientific disciplines, where scales concern subjective

assessments, reliability is often evaluated with agreement-coeffi-

cients of interrater or repetitions or intrarater scores. However,

our measure of relevance concerns objective data, therefore, we

need different instruments to test reliability. An appropriate

method to proof reliability of the measure of relevance is the

evaluation of its ability to identify relevant biomarkers in different

situations (when the two samples derive for example from different

distributions). To do so we simulated three different two-sample

situations with 1,000 variables derived from a normal, uniform or

a bimodal distribution, respectively. Also, 10 of the 1,000 variables

have high, moderate or negligible information content.

The question of whether the informative variables are indeed

informative is verified by the validity test. To test the validity of

MoR we compared the results from established statistical methods

(see below) with the measure of relevance. These methods were a)

the Random-Forest approach working on the explorative level and

b) the multiple-testing procedure based on non-parametric tests

(U-tests, Wilcoxon-tests or Sign-tests) working on the confirmatory

level.

Results

(a) Objectivity
Table 1 gives a survey of the simulation results and delivers a

better and deeper insight into the objectivity of the measure of

relevance. When the ten exceptional variables are highly

informative the simulation runs delivered, for both sample designs

and both data structures (metric or binary), very good to excellent

identification rates (95{100%), irrespective of sample sizes. This

means, that the measure of relevance is capable of identifying

almost exactly the 10 selected, very informative variables.

Therefore, the measure of relevance shows a high sensitivity.

When the 10 considered variables were semi-informative and have

a normalized biological difference near 1 we can not expect that

all of them will prove as informative in the simulation runs.

Depending on the sample sizes, the part of the 10 variables that

can be identified as relevant in view of information content varies

from moderate (50{60%) for small samples to high (90{100%)
for large sample sizes. Because we are not able to know a-priori

which of the 10 semi-informative variables are indeed informative,

in each case we applied an appropriate non-parametric test. Those

variables among them with p-values less than the adjusted a,

a�~0:005 are considered informative. Interestingly, we found

even for small sample sizes (12 to 15) a good compliance (86 to

95%) between MoR and the results of the non-parametric tests.

For large sample sizes the compliance tends to be excellent even

for semi-informative variables (95 to 100%). We also pursued the

question of whether the part of the 10 semi-informative variables

that was not recognized as informative belongs indeed to the non-

informative variables (specificity property). The specificity values

were excellent (100%) in all cases, i.e. irrespective of samples sizes,

sample designs and data structure. Finally, when the 10 selected

variables were like the rest of the non-informative variables,

neither the measure of relevance nor the nonparametric tests
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detected any informative variables among them. This can be

confirmed by the high specificity values (about 99%), that remain

high for any sample size and design. Overall, the objectivity

property of the measure of relevance is acceptable.

Figure (2a) visualizes the objectivity of the measure of relevance

for simulated metric and binary data of independent and dependent

samples by using small samples (n1~n2~15). The data generation

in simulations with samples with binary data structure was based on

Bernoulli-distributions B(1,pi), i~1,2, where pi was selected in such

way that the normalized biological differences equals about 2:00,

1:00 or 0:00. With the pi pairs ½0:81,0:12�, ½0:65,0:10� and

½0:50,0:50� for the samples we generated pseudo-random numbers

equal to 1 and 0 having the desired properties. Variables whose

absolute MoR is placed at the beginning of the x-axis have the

largest information content. For both sample designs and both data

structures the ten variables with largest information content

revealed very large MoR-values in comparison to the other

variables; therefore, they were placed at the beginning of the

graph. Application of the sample-related objective cut-off criterion

(djw~
2:45:hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n1zn2)=2
p ~

2:45:0:80ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(15z15)=2

p ~0:50) clearly revealed

these informative variables (see horizontal red lines in the upper).

(b) Reliability
As mentioned above, we have to simulate variables that are

derived from different distributions for testing reliability. Next to

the normal distribution, which was already used to test objectivity

(see table 1), we chose for the variables two other distributions,

namely, a uniform and a bimodal (mixed) distribution. To obtain

the same normalized biological differences with these distributions

as with the normal distribution used in the objectivity consider-

ations, we chose suitable distribution parameters. For example,

since the standard deviation of a uniform distribution U on ½0,1� is

equal to

ffiffiffiffiffi
1

12

r
~0:288, we have to draw pseudo-random numbers

from a uniform distribution f1~3z3:5:U(0,1) for one sample and

a uniform distribution f2~0z3:5:U(0,1) for the other in order to

obtain 10 very informative variables with normalized biological

difference of about 2:00.

Table 2 shows the reliability results from the simulation runs.

For the 10 informative or semi-informative variables obeying the

uniform distribution, we obtain results similar to that for the

normal distribution (see table 1) for both sample designs. However,

if the variables follow a bimodal distribution, the rate of detecting

variables as informative is for small samples low, even in the case

of variables with large informative content. This is not surprising.

Variables following a bimodal distribution have large variances

and yield poor mean estimations in small samples. Standardized

mean differences based on these variables are, therefore, also

affected by small samples. The MoR as well as the inferential tests

are more effective in cases of large sample sizes because with large

samples means of differences or effects can be assessed more

accurately. Nevertheless, the sensitivity and specificity of MoR are

large (from 84% to 100%), even in the case of variables with

bimodal distribution. This indicates the excellent diagnostic

capability of it in informative and not-informative situations.

(c) Validity
The aim here is to show that the introduced method, based on

MoR, is at least as good as a classic inferential approach or a well-

known exploratory approach. As already mentioned, we use the

multiple testing and the Random Forest (see [10]) as comparative

approaches. We use for both independent and dependent samples

only metric data. For the simulation study, we performed 200
simulation runs in each of which 1,000 variables were generated as

described above. To compare the selection quality of the MoR

with the aforementioned methods, we used the sample-related

objective cut-off criterion. Among the three methods applied to the

data, the MoR-method and Student’s t-Test without a-adjustment

indicate excellent and almost identical sensitivity values for

informative and semi-informative variables (see table 3). This

observtion is independent of sample design and size. The Random

Forest shows a weakness of sensitivity in the detection of

informative and semi-informative variables, which can be

explained with the appearance of strong pseudo-correlations

between these variables and some of the 990 non-informative

variables. The specificity values however, which vary from good to

very good for all methods, show some discrepancies between the

Random Forest method and the MoR and multiple-testing

method, especially for large sample sizes. However, this should

not be interpreted as a weakness of the new method.

Among 200 simulation runs, each with normal-distributed

pseudo random numbers for 10 informative and 990 non-

informative variables, it is also possible to obtain some large

effects (normalized biological differences) by random among the

non-informative variables. With increasing sample sizes the stop

criterion always becomes smaller, so the risk for obtaining more

non-informative variables with MoR-values larger than the stop

criterion will increase with increasing sample size. They will then

be falsely identified as informative which explains the weak

specificity of the measure of relevance for large samples. In

practice, however, is not advisable to declare variables with small

differences in their group means automatically as non-informative.

Whenever such variables posses a negligible variance in the two

groups as well, they will point to large effects and therefore, should

be declared as informative even if their group mean differences are

small.

We additionally performed a simulation study to investigate

whether the MoR values could be compared, if different data

structures and sample designs are used. Figure (3) depicts Box-

graphs showing the distribution of the measure of relevance based

on these simulations.

The sample size was constant in all samples and all simulations

(n1~n2~15). The information content was assigned not only to

10 variables but to all considered variables. For independent

samples with metric data the simulated data for one sample was

derived from N(0,1), whereas for the other sample it was derived

from N(k,1) with k~0:0, 1:5 and 3:0 in order to produce

normalized effect sizes equal to 0:0 (non-informative), 1:0 (semi-

informative) and 2:0 (informative), respectively. For dependent

samples the simulations were similar to the case with independent

samples, except for a correlation aspect which has been considered

when choosing data for the second sample. Since comparing the

MoR-values of different data types (e.g. metric vs binary) is only

meaningful when the data of different types contain almost similar

information, we created the binary data for both independent and

dependent samples as follows: The metric data of the 1,000
variables were transformed in binary data by giving the values 0
and 1 when data of the two samples were less or greater the whole-

sample median, respectively. Interestingly, the box graphs

corresponding to the same information contents, except a few

outliers (extremes), do not show any denotative differences

irrespective of data structure and sample design. We can therefore

claim that the measure of significance could be applied in all data

and sample situations without constraints.
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Figure 2. Measure of relevance for simulated and authentic data. (a) Courses of the best 100 MoR-values by simulating a two-sample
problem with 1,000 variables of different data types and sample designs. For each variable and each sample n~15 pseudo random numbers
following a certain distribution (see more details in text) were drawn. The three lines correspond to situations with 10 high-informative, semi-
informative or non-informative variables among the considered 1,000 variables, respectively; all other (990) variables were non-informative.
Irrespective of data type and sample design the 10 informative variables (blue lines) were correctly identified with MoR. As expected the semi-
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(d) Quality and practicability of the objective criteria
Finally, the simulation data and samples used for proving

reliability were also employed to evaluate quality and practicability

of the objective criteria for variable selection across the informa-

tion chain. As objective criteria we considered those based on

entropy, permutation and on the sample related cut-off formula.

Independent on sample sizes, sample designs and distribution

forms of the data, the three criteria selected the same variables as

relevant, whenever they are indeed informative and differ

substantially from the non-informative variables. Permutation-

based criterion and the sample related cut-off criterion supply also

similar results in cases of semi-informative variables. However, for

semi-informative variables the entropy-based criterion shows some

deviations from the others criteria, but this is understandable. If

the MoR of the considered variables are very close across the

information chain the entropy change between neighbor variables

will be almost stable irrespective of the MoR amounts. In such

cases, Dj in inequalition 11 decreases monotonously and with

almost equal decrements between adjacent MoRs and is after

certain steps less than the chosen e. The smaller the chosen e the

more steps will the algorithm need to stop.

As an orientation in handling with the objective criteria for

variable selection with the MoR method is to prevail the following:

The entropy-based criterion can be applied to any sample

amounts. It works better than the other two criteria in cases of

very small samples (n1,n2ƒ10). Values for e between 0:001 and

0:005 seem to be here very good. By large samples also the sample

related cut-off criterion works very well and should be preferred

because of its application simplicity. By moderate samples (n1,n2

between 10 and 20) the permutation-based criterion delivers also

acceptable results, but its application is very cumbersome and

computationally intensive. Generally, the establishment of an

unequivocal optimal stop criterion constitutes a further challenge

and an interesting task for the future time.

Some comments to more complex designs
The essence of the above explanation was the two sample-

situation problem or, in other words, the multivariate problem

with a single influential factor of two levels only. However, when

studying complex phenomena in basic research, we seldom have

to deal with such simple situations. The designs of basic research

studies are generally more complex. They exhibit more than one

influential factor, some of which may have more than two levels.

Therefore, the following questions have to be addressed: [(1)]

1. How can we apply the measure of relevance in more complex

situations (more influential factors or more than two levels)?

2. How can we study interaction effects of two or more influential

factors on multivariate data?

3. Is there a possibility to investigate factor effects on interaction

of biomarkers?

ad 1. For experimental designs incorporating one influential

factor with more than two levels, we consider all possible pair

combinations of these levels. With the MoR method we identify

the most informative variables (biomarker candidates) for all level

pairs. Since each level pair represents a two-sample situation, the

identification of the biomarker candidates uses exactly the same

procedure presented for the two-sample situation. However, the

biomarkers identified under the various level pairs do not have to

be identical and would probably differ in their amounts and signs.

Depending on the focus of our interest we can thereafter, either

use those identified by a certain level pair or declare all different

biomarkers identified by the various level pairs as overall

biomarker candidates, i.e. as variables characterizing the impact

of the influential factor.

ad 2. The investigation of factor interaction in the case of two or

more influential factors can be done only when the sample sizes

are large. The necessary size of a population sample in such cases

depends on the number of factors considered and their levels.

Assuming, for example, a minimum of 10 items per sample for the

application of MoR in the two-samples situation; then for factors

with more levels it is recommended to use population samples

equal or larger than 10:(k1zk2z:::zkr), where ki is the number

of levels for the factor i, i~1,2,:::,r). The former method is similar

to that used in question (1).

ad 3. This question is more complicated and it addresses

difficult numerical methods. In multivariate problems with, say p
variables, the number Mp of all possible variable interactions is

Mp~2p. For large p (e.g. p~100), Mp becomes very large and

numerical operations and algorithms towards Mp can not be

computed easily. On the other hand, one has to ask, whether and

which interactions between biomarkers make sense. Generally,

scientists are not too interested in examining on which interactions

of variables the influential factors exercise significant effects. They

want, more or less, to investigate on which variables some

preconceived influential factors and their interaction have a crucial

influence. This point of view brings us back to questions (1) and (2).

When, in high dimension data, interactions make sense, we

recommend investigation of interaction/correlation effects in the

last stage of the analysis, namely, after identifying the most

relevant biomarkers by means of MoR. This method should be

followed under certain conditions, also in the statistical inference

based on multiple testing (see [11]).

Examples
The following three examples demonstrate the power of this

novel method in identifying relevant biomarkers.

1) Sleep data example. Sleep is a very important component

of life. Therefore, it is of immense relevance to know the

physiology, structure and functional mechanisms of the sleep

process as well the causes of its disturbances. In sleep research

polysomnographic recordings including, electroencephalograms

(EEG), electrocardiograms (ECG) and muscle activity (EMG), are

commonly used. From these recordings a variety of variables

(parameters) are extracted for detailed sleep data analysis. The

resulting parameters may be classified in architecture, continuity

or quantitative parameters representing respectively durations in

the sleep states or transitions between sleep states or rhythmic

intensities of certain frequencies and frequency bands as well.

The objective of a recent study ([12]) was to examine the effect

of sleep deprivation on sleep and the secretion of a specific

informative variables showed lower MoR-values and were only partially detected as relevant. (b) Application of the MoR approach to sleep EEG data
in order to investigate the effect of sleep deprivation on sleep behavior. n~16 subjects were examined in two nights, before and after sleep
deprivation. Dataset consists of different data types (metric, ordinal, binary etc.). The MoR-values of the parameters over the solid (red) line are all

greater than the sample-related cut-off criterion (dj§
2:45:hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n1zn2)=2
p ~

2:45:0:80ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(16z16)=2

p ~0:50).

doi:10.1371/journal.pone.0035741.g002
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hormone (Renin) during the recovering night. A sample of n~16
subjects investigated two times (before and after sleep deprivation)

serves as background for the study.

The deprivation study is equivalent to a multivariate two

situation problem with dependent samples and different data

types. Therefore, the question ‘which sleep parameters show

significant differences between nights before and after sleep

deprivation’ is investigated by our method based on the measure

of relevance. The results are depicted in figure (2b). The graph

represents the ordered MoR values and visualizes the magnitude

of change of the considered sleep parameters after sleep

deprivation. On the right side of the diagram are listed those

Table 3. Validity of new method compared to alternative methods.

Independent Samples Dependent Samples

Method Sensitivity Specificity Sample Sizes (n1; n2) Sensitivity Specificity Sample Sizes (n1 = n2)

a) very informative variables

New Method: 1.00 0.86 12; 10 1.00 0.82 11

T-Test without a-adjustment: 1.00 0.95 1.00 0.95

T-Test with a-adjustment: 0.90 1.00 0.90 1.00

Random Forest: 0.30 1.00 0.50 1.00

New Method: 1.00 0.78 14; 16 1.00 0.69 15

T-Test without a-adjustment: 1.00 0.95 1.00 0.95

T-Test with a-adjustment: 1.00 1.00 1.00 1.00

Random Forest: 0.20 1.00 0.20 1.00

New Method: 1.00 0.56 30; 30 1.00 0.41 30

T-Test without a-adjustment: 1.00 0.93 1.00 0.96

T-Test with a-adjustment: 1.00 1.00 1.00 1.00

Random Forest: 0.50 1.00 0.30 1.00

b) semi-informative variables

New Method: 1.00 0.87 12; 10 1.00 0.81 11

T-Test without a-adjustment: 1.00 0.96 1.00 0.95

T-Test with a-adjustment: 0.00 1.00 0.50 1.00

Random Forest: 0.70 0.99 0.30 1.00

New Method: 1.00 0.74 14; 16 1.00 0.67 15

T-Test without a-adjustment: 1.00 0.96 1.00 0.95

T-Test with a-adjustment: 0.70 1.00 0.60 1.00

Random Forest: 1.00 0.90 0.30 1.00

New Method: 1.00 0.59 30; 30 1.00 0.39 30

T-Test without a-adjustment: 1.00 0.95 1.00 0.96

T-Test with a-adjustment: 0.90 1.00 1.00 1.00

Random Forest: 1.00 0.98 1.00 0.92

c) non-informative variables

New Method: 0.10 0.87 12; 10 0.10 0.81 11

T-Test without a-adjustment: 0.00 0.96 0.00 0.95

T-Test with a-adjustment: 0.00 1.00 0.00 1.00

Random Forest: 0.00 0.98 0.00 1.00

New Method: 0.40 0.75 14; 16 0.30 0.69 15

T-Test without a-adjustment: 0.00 0.95 0.00 0.95

T-Test with a-adjustment: 0.00 1.00 0.00 1.00

Random Forest: 0.10 0.97 0.00 1.00

New Method: 0.40 0.57 30; 30 0.70 0.40 30

T-Test without a-adjustment: 0.10 0.95 0.00 0.96

T-Test with a-adjustment: 0.00 1.00 0.00 1.00

Random Forest: 0.00 1.00 0.00 1.00

Validity of the measure of relevance for the two sample-problem evaluated by sensitivity and specificity. For comparisons we used the a multiple-testing-adjusted
approach based on the t-test and the tree-based Random Forest approach. For informative or semi-informative metric data sensitivity showed good concordance with
multiple testing without a-adjustment. This was irrespective of sample design and sample size. Specificity did not show as good results as sensitivity (for more details
see text). However, the specificity results were better than those obtained from t-test without multiple-testing-adjustment.
doi:10.1371/journal.pone.0035741.t003
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variables which were identified as most relevant by the sample-

related objective cut-off criterion, which in this case

equals
2:45:0:8:ffiffiffiffiffi

16
p *0:50. Interestingly, in this study the measure

of relevance revealed a lot of significant sleep parameters (20
among 157), which appear to be too much. Nevertheless, we are

not surprised by this result because sleep deprivation provokes

general changes at many of the considered parameters ([12]). With

the MoR approach we endorse again that sleep deprivation is the

most powerful method to promote sleep. During the recovery

night following sleep deprivation sleep propensity is enhanced

resulting in by the architecture parameters (AP) significant

increases of slow wave sleep (SWS), rapid eye movement (REM),

sleep-efficiency index (SEI)and sleep stage 3 and decreases of

shallow sleep (sleep stage 1) and wakefulness. We found also

significant increases after sleep deprivation in some continuity

parameters (CP) like the transition frequencies from wake to light

sleep and from sleep stage 2 to REM sleep as well as significant

decreases in the transitions light sleep to wake. By the quantitative

parameters (QP) the rhythmic intensities of Delta bands (Delta

power) showed during the recovery night significant higher values

than in the baseline. We can say that almost all old findings have

also been found by MoR without any requirements of data

structure, sample size and hypothesis testing which emphasizes the

usefulness of the MoR method in sleep research. Applying the

non-parametric sign-test to variables that were detected as

informative by the MoR, yielded p-values less or equal to the

Bonferroni-adjusted a. Therefore, we can assert here that the sleep

parameters identified as the most relevant by MoR are the best

biomarkers of sleep deprivation.

2) An example with molecular-biology data. In this

example we use data of a published study ([13]). The objective

was to investigate which genes or gene mutations are responsible

for panic disorder (PD), a disease with a lifetime prevalence up to

4% worldwide. To approximate this aim, genome-wide case-

control association analysis based on about 317,000 SNPs (single

nucleotide polymorphism) across the entire genome were con-

ducted. The study consisted of three stages. In each stage different

samples of the patient- and control-populations were included in

order to consider various aspects of the disease and to verify some

findings. In the first stage, which is of particular interest for the

scope of this paper, case-control association analysis were

performed on 216 PD-patients and 222 controls (discovery

sample). The identified biomarkers were then used in further

stages for identifying and verifying the most significant among

them.

The purpose of the study in each stage can be translated into the

investigation of significant differences in a multivariate two-sample

problem with independent samples and binary data structure. A

common way to do this investigation is to calculate the x2-statistics

for the allele-frequencies of the considered SNPs and then tested

significance after correction for multiple testing. The investigators

followed this method, but after correction none of the SNP

remained significant in the first stage. They decided however to

select the 64 SNPs with the smallest p-values by the corresponding

x2-tests as biomarker candidates and to test their relevance in the

other stages. In the second and third stages some SNPs that

showed marginal significance at the corrected a-level in the first

stage pointed to strong significant differences in their allele

frequencies between PD patients and controls. The decision of the

investigators to skip to the other stages proved to be wise. In the

face of statistical inference, however, the changeover from the first

to the other stages is a critical act. We decided to apply the MoR
approach on a fraction of the data used in the first stage of the

study. By randomly choosing two samples of n~50 among the 216
patients and 222 controls and calculating for each of the 317,000

Figure 3. Boxplots of the MoR values under diverse sample designs and data structures. Irrespective of data type and sample design in
the two-sample problem, the measure of relevance shows similar values if the variables are very informative (Normalized Biological Difference (NBD)
about 2:0), semi-informative (NBD about 1:0) or non-informative (NBD about 0:0).
doi:10.1371/journal.pone.0035741.g003
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SNPs the corresponding measure of relevance we obtain, after

sorting and application of the sample-related cut-off stop criterion

with h~0:50, about 40 SNPs as biomarker candidates. With a few

exceptions all the rest of these 40 SNPs are including in the 64
SNPs that showed marginal significance with the multiple-testing

in the first stage of the study. By illustrating the relevance measures

of the best 200 SNPs (see figure (4)) against chromosome and

distance in 3D format (mountain-valley view) we can see, that

some SNPs, especially on chromosomes 11,12,13,16 and 3, point

to very large MoRs and therefore seem to be the best biomarker

candidates. Two of these SNPs are identical to those identified as

significant in the other stages of the mentioned study. Therefore, if

we had applied MoR in the first stage of the study, the changeover

to the other stages could take place without objection.

3) An example with transcriptomic data. To document

the broad practicability of the MoR method, we provide an

example on gene expression data of microarray analyses carried

out on a small sample size (n~5{6). These data stem from a

recently published work ([14]) carried out to investigate the effects

of anxiety-related behavior on gene expression profiles. By using

mice of three different bred lines characterized by high (HAB),

normal (NAB) and low (LAB) anxiety behavior, the authors of the

study used microarrays to investigate the gene expression profiles

of different brain regions within the limbic system of these mice.

For space reasons we focus our attention on the comparison of the

gene expression data between the three lines in the gingulate

cortex region only. Among the 46,657 investigated probes,

applying the MoR method on the normalized expression values

with entropy-based criterion (e~0:001) for variable selection we

detected 29, 30 and 28 probes with very intensive (informative)

regulation differences between HAB and NAB, HAB and LAB as

well as NAB and LAB mice, respectively (see figure (5)). 26 of these

probes were common to all three comparisons. These 26 common

probes correspond to genes being among the 32 top candidates

genes selected by the authors under laborious statistical analyses

for further investigations. Interestingly, all relevant probes

recovered by MoR also belong to the 40 top candidate genes

that have been detected by the authors after application of

multiple testing and Bonferroni corrections on the 46,657 probes.

Via the MoR method we succeeded therefore in finding almost the

same results as with inferential statistics. However, this time

without testing and without any use of significance levels and

corrections. This confirms the quality and application power of the

MoR method for microarray analyses.

Discussion

Modern digital and multimedia-based techniques enable an

overabundant gain of information at almost any time and in

almost any situation. In the past few years we have experienced an

overflow of information and are astonished at how quick, precise

Figure 4. Mountain-valley view of the MoR-values corresponding to the most informative SNPs. Identifying genes with relevant
differences in microarray-based expressions between HAB, NAB and LAB mice. Using the MoR method with the entropy-based stop criterion for
variable selection 29, 30 and 28 among 46,657 probes were proven to be very informative (relevant) in their expression profiles between HAB and
NAB (black symbols over the black solid line), HAB and LAB (blue symbols over the blue solid line)and NAB and LAB (red symbols over the red solid
line) mice, respectively. All relevant probes belong to the set of the 32 genes identified and declared with laborious methods from the study
investigators as top candidate genes for further investigations.
doi:10.1371/journal.pone.0035741.g004
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and opulent this information is. Meanwhile, this trend is also found

in research laboratories of almost all scientific disciplines. As stated

in the introduction, any additional information about a phenom-

enon may contribute to a better explanation of it, but concurrently

complicates the understanding and interpretation of its functions

and mechanisms. For example, if the investigated phenomenon is

a complex disease like major depression, the understanding of its

genesis and synthesis requires abundant information on many

levels (e.g. neuro-endocrinological, physiological, molecular-bio-

logical etc.). However, for therapy of the disease we want to know

the most relevant influential factors, because the fewer the relevant

factors, the better the treatment efficiency. Therefore, data

shrinkage based on a reduction of dimension is the solution. But

attention has to be paid so that loss of information is kept low.

One method of dimension reduction are the multidimensional

scaling (MDS)-methods used in mapping and other visualization

techniques (see [15]). Based on a distance matrix determined by a

certain distance measures (e.g. the Euclid or Mahalanobis

distance), multidimensional scaling is targeted to project p-

dimensional to q-dimensional vectors (qvvp) with minimal

information loss. Factor analysis or principal component analysis

are special applications of MDS-methods. One disadvantage of the

MDS is, that components of the new vectors are expressed more

or less as compounds of the components of the old vectors and

can, therefore, be seldom identical with the original variables.

Another problem is caused by the definition and use of distance

measures. Since distance measures are determined over all vector

components, object pairs often show the same distance values

although their components are completely different. Hence MDS-

techniques are not optimal for biomarker searching.

When the vector components are time-dependent or have the

structure of a time series, a good possible method for variable

reduction is functional fit over time. Polynomial or B-splines of a

degree q less than p are applied to the time series and impose

thereby a dimension reduction from p to q. Functional fits show

the same disadvantage as MDS, namely, the estimated compo-

nents of the q-dimensional vectors are seldom identical to the

original variables.

Another approach to achieve dimension reduction by time- or

not time-dependent data may be obtained by the application of

appropriate association models like generalized linear models,

additive structured regression, functional regression, factor anal-

ysis, discriminant analysis, variance analysis etc (see e.g. [16]). In

these models a response variable is usually associated with many

other variables (predictors) and the objective is to explain the

variability of it by the predictors. However, such models are only

appropriate with adequate amounts of predictors, certain data

structures and large samples. Whenever there are too many

observed variables (many hundreds or many thousands) associa-

tion models should not be applied without further ado. Beside the

risk of collinearity, which would violate basic model assumptions,

the shape of the functional form used is often questionable.

Also, some modern explorative methods such as Random

Forest, LASSO, CART etc. which were developed for classifica-

tion tasks, may determine the most relevant variables well (for

details see [5]). However, the main principle behind these methods

‘the winner takes it all’ often metabolizes (especially by more than

two classification possibilities) these methods in black boxes where

the output is indeed relevant but not informative enough about the

selected variables. ‘Identifying relevant predictor variables, rather

than only predicting the response by means of some ‘black-box’, is

of interest in many applications’ ([17]). Moreover, in the face of

too many variables the algorithms of these methods involve a risk

of identifying some pseudo-correlations as true correlations. This

fact may bias and distort the results. It is important to also mention

here a weakness of methods that are based on split algorithms:

Variables, which show in two-sample problems negligible differ-

ences between the two samples, will not be detected as relevant by

methods based on split algorithms, irrespective of how small the

variance is. This is undesirable for variables with small biological

difference between two populations could be indeed of very large

importance whenever they show small variance. Another disad-

vantage of those methods is that classification results obtained with

a certain set of variables may be changed when additional

variables have to be added to the set. Considering the sign of the

MoR, our new method enables, in contrast, not only the

identification of relevant biomarkers, but also supplies information

about the degree of relevance and the direction of the differences

between the groups etc.

For high-throughput biomarker discovery some new strategies

exist. They take into consideration possible correlations among the

input variables. One example is the correlation modeling

approach. It translates statistical inference to new data after

modeling correlation structure with a special functional i.e. a

spatial autoregressive model (see [18]). Another interesting

approach uses new test-statistics, which combine the t-scores with

estimated correlations (see [19]). A novel approach in association

analysis is based on the correlation-adjusted t’-scores, which give

optimal rankings in the t-scores when variables are correlated (see

[20]). Nevertheless, all these methods work well with metric data

but can not be transferred to other types of data without difficulties

or strong compromises. We should again keep in mind that the

investigation of group effects on variable interactions is not the

same as searching for possible correlations between dependent

Figure 5. Measure of relevance for gene expression data.
Application of the MoR approach to molecular biological data (SNPs) for
identifying SNPs with relevant differences in the allele frequencies
between controls and patients with panic disorder. In each group the
SNP-data of n~50 subjects were examined. For the two-independent-
sample problem on hand with binary data the MoR-values of three SNPs
on the chromosomes 10, 11 and 12 showed MoR-values above the sample-

related cut-off criterion (dj§
2:45:hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n1zn2)=2
p ~

2:45:0:50ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(50z50)=2

p ~0:17).

doi:10.1371/journal.pone.0035741.g005
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variables in order to perform multiple testing more correctly. An

interesting method for testing group effects on gene interactions

(occasionally called epistatic interactions) is given by [21].

Our simulation studies revealed that the new method is at least

as efficient as alternative approaches. However, in comparison to

the alternatives, the new method for biomarker searching has

some noteworthy advantages: First, it is free from association

forms or functionals between response variable and predictors.

Second, is free of classification risks, which are caused by pseudo-

correlations in the case of high-dimensional data. Third, it

operates on the explorative level and needs no correction of the

level of significance for the identification of the best biomarkers.

Fourth, it works well for any kind of experimental design and data.

Last, but not least, it is very easy to apply.

It would be very interesting to investigate the robustness of

MoR towards the weaknesses characterized by drawing multivar-

iate samples in practice (e.g. poor representativeness, collinearity

and dependency, outliers, mixed data structures, stratification,

etc.). Of course the use of ranks provide an excellent basis for

neutralizing outliers and different data-types, but as to whether it

may also flatten some other troublesome effects is not clear. A

good possibility for attenuating intrasampling weakness and

simultaneously obtaining robust estimators and confidence inter-

vals of the MoR is provided by bootstrap sampling. Based on a

random sampling, with replacement from the original sample, the

desired number of resamples from the original data can be

created. By calculating for each resample the MoR of the

considered variables we can create for each variable as many

MoRs as desired. Estimators and confidence intervals of the

expected MoR can then easy determined.

Nevertheless, by all advantages of MoR we must not forget, that

it acts and operates on an explorative level. Therefore results

obtaining by MoR should be rather considered as trend-settings

and not as ultima ratios. In the face of its comfortable applicability

we plead to use MoR predominantly as an orientation and

navigation tool in the prefields of basic research studies. After

detecting with it the most relevat biomarker candidates study

replications focused on all or part of these biomarkers are then

recommended.

However, the method is still in progress. We are investigating

the possibility to implement interactions, especially epistatic

interactions of two, three and larger degrees. Also, we are trying

to further optimize the selection criteria. Nevertheless, given that

for each variable the relationship between the information content

and amount of MoR is unequivocal, the failure of an optimal

selection criterion should not be considered as an essential

impediment. By choosing from the (increasing) information chain

the last k MoRs, we should be sure that the corresponding

variables are also the most informative. And that is enough for the

start of a new method.
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