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Abstract

Although an increased expression level of XIAP is associated with cancer cell metastasis, the underlying molecular
mechanisms remain largely unexplored. To verify the specific structural basis of XIAP for regulation of cancer cell migration,
we introduced different XIAP domains into XIAP2/2 HCT116 cells, and found that reconstitutive expression of full length
HA-XIAP and HA-XIAP DBIR, both of which have intact RING domain, restored b-Actin expression, actin polymerization and
cancer cell motility. Whereas introduction of HA-XIAP DRING or H467A mutant, which abolished its E3 ligase function, did
not show obvious restoration, demonstrating that E3 ligase activity of XIAP RING domain played a crucial role of XIAP in
regulation of cancer cell motility. Moreover, RING domain rather than BIR domain was required for interaction with RhoGDI
independent on its E3 ligase activity. To sum up, our present studies found that role of XIAP in regulating cellular motility
was uncoupled from its caspase-inhibitory properties, but related to physical interaction between RhoGDI and its RING
domain. Although E3 ligase activity of RING domain contributed to cell migration, it was not involved in RhoGDI binding nor
its ubiquitinational modification.
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Introduction

The X-linked inhibitor of apoptosis protein (XIAP) is a member

of the inhibitors of the apoptosis protein (IAP) family [1]. XIAP

was first recognized by its potent properties in regulating cell

apoptosis [2,3]. Later investigations found that XIAP may regulate

other cellular pathways uncoupled from its caspase-inhibitory

activities [4,5], majorly inspired by the findings from XIAP-

deficient mice which displayed no overt apoptotic phenotype [6].

Recently a wide variety of evidence has suggested that the

involvements of XIAP in copper metabolism [7], cell motility [8,9]

and activation of JNK and NFkB pathways [10,11] were unrelated

to its inhibitory effect on caspases.

The multiple functions of XIAP root from its structural basis.

XIAP is composed of three baculoviral IAP repeat (BIR) domains

at amino-terminus and one carboxyl-terminal RING domain [12].

Each BIR domain consists of approximately 70 amino acids that

coordinate a zinc ion via histidine and cystein residues [13]. Its

potent anti-apoptotic properties are mainly dependent on the

functions of a groove in the BIR3 domain and two surfaces on the

BIR2 domain which have been reported to bind and inhibit

caspase-9 and caspase-3/7 respectively [14]. RING domain is

defined by the presence of seven cysteins and one histidine that

form cross brace architecture and coordinate two zinc ions [15].

RING domains often function as modulates that confer ubiquitin

ligase (E3) activity [13]. By mutating the key histidine residue at

amino acid 467 to alanine of human XIAP, Lewis et al found that

E3 ubiquitin ligase function of RING was required for the

activation of NFkB, while not for Smad-dependent transcription

[16], indicating that structure-based functions of XIAP are also

cellular context dependent.

Increased expression of XIAP is found in many cancer tissues

and associated with chemoresistance, disease progression and poor

prognosis [9,17,18,19,20,21,22]. The recent findings from our

laboratory and others’ demonstrated that XIAP could regulate

tumor metastasis [8,23,24]. Tumor metastasis is a major cause of

death for most cancer patients [25]. Many molecules involved in

metastatic cascade are controlled by the members of Ras-

superfamily of small GTP-binding proteins, which are able to

bind GDP/GTP and hydrolyze GTP leading to activation of

downstream effector proteins [26]. Human Rho-GTPase subfam-

ily comprises 23 signaling molecules, among which RhoA, RhoB,

Rac1 and Cdc42 are most extensively investigated and reported to

control various aspects of cellular motility and invasion, i.e.,

cellular polarity, ctyoskeletal organization, and signal transduction

[27,28].
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Rho-GTPase activity is tightly controlled by four key compo-

nents involved in GDP/GTP-bound GTPase cycle, including

GTPase-activating proteins (GAPs), GDP-dissociation inhibitors

(GDIs), GDI dissociation factors (GDFs), and guanine nucleotide

exchange factors (GEFs) [29]. RhoGDI plays a key role in

balancing the entire GTPase cycle by preventing GDP dissocation

and maintaining GTP association through interaction with the

prenylation group of GTPase. Thus, it sequesters GTPase in the

cytoplasm while localization to the inner plasma membrane is

necessary for GTPase activation. The inhibitory effects of

RhoGDI on GTPase activity have been supported by several

lines of evidence [30,31,32]. For instance, Leffers et al. have found

that overexpression of RhoGDI in human keratinocytes caused

disruption of actin cytoskeleton and inhibition of motility [32].

Therefore, RhoGDI is regarded as an attractive candidate for

regulating the activity of Rho GTPase in cancer treatment [26].

Our recent studies have proven that XIAP mediated cancer cell

motilities via RhoGDI-dependent manner in regulation of

cytoskeleton [23]. In the current study, we further elucidated the

molecular mechanisms underlying XIAP-RhoGDI protein inter-

action and provided the structural basis of XIAP for the

contribution to mediation of cancer cell motility.

Results

RING domain was required for XIAP-mediated b-Actin
expression

XIAP expression is elevated in many cancer cell lines and

closely related to the progression and aggression of malignant

cancer [33,34]. Our recent work demonstrated that XIAP could

regulate b-Actin expression [23]. As a result, depletion of XIAP

expression attenuated cell migration rate and invasive capability as

shown in wound healing assay and trans-well assay, respectively

(Figs. 1A–1E). To note, there was only marginal difference in

proliferation rate between WT and XIAP2/2 cells when cultured

in normal cell culture medium (10% FBS) for up to 5 days, which

included the time range for wound healing assay (Fig. 1F),

indicating that the reduced cell migration rate observed in

XIAP2/2 cells was not due to defective cell proliferation.

Moreover, the dynamic induction of actin polymerization, namely

F-Actin formation, by EGF was also dramatically reduced in

XIAP2/2 cells detected by spectrophotometer (Fig. 1G). Consis-

tently, a clear change of cell skeleton morphology and more

peripheral ruffles/membrane ruffles were observed in EGF-treated

WT HCT116 cells but not in XIAP2/2 cells (Figs. 1H & 1I).

These phenomena were reproducible by knocking down XIAP in

HCT116 cells (Fig. 2). Therefore it indicated that XIAP played a

key role in mediation of cancer cell migration and invasion.

XIAP protein contains four functional domains, including three

BIRs and a RING domain (Fig. 3A). The anti-apoptotic function

of XIAP BIRs was reported to be attributable to their binding and

impairment of caspase activation [1]. The RING domain of XIAP

belongs to E3 ligase and mediates protein ubiquitination and

degradation [1]. To verify the specific structural basis of XIAP for

regulation of cancer cell migration, we transfected different HA-

tagged XIAP cDNA constructs, including full-length (HA-XIAP),

RING domain-deletion (HA-XIAPDRING), total BIR deletion

(HA-XIAPDBIR), and a point mutation H467A, which results in

loss of E3 ubiquitin ligase activity, into XIAP2/2 cells respectively,

and the stable transfectants were identified (Fig. 3B). Re-

constitutional expression of HA-XIAP or HA-XIAP DBIR that

contains RING domain into XIAP2/2 cells resulted in an increase

in b-Actin expression as compared to that in XIAP2/2 (Vector)

cells, while expression of HA-XIAP DRING that contains BIR

domains, or HA-XIAP H467A that renders abolishment in E3

ligase activity, did not provide comparable restoration (Fig. 3C).

Therefore, it demonstrated that XIAP RING domain and its E3

ligase activity played a role in regulation of b-Actin expression.

E3 ligase activity of XIAP RING domain was involved in
mediation of cell migration and actin polymerization

To further explore the biological relevance of b-Actin

expression change regulated by XIAP RING domain, wound

healing assay was performed to compare the migration rates

among various transfectants carrying different domains of XIAP as

identified in Fig. 3B. In accordance with defects in b-Actin

expression, introduction of neither HA-XIAP DRING nor HA-

XIAP H467A could reverse the impairment in cell migration of

XIAP2/2 cells, while expression of full length HA-XIAP or HA-

XIAPDBIR, both of which hold intact RING domain, restored the

reduction of cell migration capability caused by XIAP depletion

(Fig. 4A). While due to the relative low expression of HA-

XIAPDBIR in comparison to that of HA-XIAP in the individual

transfectants (Fig. 3B), the wound healing rate observed in HA-

XIAPDBIR-expressing transfectants was slower than that in HA-

XIAP-expressing cells (Fig. 4A). The percentage of wound area left

un-closed on 4th day compared with that on 0 day was quantified

using Cell Migration Analysis software, which showed that the

wound areas in XIAP2/2(vector), HA-XIAP DRING and HA-

XIAP H467A transfectants were markedly higher than that in WT

HCT116 cells (Fig. 4B). Therefore, it suggested that E3 ligase

activity of RING domain played an important role in XIAP-

mediated cell motility.

Actin filaments play a central role in numerous cellular

functions, such as cell migration and morphological regulation

[35]. To determine potential involvement of different domains of

XIAP in regulation of actin polymerization, we treated cells with

EGF, and then extracted cells for determination of F-actin levels

by flow cytometry using the stable transfectants mentioned above.

Again, F-actin formations induced by EGF treatment were

obviously obtained in WT HCT116 cells, XIAP2/2(HA-XIAP)

and XIAP2/2(HA-XIAP DBIR) transfectants, whereas there was

no observable F-actin induction in XIAP2/2(vector), XIAP2/2

(HA-XIAP DRING) or XIAP2/2(HA-XIAP H467A) transfectants

(Fig. 5A). The quantification result was shown in Fig. 5B. Taken

together, our results demonstrated that function of XIAP RING

domain in regulation of actin polymerization and cell motility was

mediated by its E3 ligase activity.

XIAP RING Domain interacted with RhoGDI, independent
on its E3 ligase activity

Our recent work demonstrated that RhoGDI was involved in

actin polymerization regulated by XIAP [23]. Therefore we

detected the physical interaction between these two molecules by

co-immunoprecipitation utilizing anti-XIAP specific antibody.

The results showed that RhoGDI was detected in the co-

immunoprecipitated complex in XIAP+/+, but not XIAP2/2

HCT116 cells (Fig. 6A), suggesting that RhoGDI might interact

with endogenous XIAP. The interaction between XIAP and

RhoGDI was further verified reciprocally by detection of XIAP in

co-immunoprecipitation complex pulled-down by anti-GFP anti-

body using transfectants of XIAP2/2(HA-XIAP/GFP-RhoGDI),

whereas there was no detectable level of XIAP in Co-IP complex

in transfectants of XIAP2/2 (HA-XIAP/GFP-vector) (Fig. 6B).

Then we knocked down RhoGDI in WT and XIAP2/2 cells to

confirm the participation of RhoGDI in cell motility. Wound

healing assay results showed that knockdown of RhoGDI in WT

XIAP E3 Ligase and RhoGDI
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cells did not cause an obvious change in wound closure rate,

however a remarkably increased cell migration was observed in

XIAP2/2(shRNA-RhoGDI) cells in comparison to that in non-

silencing control, XIAP2/2(Non-silencing) cells (Fig. 6C). Consis-

tently, knockdown of RhoGDI expression also increased F-actin

content in XIAP2/2(Si-RhoGDI) cells exposed to EGF (Fig. 6D,

p,0.05). The sequences of the RhoGDI gene (401–419), that was

complementary to siRNA oligonucleotide in pEGFP-C3/

RhoGDI-re construct, were mutated to prevent destruction of

exogenous mRNA by RhoGDI siRNA [36]. As shown in Fig. 6E,

overexpression of pEGFP-C3/RhoGDI-re was identified in

XIAP2/2(Si-RhoGDI+RhoGDI-re). This reconstitutive expres-

sion of RhoGDI in XIAP2/2(Si-RhoGDI+RhoGDI-re) dramat-

ically attenuated actin polymerization induced by EGF treatment

in comparison to that in XIAP2/2(Si-RhoGDI) cells (2% vs. 14%,

p,0.01, Fig. 6F). Moreover, reconstitutive expression of RhoGDI

in XIAP2/2(Si-RhoGDI+RhoGDI-re) cells restored inhibitory

role of RhoGDI on filamentous actin formation (Fig. 6G),

suggesting that reintroduction of RhoGDI-re enabled compensa-

tion for loss of endogenous RhoGDI function on actin polymer-

ization in XIAP2/2 cells. Our results provided evidence that

RhoGDI might be involved in XIAP RING domain-mediated

regulation of actin polymerization and cell migration.

To determine specific XIAP domains involved in interaction

with RhoGDI protein, we co-transfected GFP-RhoGDI construct

with HA-XIAP, HA-XIAP H467A, HA-XIAP DRING and HA-

XIAP DBIR respectively, into XIAP2/2 cells. As shown in Fig. 7A,

HA-tag was detected in the co-immunocomplex pulled down by

anti-GFP antibody in transfectants harboring HA-XIAP and HA-

XIAP DBIR. Moreover, similar affinity to GFP-RhoGDI was

observed in transfectants of HA-XIAP H467A, a mutation with

loss of E3 ligase activity in RING domain. While only a marginal

band of HA was observed in the immunocomplex from HA-XIAP

DRING transfectants, revealing that XIAP RING domain played

Figure 1. XIAP promoted HCT116 cell migration and invasion. (A), Knockout of XIAP in HCT116 cells was verified by Western Blotting assay. (B
and C), Cell migration behavior was evaluated during performance of a wound-healing assay, and images were taken at different time points. Scale
bar was 300 mm. The wound area was quantified using Cell Migration Analysis software, and the quantitative data were shown as indicated (error bar
represent S.D, n = 3). The asterisk (*) indicates a significant difference in wound area percentage between the indicated cell lines (p,0.05). (D and E),
Invasion of WT(Vector), XIAP2/2(Vector), and XIAP2/2(HA-XIAP) HCT116 cells was determined, quantified and expressed as percentage of invasion.
Results were represented by the mean 6 S.D. of the data from three-independent experiments with duplicate wells for each experiment. The asterisk
(*) indicates a significant decrease in invasion percentage compared with that in WT(vector) and XIAP2/2(HA-XIAP) cells (p,0.01). (F), The proliferate
rates of the indicated cell lines were assessed by a CellTiter-GloH Luminescent Cell Viability Assay kit. Results were represented by the mean 6 S.D. of
the triplicate wells. (G–I), The indicated cells were treated with or without EGF and F-actin induction was analyzed by spectrophotometer (G), or
observed under confocal microscope (H), respectively. The fluorescence of cells was quantified by the software of ImageJ (I). The quantitative data
was shown as indicated (error bar represent S.D, n = 3). The asterisk (*) indicates a significant decrease compared with that in WT cells (p,0.01).
doi:10.1371/journal.pone.0035682.g001

Figure 2. The requirement of XIAP for cell motility was confirmed by knocking down approach. (A), Knockdown of XIAP in HCT116 cells
were verified by Western Blotting assay. (B and C), Cell migration behavior was evaluated during performance of a wound-healing assay, and images
were taken at different time points. Scale bar was 300 mm. The wound area was quantified using Cell Migration Analysis software, and the
quantitative data were shown as indicated (error bar represent S.D, n = 3). The asterisk (*) indicates a significant difference in wound area percentage
between the indicated cell lines (p,0.05).
doi:10.1371/journal.pone.0035682.g002
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a role in interaction with RhoGDI independent on its E3 ligase

activity. In addition, although RING domain of XIAP could bind

to RhoGDI, their interaction did not result in ubiquitination of

RhoGDI (Figs. 7B and 7C). Conjugation of ubiquitin to RhoGDI

was barely detected even in the presence of exogenous wild type

ubiquitin in the immunocomplex pulled down by GFP which was

tagged to RhoGDI (Fig. 7B). Neither did expressing mutant of

ubiquitin render any obvious reductions in ubiquitination of

RhoGDI (Fig. 7B). Also there was no observable difference in

RhoGDI ubiquitination among WT cells and XIAP2/2 cells

(Fig. 7B). The similar findings were reproduced in 293T cells as

shown in Fig. 7C. Therefore, it was suggested that although E3

ligase activity was required for XIAP-mediated cell migration, it

was not essential for RhoGDI binding, neither for its ubiquitina-

tional modification.

Discussion

Our previous findings have demonstrated that either knockout

or knockdown of XIAP decreased HCT116 cell migration and

invasion [23]. In the present study, we provided the structural

basis of XIAP for its regulatory functions in cancer metastasis. By

introducing different XIAP domains into XIAP2/2 cells, our work

showed that RING domain rather than BIR domain was required

for b-Actin expression, cell migration as well as RhoGDI

interaction. E3 ligase activity of RING domain contributed to

the first two effects, but was not involved in RhoGDI binding nor

its ubiquitinational modification, indicating that role of XIAP in

regulating cellular motility was uncoupled from its caspase-

inhibitory properties, but related to its RING function which

was partly attributable to physical interaction with RhoGDI

(Fig. 7D).

In wound healing assay, we found that reconstitutive expression

of full length HA-XIAP and HA-XIAP DBIR, both of which have

RING domain, into XIAP2/2 HCT116 cells restored cancer cell

motility, whereas introduction of HA-XIAP DRING or H467A

mutant, which abolished its E3 ligase function, did not show

obvious restoration, demonstrating that E3 ligase activity of XIAP

RING domain played a role in XIAP regulation of cancer cell

motility. Alterations in b-Actin levels aroused by expressing

various domains of XIAP were consistent with their effects in cell

migration. The chief intracellular ‘‘motor’’ of cell migration is

actin cytoskeleton [37]. Previous studies suggested that EGF

induced cell migration by reorganization of actin cytoskeleton and

massive accumulation of F-actin [38]. In our studies, malfunction

of actin polymerization in XIAP2/2 cells could be rescued by re-

constitutional expression of either full length HA-XIAP or HA-

XIAP DBIR, while overexpression of HA-XIAP DRING or

H467A showed none of those restorations. In agreement of our

findings, Mehrotra’s unpublished data also acclaimed that E3

ligase activity of XIAP was critical for its regulatory role in cell

metastasis based on the observation that H467A XIAP mutant

failed to synergize with survivin in stimulating NFkB-dependent

pathway [24]. Therefore, it was clear that function of XIAP in

regulation of cell migration was dependent on its E3 ligase activity

of RING domain rather than related with its anti-apoptotic

potentials.

It has been suggested that role of IAPs in cell motility may be

evolutionary conserved since the Drosophila IAP homolog DIAP1

has been implicated in cell migration and morphogenesis by

controlling non-apoptotic caspase activity [13]. DIAP1 has been

shown to promote follicle cells migration within the egg chamber

during Drosophila oogenesis via regulating activity of small GTPase,

Figure 3. Various XIAP domains were reconstitutivly expressed into XIAP2/2 cells. (A), Schematic representation of XIAP protein and
identified function of each domain. (B and C), Identification of the stable transfectants harboring XIAP and its various deletion plasmids in XIAP2/2

HCT116 cells. The numbers under the bands indicated the densitometric analysis of relative ratios of b-Actin levels to loading controls (GAPDH)
evaluated by software of ImageQuant Version 5.2 (Molecular Dynamics, Sunnyvale, CA). Results were representative of at least three independent
experiments.
doi:10.1371/journal.pone.0035682.g003
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Rac. Mutations in DIAP1 exhibited defects in cell migration

probably due to alterations in actin-dependent cellular organiza-

tion [13], which was quite similar with what we observed in

XIAP2/2 cells in the current studies. Small GTPases play

important functions in a plethora of cellular events, such as

regulating filamentous actin systems [39]. Rho family GTPases act

as molecular switches cycling between inactive GDP-bound form

in cytosol and active GTP-bound state in cytoplasm membrane

[40]. RhoGDI was characterized as a down-regulator of Rho

GTPases by extracting them from membranes and solubilizing

them in the cytosol. RhoGDI also can interact with the switch

regions of GTPases and restrict the accessibility to GEFs and

GAPs so as to keep GTPase in the inactive states [39]. As we

reported here, XIAP was able to physically interact with RhoGDI

and inhibit its activity in regulation actin cytoskeleton assembly. So

when XIAP was highly expressed, RhoGDI activity was

suppressed which provided an explanation for the observations

that knocking down RhoGDI in WT HCT116 cells did not affect

wound closure rate since RhoGDI activity already has been

inhibited by XIAP, while in XIAP2/2 cells where the repressive

effect on RhoGDI activity was invalidate, RhoGDI knocking

down exhibited much more obvious biological effects.

Figure 4. Different XIAP domains involved in cell migration disparately. (A), Cell migration behavior was evaluated with a wound-healing
assay, and images were taken at different time points. Scale bar was 300 mm. (B), The wound area left un-closed on the 4th day was quantified using
Cell Migration Analysis software, and the quantitative data was shown as indicated (error bar represent S.D, n = 2). The asterisk (*) indicates a
significant difference in percentage of wound area compared with that in WT (Vector) cells (p,0.05).
doi:10.1371/journal.pone.0035682.g004
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In addition, our studies have shown that RING domain (XIAP

DBIR), but not BIR domains (XIAP DRING), could be co-

immunoprecipitated in the immune complex using the antibody

specific against GFP-RhoGDI. Although E3 ligase activity of

RING domain was shown to be required for cell migration,

impairment of its function by H467A mutation did not affect

interaction with RhoGDI. So it was hypothesized that besides

RhoGDI, there might be other downstream targets of E3 ligase

activity of XIAP responsible for controlling cell motility, like NFkB

[24] or some un-identified factors. Although E3 ligase activity of

XIAP contributed to autoubiquitination of XIAP itself and

ubiquitination of its binding partners, like Smac and AIF,

RhoGDI was not subjected to ubiquitin conjugation even when

XIAP was overexpressed.

Put together, our current studies revealed that E3 ligase activity

of XIAP RING domain contributed to actin polymerization,

cytoskeleton formation and cell migration. Although RING

domain was required for RhoGDI interaction which mediated

cell motilities, its E3 ligase activity was not involved in RhoGDI

binding or ubiqutination. The alternative molecular basis for its

E3 ligase activity still remains to be fully characterized.

Materials and Methods

Plasmids
Plasmids expressing HA-tagged XIAP, HA-XIAP DRING, HA-

XIAP DBIR, HA-XIAP H467A, and pEBB-HA expression empty

vector, were gifts from Dr. Colin S Duckett (University of Texas at

Austin, Austin, TX) [16]. pEGFP-C3/RhoGDI vector expressing

green fluorescent protein (GFP)-tagged RhoGDI and Rac1 was

kindly provided by Dr. Mark R. Philips (New York University

School of Medicine, New York, NY, USA). pRNA-U6/siRhoGDI

and pEGFP-C3/mRhoGDI (RhoGDI gene was mutated from

403-AAA GGC GTC AAG ATT GAC-420 to 403-AAG GGA

GTA AAA ATC GAT-420 to prevent destruction of exogenous

mRNA by the corresponding siRNA) was provided by Dr. BL

Zhang as described previously [36]. Human XIAP and RhoGDI

shRNA plasmids were purchased from Open Biosystems (Pitts-

burgh, PA).

Cell Culture and Transfection
Wild-type and XIAP2/2 HCT116 cells (human colon cancer

cell lines) were kind gifts from Dr. Bert Vogelstein (Howard

Hughes Medical Institute and Sidney Kimmel Comprehensive

Cancer Center, The Johns Hopkins Medical Institutions, Balti-

more, MD) [37]. WT and XIAP2/2 HCT116 cells were cultured

in McCoy’s 5A medium (Invitrogen, Carlsbad, CA) supplemented

with 10% fetal bovine serum (FBS, Nova-Tech, Grand Island, NE)

and penicillin/streptomycin (Life Technologies, Grand Island,

NY). Cell transfections were performed with Lipofectamine

reagent (Invitrogen) or FuGENEH HD Transfection Reagent

(Roche Applied Science, Indianapolis, IN). For stable transfection,

cultures were subjected to hygromycin B or G418 or puromycin

(Life Technologies) drug selection, and cells surviving from the

antibiotic selection were pooled as stable mass transfectants. These

stable transfectants were then cultured in the selected antibiotic-

free medium for at least two passages before use in experiments.

Wound Healing Assay
Cells were seeded into each well of 6-well plates and cultured

until 80% confluence. Wounds were made by sterile pipette tips.

Cells were washed with serum-free PBS and then cultured in

normal medium for the various time points. Photos were taken

every 24 h until the wound was healed in the parental cells [41].

The wound area was quantified using the Cell Migration Analysis

software (Muscale LLC, Scottsdale, AZ).

Cell Invasion Assay
A BD BioCoatTM MatrigelTM Invasion Chamber (BD

Biosciences, San Diego, CA) was used for invasion assay. Cells

(2.56104) were seeded per insert in triplicate in 500 ml serum-free

McCoy’s 5A medium. Inserts were placed in wells containing

500 ml medium with 5% FBS and TPA (20 ng/ml). The cells were

incubated for 72 h in an incubator with 5% CO2 humidified

Figure 5. F-actin induction by EGF was regulated differently by various XIAP domains. (A), The indicated cells were treated with or
without EGF and F-Actin induction was analyzed by flow cytometry. (B), The quantitative data was shown as indicated (error bar represent S.D, n = 2).
The asterisk (*) indicates a significant difference in F-actin induction compared with that in WT(Vector) cells (p,0.05).
doi:10.1371/journal.pone.0035682.g005

XIAP E3 Ligase and RhoGDI
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atmosphere. Then cells on the upper surface of the filters were first

pictured and then completely removed by wiping with a cotton

swab. The membrane was cut with a sharp scalpel and placed in

96-well plate. The levels of invaded/migrated cells were

determined by using CellTiter-GloH Luminescent Cell Viability

Assay kit (Promega, Madison, WI) with a luminometer (Wallac

1420 Victor2 multipliable counter system) as described previously

[42]. Invasion (%) = (ATP activity of invaded cells/ATP activity of

migrated cells)6100%.

Cell Proliferation Analysis
Viable cells (16103) suspended in 100 ml McCoy’s 5A medium

supplemented with 10% FBS were seeded into each well of 96-well

plates. The plates were incubated at 37uC in a humidified

atmosphere of 5% CO2. The cells were extracted with 50 ml lysis

buffer at various time points. Cell proliferation was measured by

using a CellTiter-GloH Luminescent Cell Viability Assay kit

(Promega). The results were expressed as relative proliferation

rate, which was calculated as following: relative proliferation

rate = ATP activity on the nth day/ATP activity on 0 day.

Figure 6. RhoGDI was involved in XIAP regulation of cell migration and actin polymerization. (A), Lysates from WT and XIAP2/2 HCT116
cells were Co-immunoprecipitated with anti-XIAP (mouse) antibody or normal mouse IgG, and immunoprecipitates were then subjected to
immunoblotting with anti-RhoGDI (rabbit) or anti-XIAP (rabbit) antibodies. Five percent of lysates was used as input. (B), XIAP2/2(HA-XIAP) cells were
transiently transfected with the GFP-RhoGDI or empty vector, GFTP-Vector. Co-immunoprecipitation was performed with anti-GFP antibody-
conjugated agarose beads. Immunoprecipitates were then subjected to immunoblotting using antibodies as indicated. (C). Stable transfectants of
shRNA-RhoGDI in WT and XIAP2/2 cells were identified. Cell migration was determined by wound healing assays at the indicated times between
Non-silencing and shRNA-RhoGDI transfectants in WT and XIAP2/2 cells respectively. The wound area was quantified using Cell Migration Analysis
software, and the quantitative data was shown as indicated (error bar represent S.D, n = 3). The asterisk (*) indicates a significant difference between
the indicated cell lines (p,0.05). Scale bar was 300 mm. (D), The indicated cells were treated with EGF for 1 min for determination of F-Actin induction
by flow cytometry. (E), Constitutive expression of GFP-RhoGDI-Re in XIAP2/2(Si-RhoGDI) was verified by Western Blotting. (F and G), Relative
induction of F-Actin in the presence of EGF was determined by spectrophotometer (F), and levels of filamentous Actin were observed under confocal
microscopy (G) in the indicated transfectants. The asterisk (*) indicates a significant increase in comparison to those in XIAP2/2(Si-Control) (p,0.05),
and the (§) indicates a significant decrease in comparison to those in XIAP2/2(Si-RhoGDI) cells (p,0.001, n = 3).
doi:10.1371/journal.pone.0035682.g006
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Figure 7. XIAP RING Domain was Responsible for RhoGDI Interaction Independent on its E3 Ligase Activity. (A), XIAP2/2 cells were
transfected with GFP-RhoGDI, along with HA-XIAP, HA-XIAP H467A, HA-XIAP DRING, or HA-XIAP DBIR. Co-immunoprecipitation was performed with
anti-GFP antibody-conjugated agarose beads. Immunoprecipitates were then subjected to immunoblotting for detection of XIAP using HA antibody.
(B). WT(Vector), XIAP2/2(Vector) and XIAP2/2(HA-XIAP) HCT116 cells were transfected with constructs of GFP-RhoGDI in combination with Ubiquitin-
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F-actin Content Assay
The specific cells were cultured in 10% FBS McCoy’s 5A

medium till 80–90% confluent. The medium was replaced with

0.1% FBS McCoy’s 5A medium and incubated for 4 h. Cells were

then treated with 25 ng/ml EGF for various time periods, fixed

with 3.7% formaldehyde for 10 min in PBS and permeabilized

with 0.1% Triton X-100 in PBS for 10 min. After washing with

PBS 3 times, cells were blocked in 1% BSA/PBS at room

temperature for 20 min, and then stained on a rotator with F-actin

specific dye, Oregon Green 488-phalloidin (1:40 in 1% BSA/PBS,

Invitrogen), for 30 min. Cells were washed with PBS again 3 times

and the bound phalloidin was extracted using 100% methanol at

4uC for 90 min. After extraction, methanol extraction was

collected, and plated cells were washed with PBS 3 times and

subjected to a BCA assay to determine total cell protein.

Fluorescence of methanol extraction solution for each sample

was recorded at 465 nm excitation and 535 nm emission by

spectrophotometer, and normalized against total protein in each

sample [38]. The results were expressed as relative F-actin content:

F-actin(Tn)/F-actin(T0) = [Fluorescence(Tn)/mg per ml]/[Fluores-

cence(T0)/mg per ml].

Quantification of F-actin content within cells was also

determined by flow cytometry according to Kobayahsi’s method

[43]. In brief, cells (36105) were seeded into each well of 6-well

plates and cultured in 10% FBS McCoy 5A medium until 90%

confluent. After stimulation with EGF for different periods of time,

cells were fixed with 3.7% formaldehyde for 10 min and

permeabilized with acetone for 5 min at 220uC. The cells were

then blocked in 1% BSA/PBS and stained with phalloidin (3 mg/

mL) for 30 min at 37uC, washed twice with PBS, re-suspended in

PBS and then analyzed by flow cytometry. Relative F-actin

content was expressed as an F-actin induction (averaged

fluorescence of tested cells at specified time/averaged fluorescence

of medium control cells).

Immunofluorescent Staining and Confocal Microscope
HCT116 and its transfectants were cultured on cover slides in

10% FBS McCoy’s 5A medium for 48 h. For EGF stimulation, the

medium was replaced with 0.1% FBS McCoy’s 5A medium and

incubated for 4 h and then treated with EGF (25 ng/ml) for the

times indicated. The cells were fixed with 3.7% paraformaldehyde

for 15 min and then permeabilized with 0.1% TritonX-100 in

PBS for 15 min at room temperature. The cells were then blocked

with 1% BSA/PBS for 30 min, and incubated with Oregon-

conjugated phalloidin for 30 min at room temperature, and then

stained with 0.1 mg/ml DAPI for 1 min. The slides were washed

three times with PBS and mounted with antifade reagent

(Molecular Probes). The cells were observed under a confocal

microscope (Leica DMI6000B). The fluorescence of cells was

quantified by the software of ImageJ (version 1.37; National

Institutes of Health).

Immunoprecipitation
Cells were lysed in cell lysis buffer (1% Triton X-100, 150 mM

NaCl, 10 mM Tris, pH 7.4, 1 mM EDTA, 1 mM EGTA,

0.2 mM Na3VO4, 0.5% NP-40, and complete protein cocktail

inhibitors from Roche) on ice. Lysate (0.5 mg) was pre-cleared by

incubation with Protein A/G plus-agarose (Santa Cruz Biotech-

nology, Inc.) and then incubated with specific antibody at 4uC for

2 h–12 h. Protein A/G plus-agarose (40 ml) were added to the

mixture and incubated with agitation for an additional 4 h at 4uC.

The immunoprecipitate was washed three times with cell lysis

buffer and subjected to Western Blotting assay.

Western Blotting
Cell extracts were prepared with cell lysis buffer (10 mM Tris-

HCl, pH 7.4, 1% SDS, and 1 mM Na3VO4) and protein

concentrations were determined by the protein quantification

assay kit (Bio-Rad Laboratories, Hercules, CA). Thirty mg of

proteins were resolved by SDS-PAGE, and subsequently probed

with the indicated primary antibodies and AP-conjugated

secondary antibody. Signals were detected by the enhanced

chemifluorescence system as described in our previous publica-

tions [23]. The results were representative of at least three

independent experiments. Antibodies against HA, XIAP (rabbit,

for Western Blotting), and GFP were purchased from Cell

Signaling Technology Inc (Boston, MA); against RhoGDI (Rabbit)

was from Millipore (Billerica, MA); against XIAP (mouse, for IP)

was from BD Science; against GADPH was obtained from Cell

Signaling Technology, Inc. (Boston) or Sungene Biotech (Tianjin,

China). Anti-GFP antibody-conjugated agarose beads were from

Vector Laboratories, Inc. (Burlingame, CA).

Statistical Methods
Student’s t-test was utilized for determining the significance of

differences. The differences will be considered significant at a

p#0.05.
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