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Abstract

Background: Regulator of G-protein Signaling 4 (RGS4) plays an important role in regulating smooth muscle contraction,
cardiac development, neural plasticity and psychiatric disorder. However, the underlying regulatory mechanisms remain
elusive. Our recent studies have shown that upregulation of Rgs4 by interleukin (IL)-1f is mediated by the activation of
NFkB signaling and modulated by extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, and
phosphoinositide-3 kinase. Here we investigate the effect of the c-Jun N-terminal kinase (JNK) pathway on Rgs4 expression
in rabbit colonic smooth muscle cells.

Methodology/Principal Findings: Cultured cells at first passage were treated with or without IL-1B (10 ng/ml) in the
presence or absence of the selective JNK inhibitor (SP600125) or JNK small hairpin RNA (shRNA). The expression levels of
Rgs4 mRNA and protein were determined by real-time RT-PCR and Western blot respectively. SP600125 or JNK shRNA
increased Rgs4 expression in the absence or presence of IL-1B stimulation. Overexpression of MEKK1, the key upstream
kinase of JNK, inhibited Rgs4 expression, which was reversed by co-expression of JNK shRNA or dominant-negative mutants
for MKK4 or JNK. Both constitutive and inducible upregulation of Rgs4 expression by SP600125 was significantly inhibited
by pretreatment with the transcription inhibitor, actinomycin D. Dual reporter assay showed that pretreatment with
SP600125 sensitized the promoter activity of Rgs4 in response to IL-1f3. Mutation of the AP1-binding site within Rgs4
promoter increased the promoter activity. Western blot analysis confirmed that IL-1 treatment increased the
phosphorylation of JNK, ATF-2 and c-Jun. Gel shift and chromatin immunoprecipitation assays validated that IL-1f3
increased the in vitro and ex vivo binding activities of AP1 within rabbit Rgs4 promoter.

Conclusion/Significance: Activation of MEKK1-MKK4-JNK-AP1 signal pathway plays a tonic inhibitory role in regulating Rgs4
transcription in rabbit colonic smooth muscle cells. This negative regulation may aid in maintaining the transient level of

RGS4 expression.
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Introduction

Signal transduction is a key process of converting one signal to
another, leading to a series of signaling reactions. One critical class
of signal-transduction pathways is the signaling controlled by the
guanine—nucleotide-binding heterotrimeric proteins (G proteins).
G protein-coupled receptors (GPCRs), also known as seven-
transmembrane domain receptors, comprise a large protein family
of transmembrane receptors. GPCRs are involved in a vast array
of physiological and pathological processes and are also the targets
of approximately 40% of all modern medicinal drugs [1,2]. The
ligand binding to GPCRs, such as the acetylcholine (ACh)
receptor, catalyzes GDP-GTP exchange on the o-subunit of a
heterotrimeric G-protein complex. The dissociation of GTP-
bound o-subunit from By subunits leads to the regulation of
downstream effectors. GPCR signaling is terminated by the
intrinsic GTPase activity of the Ga-subunit, which is accelerated
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by the regulator of G-protein signaling (RGS) proteins as G'TPase-
activating proteins. RGS proteins regulate the strength and
duration of Ga signaling [2]. Each RGS protein regulates the
function of multiple GPCRs, while some RGS proteins have a
clear preference for particular receptor-G protein complexes.
RGS4 is one of seven members of a classic R4 RGS protein family
that accelerates the intrinsic GTPase activity of the Gai/o and
Gog/11 family members [3]. RGS4 plays an important role in
regulating smooth muscle contraction, cardiomyocyte develop-
ment, neural plasticity and psychiatric disorders [4-7]. In
particular, RGS4 has been widely shown to be an underlying
risk factor for schizophrenia, even though it is not true in some
human populations [4,8-12].

In neuronal cell lines, expression of Rgs4 is reduced after
treatment with nerve growth factor [13], cAMP [14] or
camptothecin [15], whereas opioid receptor agonists lead to an
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increase in the expression levels of Rgs4 mRNA [16] and RGS4
protein [17]. Administration of corticosterone to adult rats
decreases the level of Rgs¢ mRINA in the paraventricular nucleus
of the hypothalamus and increases the levels in locus coeruleus
[18], but has no effect in the hippocampus [19,20]. Long-term
oplate administration is associated with an increase in RGS4
immunoreactivity in the rat and human brain [21,22]. Rapid
kindling leads to an increase of Rgs¢ mRINA in hippocampus and
forebrain, but not in brainstem or cerebellum [23]. Rgs4
expression is downregulated in prefrontal cortex and striatum by
neonatal status epilepticus [24]. In rat adrenal glands, Rgs4 is
upregulated by aldosterone secretagogues, both @ vivo and in vitro
[25]. Rgs¢ mRNA is expressed only in glial cell line-derived
neurotrophic factor-responsive neurons [26]. In cardiomyocyte,
Rgs4 expression is induced by endotoxin and interleukin (IL)-1
[27,28] and may contribute to the loss of Go,-mediated
phospholipase C activation by endothelin-1 [29]. In human aortic
smooth muscle cells (SMC), RGS4 is highly expressed at the
mRNA level and inhibits S1P; receptor-mediated signaling [30].
In gastrointestinal smooth muscle, Rgs4 negatively regulates Goy
signaling activated by M3 or motilin receptors [31,32] and thus
inhibits agonist-induced 1initial contraction [6,7,33]. In our
previous studies, we demonstrated for the first time that Rgs4
expression is increased in both dispersed and cultured rabbit SMC
after IL-1B treatment [7]. These findings suggest that Rgs4
expression is regulated dynamically by inflammatory mediators
such as cytokines and growth factors.

JNK Inhibits Rgs4

However, the molecular mechanisms and signaling pathways
for RGS4 regulation remain elusive. At the protein level, Rgs4 is
regulated by the N-end rule pathway [34,35] and proteasome
degradation [6,36]. At the mRNA level, Rgs# is regulated by a
transcription factor Phox2b [37]. Our recent studies demonstrate
that IL-1p-induced upregulation of Rgs4 is transcription-depen-
dent [6,38] and mediated by the canonical IKK2/IxBa pathway
of NFkB activation [6]. Further studies suggest that IL-1B-induced
activation of either extracellular signal-regulated kinase 1/2
(ERK1/2) or p38 mitogen-activated protein (MAP) kinase
(MAPK) enhances the upregulation of Rgs4 expression, whereas
the PI3K/Akt/GSK3 pathway attenuates IL-1B-induced upre-
gulation of Rgs4 expression [39].

The pathway of c-Jun NH2-terminal kinase (JNK), also known
as stress-activated protein kinase, is another key member of
MAPK superfamily, and is activated primarily by inflammatory
cytokines and environmental stresses [40—42]. The JNK family
includes JNKI1 (four isoforms), JNK2 (four isoforms), and JNK3
(two isoforms). JNKs are activated by MAP2kinases such as
MAPK kinase (MKK)4 and MKK7, which are in turn activated
by the MAP3kinases, such as MAP-ERK kinase kinase (MEKK)1,
MEKK4, TAK1, ASK1 and MLKs [43]. The JNK MAP3kinase
pathways are activated by MAP4kinases that link to a variety of
cell receptors [40,44]. The diversity and selection of upstream
kinases for JNK activation depend upon the cell types and
stimulators [40]. After activation, JNK regulates target gene
expression through an array of transcription factors such as AP1,
ATF-2, SMAD4, NFAT, etc. [45—47]. In the present study, we
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Figure 1. The JNK inhibitor SP600125 dose-dependently increases Rgs4 expression in rabbit colonic smooth muscle cells. Cultured
and serum-starved muscle cells were treated with indicated concentration of SP600125 1 h before treatment with IL-1p (10 ng/ml) for 3 h, followed
by reverse transcriptase quantitative polymerase chain reaction (RT-gPCR) (A, B) and Western blot analysis (C, D). The relative level of Rgs4 mRNA
expression (fold induction) was presented as compared with the control without SP600125 pretreatment after GAPDH normalization (A, B). Levels of
f-actin and GAPDH were used as a loading control (C). The relative optical density (fold change) was presented as compared with the vehicle control
(DMSO) after B-actin or GAPDH normalization (D). Values are means =+ SE of 3 experiments. * (p<<0.05) indicates significant increase after IL-1§
treatment as compared with the control. + (p<<0.05) indicate significant increase by ANOVA and Newman-Keuls comparison of SP600125 treatment

with the vehicle control.
doi:10.1371/journal.pone.0035646.g001
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Figure 2. Knockdown of JNK protein expression by shRNA (A) increased Rgs4 protein expression (B) in rabbit colonic smooth
muscle cells. Cultured cells were transfected with pLL3.7 empty vector or indicated JNK shRNA expression vectors. After 48 h, cells were starved for
24 h and treated with vehicle control or IL-1B (10 ng/ml) for 3 h, followed by Western blotting with anti-JNK (A) or anti-RGS4 (B) antibodies. The -
actin was used for loading control. Short and long exposures of the blot are shown. Similar results were observed in 3 experiments.

doi:10.1371/journal.pone.0035646.g002

investigated the role of MEKKI-MKK4-JNK-AP1 pathway in
regulating Rgs4 expression in rabbit colonic SMC and showed
that JNK inhibition increased while MEKKI1/MKK4 overex-
pression attenuated both constitutive and IL-1B-induced expres-
sion of Rgs4. IL-1f induced transient phosphorylation of JNK and
sustained phosphorylation of c-Jun and ATF-2. IL-1B increased
the binding activity of c-Fos and c-Jun to Rgs4 promoter. JNK
inhibition and mutation of the AP1-binding site within the Rgs4
promoter sensitized the promoter activity of Rgs# in response to
IL-1B. This work provides new insights into how stress-induced
signaling pathways regulate G protein signaling and smooth
muscle contraction.

Results

Pharmacological inhibition of JNK by SP600125
significantly increased Rgs4 expression in colonic SMC
IL-1B is well known to activate NFkB and MAPK pathways
[48-50]. We have shown that the NFkB pathway, as well as the
ERK1/2 and p38 MAPK pathways enhance while the PISK/
Akt/GSK3f pathway inhibits the upregulation of Rgs4 expression
by IL-1B in colonic SMC [6,39]. To explore the potential role of
JNK pathway on Rgs4 expression in colonic SMC, we examined
the effect of JNK pathway inhibitor on Rgs4 expression by reverse
transcription-quantitative polymerase chain reaction (RT-qPCR)
and Western blot analysis, the established techniques for detecting
Rgs4 mRNA and protein expression [7]. SP600125, a well-
established specific inhibitor for the JNK pathway [48,50,51],
were selected to pretreat the serum-starved SMC for 1 h at
different concentrations before IL-1f (10 ng/ml) stimulation for
3 h. Total RNA extraction and whole cell lysate were prepared. In
the preliminary studies, a long range concentration (10 nM to
100 uM) of SP600125 was tested, showing the maximal effect at
10 uM (Fig. 1A). Thus, 1-20 pM was used for the present study.
SP600125 treatment alone between 1-10 uM induced a dose-
dependent upregulation of Rgs¢ mRNA (Fig. 1B) and protein
(Fig. 1C). However, a higher concentration of SP600125 (20 uM)
did not induce further upregulation but reversed the expression of
Rgs4 mRNA and protein (Fig. 1B-D), which may result from the
non-specific effects on other kinases. IL-1f treatment alone
increased Rgs4 mRNA expression as previously reported [6,7].
Pretreatment with SP600125 enhanced IL-1B-induced upregula-
tion of Rgs¢ mRNA in a dose-dependent manner similar to

SP600125 alone (Fig. 1B). However, SP600125 at 20 uM did not
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induce additive or an increased effect over IL-1P, perhaps due to
additional toxic effect. These data suggest that inhibition of the
JNK pathway enhances constitutive and IL-1B-induced expression
of Rgs4 in colonic SMC. Therefore, 10 uM of SP600125,
consistent with previous reports [48,50-52], was used for further
functional and mechanistic studies.

Knockdown of JNK expression by shRNA increased Rgs4
expression in colonic SMC

To wvalidate the stimulatory effect of JNK pharmacologic
mhibition, we tested the effect of JNK specific shRNA silencing
on constitutive and IL-1B-induced Rgs4 expression. The efficacy
of JNK1 and JNK2 shRNA was validated by Western blot analysis
(Fig. 2A) with anti-JNK(FL) antibody, which recognized p46 and
p54 isoforms of JNKI1, JNK2 and JNK3 (manufacture’s data
sheet). The p46 isoforms contain JNKlal, JNK1bl, JNK2al,
JNK2b1, and JNK3al, while the p54 isoforms contain JNK1a2,
JNKI1b2, JNK2a2, JNK2b2, and JNK3b2 [53]. As shown in
Fig. 2B, both JNK1 and JNK2 shRNA dramatically increased the
constitutive and IL-1B-induced expression of Rgs4 protein, and
the effect of JNK2 shRNA was stronger than that of JNK1 shRNA
(Fig. 2A). Consistent with SP600125 (Fig. 1C), both JNKI and
JNK2 shRNA increased the number of bands detected by Rgs4
antibody, implying that JNK may regulate the protein stability of
Rgs4 [6,34-36].

The effects of JNK inhibition on the constitutive and IL-
1B-induced expression of Rgs4 mRNA were transcription-
dependent

To investigate whether the transcriptional mechanism is
involved in the enhancing effect of JNK inhibition on Rgs¢
mRNA expression, cultured SMC were pretreated with the
transcription inhibitor, actinomycin D (10 pM) 1 h before
SP600125 (10 uM) was applied for 4 h and IL-1B for 3 h. The
level of Rgs4 mRNA expression was determined by RT-qPCR and
normalized to the house-keeping gene GAPDH. Consistent with
previous studies [6], pretreatment with actinomycin D blocked IL-
1B-induced upregulation of Rgs# mRNA expression (Fig. 3A).
Actinomycin D pretreatment completely blocked the upregulation
of Rgs4 mRNA induced by either SP600125 alone or a
combination of SP600125 and IL-1p (Fig. 3A). These data suggest
that inhibition of the JNK pathway stimulates the transcription of
Rgs4 in colonic SMC.
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Figure 3. Inhibition of JNK pathway potentiates Rgs4 transcription in rabbit colonic smooth muscle cells. A. Transcriptional inhibition
prevents Rgs4 mRNA upregulation by IL-14 and SP600125. Cultured muscle cells were starved for 24 h and pretreated with actinomycin D (10 uM)
for 1 h and SP600125 (10 uM) for 30 min before exposure to IL-18 (10 ng/ml) for 3 h. Expression level (fold change) of Rgs4 mRNA was determined by
RT-gPCR using GAPDH for normalization. B. SP600125 potentiates constitutive and IL-14-induced promoter activity of rabbit Rgs4. Cultured
muscle cells were cotransfected with promoter-less pMlu3 empty vector or Rgs4 promoter vector carrying secreted renilla luciferase and pGL4-CMV
vector carrying firefly luciferase (for normalization). After 24 h, cells were serum-starved for 24 h and treated with IL-1$ (10 ng/ml) and SP600125
(10 uM) for 24 h. The renilla and firefly luciferases were measured separately. The relative fold changes in renilla luciferase activity after normalization
by firefly luciferase were expressed as compared with the empty vector and vehicle DMSO treatment. Data represents the mean * SEM of 4
experiments, each with quadruplicate. ** P<0.01 and * P<0.05 indicate statistically significant increase by student’s t test compared with
corresponding DMSO treatment. ™ (p<0.01) indicates significant decrease after actinomycin D treatment compared with corresponding vehicle

control.
doi:10.1371/journal.pone.0035646.9003

To further understand the transcriptional mechanism underly-
ing the induction of Rgs4 mRINA expression by JNK inhibition, we
performed a luciferase reporter assay for Rgs4 promoter activity by
transfecting SMC with rabbit Rgs¢ promoter-luciferase reporter
plasmid [38]. As shown in Fig. 3B, inhibition of JNK with
SP600125 alone significantly increased the promoter activity of
Rgs4 in a similar manner to the effect of IL-1f stimulation.
Pretreatment with SP600125 before IL-1 exposure sensitized the
promoter activity of Rgs# in response to IL-1B (Fig. 3B). These
data suggest that activation of endogenous JNK pathway plays a
tonic inhibitory effect on the constitutive and IL-1B-inducible
promoter (transcription) activity of Rgs4.

JNK-AP1 pathway maintained a tonic inhibition of Rgs4
transcription

The family of AP1 transcription factor consists of several
subfamilies of bZIP-domain (bZIP =basic region leucine zipper)
proteins: the Jun (c-Jun, JunB, and JunD), the Fos (c-Fos, FosB,
Fra-1 and Fra-2), and the ATF-2 (ATF-2 and ATF-a) [54]. Since
AP1 is a major target of the JNK signaling pathway, and an AP1
binding site within the proximal region of rabbit Rgs4 promoter
was 1dentified by bioinformatics analysis using MatInspector [38],
we hypothesize that the JNK pathway inhibits Rgs# transcription
predominantly via AP1 transcription factor. To test this hypoth-
esis, we first examined the function of AP1 binding site within Rgs4
promoter using Rgs4 promoter luciferase reporter assay and site-
directed mutagenic analysis. As shown in Fig. 4A, mutation of the
AP1l-binding site within rabbit Rgs¢ promoter increased the
promoter activity and sensitized IL-1p-induced promoter activity.
These data imply that the AP1 binding site is required for the tonic
inhibitory effect of the JNK pathway activation on Rgs4
transcription and the transcription factor AP1 functions as a
repressor for Rgs# regulation.

We then determined if IL-1B treatment affects the binding
activity of AP1 transcription factor within the Rgs4 promoter both
in vitro and ex vivo. Electrophoretic mobility shift assay (EMSA)
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measuring the i witro interactions between an oligonucleotide
probe containing rabbit Rgs4 attgagtcact sequence and SMC
nuclear protein showed that IL-1B induced the formation of an
AP1 DNA-binding complex, which was completely blocked by the
specific inhibitor of either JNK pathway or NFxB pathway
(Fig. 4B). The ex vivo chromatin immunoprecipitation (CHIP) assay
on the chromatin of cultured rabbit colonic SMC identified a
specific enrichment of API transcription factor within proximal
Rgs4 promoter containing the AP1 binding site by CHIP assay
with antibodies against c-Fos, c-Jun and ATF-2, the key
components of APl transcription factor (Fig. 4C). The epitope-
matching control IgG was used as a negative control for CHIP and
the input chromatin DNA was used as a positive control for PCR.
In non-stimulated cells, both c-Fos and ATF-2 were found to bind
to Rgs4 promoter but c-Jun was absent (Fig. 4C). IL-1 treatment
for 3 h promoted the DNA-binding activity of endogenous c-Fos
and c-Jun proteins but removed ATF-2 from the Rgs¢ promoter
(Fig. 4C). These data suggest that IL-1p promoted DNA-binding
activity of Fos/Jun-containing AP1 factors within proximal Rgs4
promoter that ultimately suppressed the transcription of Rgs4.

IL1-B induced rapid activation of the JNK-AP1 pathway in
rabbit colonic SMC

The data from pharmacological inhibition, gene reporter assay,
mutagenic analysis, EMSA and CHIP assay suggest that JNK-AP1
pathway is activated when rabbit colonic SMC were exposed to
IL-1B. To provide further experimental evidence, we performed
Western blot analysis using phosphor-specific antibodies against
the key members of JNK pathway. IL-1B treatment induced a
rapid and transient increase in the phosphorylation of JNK at Thr-
183/ Tyr-185 (Fig. 5). ATF-2 and c-Jun are the major downstream
substrates of JNK kinase and both bind to AP1 response elements
in many other types of cells [40,47]. Therefore, we determined the
level of JNK-specific phosphorylation of ATF-2 at Thr-71 and c-
Jun at Ser-73 in rabbit colonic SMC. As shown in Fig. 5, IL-1B
stimulation induced rapid and sustained phosphorylation of both
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ATF-2(Thr-71) and c;Jun(Ser-73), implying the activation of ATF-
2 and c-Jun by IL-1B-stimulated JNK pathway.

MEKK1-MKK4 overexpression inhibited the constitutive
and IL-1B-induced expression of Rgs4 protein

MEKKTI is the key upstream kinase of JNK and induces dual
phosphorylation of Thr/Tyr residues within a Thr-Pro-Tyr motif
of JNK via the dual specific kinases MKK4 (also known as SEK1
or MEK4) and MKK?7 (SEK?2) [40,53,55-57]. To address whether
MEKKI] regulates Rgs4 expression, MEKK]1 was overexpressed
in SMC. MEKKI1 overexpression inhibited the constitutive and
IL-1B-induced expression of Rgs4 protein, which was reversed by
coexpressing dominant-negative JNKI1 and JNK2 mutants
(Fig. 6A, B) as well as JNKI and JNK2 shRNA (Fig. 6C).
Consistently, overexpression of MKK4 inhibited the constitutive
Rgs4 expression, while overexpression of MKK4 dominant-
negative mutant (MKK4-DN) blocked MEKK -induced inhibi-
tion of Rgs4 expression (Fig. 6B), implying that MKK4 acts
downstream of MEKKI [53,55,58] and negatively regulates Rgs4
expression. In contrast, overexpression of MEKI, the key
upstream kinase of ERK pathway, increased the constitutive
expression of Rgs4 (Fig. 6B), which is consistent with our previous
report showing that MEKI/ERK inhibition blocked IL-1j-
induced upregulation of Rgs4 expression [39]. These data suggest
that MEKK1-MKK4-JNK pathway harnesses inhibitory effect on
Rgs4 expression in colonic SMC.
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JNK pathway interacts with p38 MAPK and NF«B
pathways

Our previous studies have shown that the canonical IKK2/
IxBa pathway of NFxB activation mediates IL-1B-induced
upregulation of Rgs4 [6] and such upregulation is enhanced by
the activation of the ERKI1/2 pathway [39]. However, the
stimulatory effect of p38 MAPK pathway on Rgs4 expression is
independent of NFkB signaling [39]. To determine if NFxB, p38
MAPK and ERKI1/2 pathways are involved in the JNK-API
pathway, we performed Western blot analysis in rabbit colonic
SMC treated with selected MAPK inhibitors. The treatment with
the JNK specific inhibitor (SP600025, 10 uM) alone induced a
constitutive activation of NFkB signaling as determined by the
phosphorylation of IKK2(Ser1-77/181) and p65 (Ser-536) as well
as the degradation of IxBa [6]. Pretreatment with SP600125 1 h
before IL-1B exposure enhanced IL-1B-induced NFkB activation
(Fig. 7A). Treatment with the p38 MAPK inhibitor (SB203580,
1 uM) increased the constitutive and IL-1B-induced phosphory-
lation of JNK at Thr-183/Tyr-185 (Fig. 7B). However, the MEK
inhibitor (PD98059, 20 uM) had no effect on the constitutive and
IL-1B-stimulated phosphorylation of JNK at Thr-183/Tyr-185.
The specificity of IL-1B-induced JNK phosphorylation was
validated by the complete blockade with the JNK specific inhibitor
SP600125 (10 uM). These data suggest that JNK activation
inhibits NFkB signaling at the level of IKK2, which may also
contribute to the tonic inhibition of JNK pathway on Rgs4
expression, and p38 MAPK negatively regulates JNK activity
(Fig. 8).
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Figure 5. IL-1p induces a rapid and transient phosphorylation
of JNK and sustained phosphorylation of ATF-2 and c-Jun in
rabbit colonic smooth muscle cells. Cultured and serum-starved
muscle cells were treated with IL-1B (10 ng/ml) for the indicated time
period, followed by Western blot analysis with indicated anti-phospho
antibodies. The B-actin was used for the loading control.
doi:10.1371/journal.pone.0035646.9g005

Discussion

The salient finding of this study is the identification of the tonic
inhibitory regulation of Rgs4 transcription by the activation of
MEKK1-MKK4-JNK-AP1 signaling pathway. In a series of
previous studies, we demonstrated that pro-inflammatory cytokine
IL-1B upregulates Rgs4 expression in rabbit colonic SMC [7]
through the canonical IKK2/IxBa pathway of NFkB activation
[6] as well as ERK1/2 and p38 MAPK pathways [39]. This
upregulation of Rgs4 is negatively regulated by the activation of
PI3K/Akt/GSK3B pathway [39]. Here, we demonstrate an
additional signaling pathway MEKKI-MKK4-JNK-AP1 that
maintains a tonic inhibitory regulation on Rgs4 transcription.
The positive and negative regulatory mechanisms of Rgs4
expression reflect an intricate and delicate system for gene
regulation (Fig. 8).

Rgs4 is implicated in intestinal inflammation [6,7,59,60],
cardiovascular diseases [61-63] and psychiatric disorders [4,8—
12]. However, the regulatory mechanism of Rgs4 expression has
not been well understood. We and others have demonstrated that
Rgs4 expression is transcriptionally regulated [6,38,64-67]. We
have cloned and characterized the promoter region of rabbit Rgs4
[38]. This promoter contains a canonical TATA box, and
predicted binding sites for several transcription factors such as
NF«B, AP1, GATA, MyoD, etc. Similar promoter regions have
been identified in human [65-67], rat [64] and mouse [65] Rgs4.
Within human RGS4 promoter, the inverted CCAAT box element
(ICE) and the cAMP response element (CRE) mediate activation
while the B-cell lymphoma 6 (Bcl6)-binding site mediates
repression of RGS4 transcription [67]. Within rat Rgs4 promoter,
a variant AP1-related site mediates transcriptional repression [64].
For mouse Rgs¢ promoter, no experimental evidence for the
functional regulation has been reported [65]. For rabbit Rgs4
promoter, we have identified the important role of NFkB binding
site in mediating IL-1B-induced upregulation of Rgs4 mRNA
expression [6]. In the present study, we validated the AP1 binding
site within the proximal region of rabbit Rgs¢ promoter using ex
vivo CHIP, in vitro EMSA and site-directed mutagenic analysis. The
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AP1-DNA binding activity was significantly increased by IL-1B
treatment in rabbit colonic SMC. Western blot analysis demon-
strated a rapid activation of the JNK-AP1 pathway by IL-1B. The
activation of the JNK-API pathway induced a tonic repression of
Rgs4 transcription. The following evidence supports our findings:
(1) Either specific inhibition of JNK with SP600125 or mutation of
the proximal APl binding site within rabbit Rgs4 promoter
significantly increased the basal and IL-1B-inducible promoter
activity; (2) Specific inhibition of JNK with SP600125 and shRNA
increased the basal level of Rgs4 expression and potentiated IL-1p-
induced upregulation of Rgs4 expression; (3) Overexpression of
MEKK1/MKKH4 inhibited Rgs4 expression while overexpression
of MKK4/JNK mutants and JNK shRNA reversed MEKKI1-
mediated Rgs4 inhibition.

The family of MAPKs (all members) is activated upon dual
phosphorylation at threonine and tyrosine by upstream kinases in
response to diverse extracellular stimuli. However, the role and
outcome of the activation of MAPK pathways rely on the stimuli,
target genes and cell resources. The selective involvement of an
individual MAPK pathway can be identified generally by specific
manipulation of each pathway. In most cases, the MAPK
pathways mediate the upregulation of many target genes including
inflammatory mediators, contractile proteins and signaling
components/regulators. In airway SMC, IL-1B-induced upregula-
tion of COX-2 and eotaxin is inhibited by either MEK1 inhibitors
or p38 MAPK inhibitors [68-70], whereas IL-1B-induced
RANTES release is sensitive to inhibition of MEKI1 [71] or
JNK [72] but not inhibition of p38 MAPK [71]. IL-1B-induced
upregulation of MMP-9 [48] and tumor necrosis factor a-induced
expression of VCAM-1 [73] are sensitive to the inhibition of all
three MAPK pathways. In vascular SMC, IL-1f-stimulated iNOS
expression is prevented by MEK1 inhibition but potentiated by
p38 MAPK inhibition [74,75]. Inhibition of MEKI1 or p38
MAPK, but not PI3K, reduced IL-1B-stimulated expression of
LIMK2 and cofilin [76]. However, in human vascular SMC, IL-
1B activates only p38 MAPK, which mediates IL-1B-induced IL-8
and VEGF expression [77,78]. In human colonic SMC, IL-1f-
induced HyO» production is inhibited by MEK inhibitor but not
p38 MAPK inhibitor [79], while IL-1B-induced upregulation of
IL-6, IL-8, and COX-2 is reduced by p38 MAPK inhibitor but not
MEK-1 inhibitor [80]. In rabbit colonic SMC, IL-1B-induced
upregulation of Rgs4 is attenuated by MEK and p38 MAPK
inhibitors but is potentiated by PI3K inhibitors [39]. The present
studies demonstrate for the first time that JNK inhibitor and
shRNA potentiate the constitutive and inducible expression of
Rgs4 in rabbit colonic SMC.

In our previous studies, we showed that IL-1P consistently
induced a 10-20 fold increase in mRINA expression of endogenous
Rgs4 in colonic SMC [6,7]. However, reporter gene assay using
Rgs4 promoter detected only a 1-2 fold induction by IL-1B in
rabbit colonic SMC [38]. Weak induction in the reporter gene
assay also occurred as to the stimulatory effect of SP600125 (Fig. 2).
Such discrepancy may be interpreted as the following: (i) IL-1p-
induced upregulation of endogenous Rgs¢ mRINA level involves
not only the transcriptional mechanism but also other mechanisms
such as HuR-mediated mRNA stability [81]; (i) The constitutive
promoter activity without IL-1p treatment is already high, which
may limit further induction; (iii) The promoter used contains only
the proximal region, not reflecting the true full-length functional
promoter of Rgs4 [38]; and (iv) JNK pathway may regulate the
endogenous Rgs4 through other signaling pathways not related to
the promoter region. The JNK-API pathway has been shown to
regulate mRNA stability of many genes through down-regulating
the expression of HuR [82,83] or upregulating tristetraprolin [84].
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Figure 6. MEKK1-MKK4-JNK pathway inhibits Rgs4 expression in rabbit colonic smooth muscle cells. A. Overexpression of MEKK1
inhibited constitutive and IL-14-induced Rgs4 expression. Cultured muscle cells were transfected with pCMV empty vector or MEKK1 vector for
24 h. After serum starvation for 24 h, cells were treated with or without IL-1B (10 ng/ml) for 3 h before Western blot analysis with anti-Rgs4 antibody.
The B-actin was used for the loading control. The number between each blot indicates the relative fold of optical density compared to the
corresponding control. B. Inhibitory effect of MEKK1 on RGS4 expression was blocked by the dominant mutants of MKK4, JNK1 and JNK2. Cells
were cotransfected with indicated vectors for 24 h. After serum starvation for 24 h, Western blot analysis with anti-Rgs4 and anti-B-actin antibodies
was performed. The number between each blot indicates the relative fold of optical density compared with the pCMV empty control. The number
below the lower blot indicates the fold change related to MEKK1 group. C. Inhibitory effect of MEKK1 on RGS4 expression was partially reversed
by the shRNA of JNK1B and JNK2A. Cells were cotransfected with indicated vectors for 48 h, followed by 24 h serum-starvation and Western blot
analysis with anti-Rgs4 and anti-B-actin antibodies. Short (5 second) and longer (5 minute) exposures are presented. The number between each blot

indicates the relative fold of optical density compared with the pCMV empty control.

doi:10.1371/journal.pone.0035646.g006

The mechanism underlying the inhibition of JNK-AP1 pathway
on Rgs4 transcription remains to be determined. In rat Rgs4
promoter, FRA-2-dependent dismissal of the transcriptional co-
activator, CRE-binding protein is involved in APIl-mediated
transcriptional repression [64]. In the present study, we demon-
strated that IL-1p treatment induced the recruitment of both c-Fos
and c-Jun but dismissed ATF-2 from the API-binding site of
rabbit Rgs4 promoter. Thus, different dimers of AP transcription
factor may function in different ways. IL-1f induction may
promote preferentially the binding of Fos/Jun heterodimer and/or
Jun/Jun homodimer to the heptamer consensus sequence of AP1
site [TGA(C/G)TCA]. Such binding represses rabbit Rgs¢
transcription. In contrast, ATF-2-containing dimers may normally
bind to the API site and activate Rgs# transcription. Upon JNK
activation by IL-1f induction, the ATF-2-containing activator was
removed and Jun-containing repressor was strengthened, leading
to tonic inhibition of Rgs4 transcription. JNKI and JNK2 have
mostly overlapping functions due to their concurrent and
ubiquitous expression, although recent evidence identified their
opposing effects [85]. In the present study, the dominant-negative
mutants and shRNA of JNK1 and JNK2 generate similar effect on
Rgs4 protein expression. The stronger stimulation of Rgs4
expression by JNK2 shRNA may result from more efficient
knockdown of JNK2, although the possibility of a distinct role
between JNKI and JNK2 cannot be ruled out [85]. Other
members of Fos, Jun and ATF subfamily [54] as well as other
JNK-regulated transcription factors (NFAT, SMAD) [45-47] may
also contribute to the JNK-induced inhibition of Rgs4 expression.

Ubiquinylation and arginylation of Rgs4 lead several bands of
Rgs4 on the Western blot [6,34-36,63]. Rgs4 protein is regulated
by the N-end rule pathway [34,35] and proteasome degradation

@ PLoS ONE | www.plosone.org

[6,36]. Our previous studies showed that proteasome inhibition by
MG132 increases Rgs4 protein expression [6]. In the present
study, we demonstrated that the protein bands and levels of Rgs4
are increased by both JNK inhibitor SP600125 and JNK1/JNK2
shRNA. This result suggests that JNK pathway may affect
ubiquinylation and/or proteasome degradation of Rgs4, in
addition to the transcriptional and posttranscriptional regulation.
Further study is needed to validate whether and how JNK and
other MAPK pathways regulate post-translational modification of
Rgs4.

Previous studies have targeted the effects of these MAPK
pathways on the proliferation, migration, differentiation and cell
death of SMC [86]. However, the role of MAPK in regulating
SMC contraction remains poorly understood. Recent evidence
suggests that both ERK1/2 and p38 MAPK are implicated in the
Ca®* sensitization [87] and protein kinase C-dependent contrac-
tion of gastrointestinal smooth muscle [87-89]. Phosphorylation of
caldesmon and/or calponin may contribute to the effect of
ERK1/2 [90-92] and JNK [93], whereas p38 MAPK may
regulate muscle contraction through sequential phosphorylation
and activation of MAPKAPK-2 [94] and HSP27 [95,96]. In
airway SMC, both ERK1/2 and JNK, but not p38 pathway, are
responsible for IL-1B-induced inhibition on the contractile
response to endothelin receptor agonist [97]; JNK pathway also
mediates Toll-like receptor-mediated airway hyper-responsiveness
to bradykinin [98]. In vascular SMC, all three MAPK pathways
are involved in the contractile signaling [93,99]. In ileal SMC,
sphingosyl phosphorylcholine-induced contraction is blocked by
MEK-1 inhibitor but not p38 MAPK inhibitor [100]. In
esophageal SMC, ERK1/2 but not p38 and JNK contributes to
sphingosine 1-phosphate-induced contraction [15,101] and bom-
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besin-induced contraction [102]. However, all three MAPK
pathways (p38, ERKI1/2 and JNK) mediate LPS-induced
inhibition on acetylcholine-stimulated contraction in rabbit
duodenum containing SMC and enteric nervous system
[51,103,104]. In animal colitis induced by 2,4,6-trinitrobenzene
sulfonic acid, ERK1/2 mediates the restoration of the reduced
muscle contractility by meloxicam, a COX2 inhibitor [105]. In
dextran sulfate sodium-induced colitis, both ERK and p38 MAPK
pathways contribute to hypercontractility but JNK was not studied
[106]. The present study provides the first evidence that the JNK
pathway maintains the low level of Rgs4 expression in colonic
SMC and subsequently leads to the promotion of SMC
contraction. The tonic inhibition of Rgs4 expression by JNK
pathway provides a new mechanism for the contribution of JNK
pathway in regulating smooth muscle contraction [93,98].

The cross-talk between JNK pathway and other MAPK and
NF«B pathways is not well understood. The ERK1/2 pathway has
been widely shown to affect IL-1B-induced NFkB activation and
regulate Rgs4 expression [39]. The p38 MAPK pathway
stimulates Rgs4 expression independently of NFkB signaling
[39]. In the present study, we showed that p38 MAPK negatively
regulates JNK activity but ERK1/2 pathway does not affect JNK
pathway. However, the JNK and NF«B pathways regulate each
other during IL-1B-induced upregulation of Rgs4 expression in
rabbit colonic SMC. JNK activation inhibits NF«kB signaling at the
level of IKK2. To the contrary, IKK2-mediated NF«kB signaling
promotes IL-1B-induced activation of the JNK-AP1 pathway
because IKK?2 inhibitor abolished IL-1f-stimulated AP1-binding
activity within Rgs4 promoter. Our conclusion is supported by
several previous studies showing a positive regulation of JNK
pathway by IKK [107-109]. The mechanism underlying IKK2-
mediated activation of JNK pathway remains to be determined.

In conclusion, activation of MEKK1-MKK4-JNK-AP]1 signal-
ing pathway plays a tonic inhibitory role in regulating Rgs4
transcription in rabbit colonic SMC. Rgs4 expression is dynam-
ically and strictly regulated by both the positive signaling pathways
of NFxB, ERK1/2 and p38 MAPK and the negative pathways of
PI3K-Akt-GSK3B and MEKK1-MKK4-JNK-AP1. This intricate
and orchestral regulation may aid in maintaining the transient
function of Rgs4 for smooth muscle contraction/relaxation as well
as cardiovascular and neuronal functions.
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Materials and Methods

Reagents and antibodies

IL-1P was obtained from Alexis Biochemicals (San Diego, CA).
SP600125  (Anthra[1,9-cd]pyrazol-6(2H)-one, 1,9-pyrazoloan-
throne), PD98059 (2'-Amino-3'-methoxyflavone), SB203580 (4-
(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl) 1 H-imid-
azole), and IKK2-IV (IKK2 inhibitor IV, [5-(p-Fluorophenyl)-2-
ureido|thiophene-3-carboxamide) were obtained from EMD
Chemicals (San Diego, CA) and dissolved in dimethyl sulfoxide
(DMSO). Antibodies against c-Fos, c-Jun, ATF-2, JNK(FL), IxBa,
GAPDH and B-actin were obtained from Santa Cruz Biotech-
nology (Santa Cruz, CA). Affinity-purified anti-Rgs4 antibody was
kindly provided by Dr. Susanne M. Mumby (University of Texas
Southwest Medical Center). Antibodies against phospho-
JNK(Thr183/Tyrl185), phospho-ATF-2(Thr71), phospho-c-Jun
(Ser73), phospho-IKK?2 (Ser177/181), phospho-IxBa (Ser32/36)
and phospho-p65 (Ser546) were from Cell Signal Technology
(Danvers, MA). All the other reagents were from Sigma (St. Louis,
MO).

Ethics Statement

All procedures involving rabbit were approved by the IACUC
committee at Temple University (approval protocol # 3164) or
Virginia Commonwealth University (approval protocol # 0510-
3402).

Isolation and culture of SMC

Rabbit colonic circular muscle cells were isolated and cultured
as previously described [7]. Briefly, distal colon from euthanized
New Zealand White rabbits (2~2.5 kg) was placed in HEPES-
buffered smooth muscle media. The circular smooth muscle layer
was dissected from the mucosa and longitudinal muscle layer using
stereo microscopy and treated with 0.1% collagenase (type II) and
0.1% soybean trypsin inhibitor for 30 min at 31°C. The isolated
single muscle cells were harvested after several rounds of
spontanecous dispersion by filtration through 500-um Nitex and
centrifuged twice at 350 g for 10 min. The isolated SMC were
cultured in 100 mm dish with DMEM containing 10% fetal
bovine serum and 1% antibiotics and antimycotics. After 10-14
days, the SMC attained confluence and were then passaged once

Kinase inhibitors
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Figure 7. JNK pathway interacts with NFkB and p38 MAPK pathways. A. SP600125 enhances IL-14-induced activation of canonical IKK2/
InBar/NFxB signaling. Cultured muscle cells after serum starvation for 24 h were pretreated with vehicle DMSO or JNK inhibitor SP600125 (10 uM) for
1 h before treatment with or without IL-1B (10 ng/ml) for 15 min. Activation of NFkB signaling was determined by Western blot analysis using

indicated specific antibodies. B. IL-1#-induced phosphorylation of JNK (Thr183/Tyr185) is blocked by SP600125, enhanced by p38 MAPK inhibitor
but not affected by MEKT inhibitor. Cultured and serum-starved muscle cells were pretreated with p38 MAPK inhibitor SB203580 (1 uM) or MEK1

inhibitor PD98059 (20 uM) or JNK inhibitor SP600125 for 1 h before exposure to IL-1B (10 ng/ml) for 15 min. Activation of JNK pathway was
determined by Western blot analysis using anti-phospho JNK antibody. The antibodies against GAPDH and B-actin were used for the loading control.
doi:10.1371/journal.pone.0035646.9007
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Figure 8. Schematic model for IL-1p-induced upregulation of
Rgs4 expression in colonic smooth muscle cells via canonical
IKK2/IkBo/NFxB signaling differentially modulated by MAPK
pathways. IL-1f3 induces NF«B activation involving phosphorylation of
IKK2, degradation of lkBa and nuclear translocation of p65/p50 leading
to upregulation of Rgs4 mRNA expression. IL-13 also activates three
MAPKs. ERK1/2 and p38 MAPK enhance while JNK inhibits IL-1p-
induced Rgs4 upregulation. The effect of ERK1/2 is exerted on the
canonical IKK2/IkBa/p65 pathway of NF«B activation and p38 MAPK
may target at the chromatin level. The p38 may also inhibit JNK activity.
Activation of the MEKK1-MKK4-JNK pathway down-regulates Rgs4
expression through transcriptional repression at the chromatin level
(via AP1 binding) and also signal inhibition of NFkB activation at the
level of IKK2. The intricate interactions across various transcription
factors and chromatin remodeling need further investigation. The solid
arrows indicate the activation while the spotted arrows represent the
inhibition.

doi:10.1371/journal.pone.0035646.9008

for use in various experiments. Full confluent muscle cells were
deprived of serum for 24 h before experiments.

Promoter cloning, site-directed mutagenesis and vector
construction

The rabbit Rgs4 promoter containing a fragment of —962/+50
(from the putative transcription start site) was cloned into pMlu3
AccepTor vector as described previously. The potential binding
site for AP1 transcription factor was identified by Matlnspector
(http://www.genomatix.de) and TFSEARCH (http://www.cbrc.
jp) and located at —213/—203 of rabbit Rgs4 promoter as
previously described [38]. Mutation of the APl binding site
(ATTGAGTCACT) in the pMluc3-Rgs4-P2 reporter vector
construct was performed by site-directed mutagenesis using the
QuikChange kit (Stratagene). Mutagenic primers (sense, 5'-G-
ACATTTGTAGAGATGACATCAGTCGTTTTTCATGTAT-
G-3' and anti-sense 5'-CATACATGAAAAACGACTGATGT-
CATCTCTACAAATGTC-3') led to a nucleotide change in the
entire binding site for AP1 transcriptional factor. Mutation was
confirmed by nucleotide sequencing.

Mammalian expression vectors encoding MEK1 and MEKK1
were obtained from Clontech. Mammalian expression vectors
encoding MKK4, MKK4-DN, JNKI1-APF and JNK2-APF were
generously provided by Dr. Riches J. David (National Jewish
Center, Denver, CO) [53,55].
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The JNK shRINA expression vectors were generated as
previously described [110]. JNKs originate from three genes that
yield 10 isoforms through alternative mRINA splicing. Since
colonic SMC expresses JNK1 and JNK2, we designed two
shRNA-encoding sequences for JNK1 and JNK2. The JNKIA
and JNKI1B shRNA targeted the nucleotides 124-149 and 339—
360 of rabbit JNK1 (XM_002722671). The JNK2A and JNK2B
shRNA targeted the nucleotides 647699 and 747-771 of rabbit
JNK2 (XM_002721308.1). The shRNA expression cassette was
generated through consequential, two rounds of PCR, and cloned
mto pLL3.7 lentiviral vector which contains CMV-promoted
EGFP (enhanced green fluorescent protein) marker as an internal
control [110]. The sequence of each shRINA expression cassette in
the vector was confirmed by restriction enzyme digestion and
DNA sequencing.

Cell transfection and reporter Assays

All the mammalian expression vectors were prepared using
Endolree Plasmid Maxi kit (Qiagen). All transfections in rabbit
colonic SMCs were performed utilizing a Lipofectamine-2000 kit
(Invitrogen) as previously validated [6,39,110]. The transfection
efficiency of rabbit SMC (~60%) was determined by the
expression of internal EGFP in the pLL3.7 shRNA expression
vector. For Western blot analysis, cells (5x10°/well) cultured in a
6-well plate were cotransfected with indicated vectors for 24—48 h
followed by serum starvation and treatment. For reporter assays,
cells (2-4x10*/well) cultured on a 96-well plate were cotransfected
with the renilla luciferase reporter constructs and the 1:10
normalization firefly luciferase vector pGL4-CMV (Promega).

After incubation with IL-1P for 24 h in the absence or presence
of JNK inhibitor SP600125, the media were harvested for
measurement of renilla luciferase activity and the cell lysate was
used for measurement of firefly luciferase activity. The renilla
luciferase was determined with a remlla luciferase assay kit
(Promega). The firefly luciferase was determined using a ONE-
Glo luciferase assay system (Promega). The luminescence was
measured using EnVision multilabel plate reader (Perkin Elmer).
Data are normalized by dividing renilla luciferase activity with that
of the corresponding firefly luciferase activity. Four to six separate
experiments were conducted anddata was calculated in each
experiment as the average of 4-6 samples.

Reverse transcription (RT) quantitative PCR (RT-gPCR)
Cells were treated with the Trizol reagent (Invitrogen, Carlsbad,
CA) for total RNA extraction. The potentially-contaminated
genomic DNA was removed by treating 10 ug of the RNA sample
at 37°C for 30 min with 1 ul of TURBO DNase (Ambion, Austin,
TX) followed by extraction with phenol:chloroform:isoamylalco-
hol (25:24:1). Real time PCR analysis was carried out on the ABI
Prism® 7300 Sequence Detection System (Applied Biosystems,
Foster, CA). Expression of Rgs# was analyzed using the TaqMan®
PCR Master Mix Reagents Kit (Applied Biosystems). The
TagMan probe and primers for rabbit Rgs4 designed using the
Primer Express® 2.0 version were as follows: (forward, nucleotides
232-252, exon 2) 5'-tcccacagcaagaaggacaaa-3’, (reverse, nucleo-
tides 303-284, exon 3) 5'-ttcggcccatttcttgactt -3" and (probe,
nucleotides 254279, across exon 2 and 3 with 321 bp of intron 2)
5'-ttgactcaccctctggcaaacaacca-3’. The ¢cDNA was synthesized
from 500 ng of RNA using the TaqMan® RT Reagents Kit
(Applied Biosystems). The optimized concentrations for real-time
PCR were 0.4 uM for both primers and 0.2 uM for the probe, and
5 ng cDNA in a 20 pl reaction volume. Rabbit GAPDH primers
(forward 5'-cgcctggagaaagctgetaa-3', reverse 5'-cgacctggtecteggtg-
tag -3') were used as an internal control. Each sample was tested in
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triplicate. Cycle threshold (Ct) values were obtained graphically for
Rgs4 and GAPDH. The difference in Ct values between GAPDH
and Rgs4 were represented as ACt values. The AACt values were
obtained by subtracting the ACt values of the control samples from
that of the treated samples. Relative fold change in gene
expression was calculated as 2—AACt.

Western blot analysis

Cells were solubilized for 30 min in Triton X-100-based lysis
buffer containing 20 mM Tris (pH 7.5), 150 mM NaCl, 1%
Triton X-100, 1 mM EDTA, 100 pg/ml phenylmethylsulfonyl
fluoride, 10 pg/ml aprotinin, 10 pg/ml leupeptin, 30 mM sodium
fluoride and 3 mM sodium vanadate. After centrifugation of the
lysates at 20,000 g for 10 min at 4°C, the protein concentrations
of the supernatant were determined with a Dc Protein Assay kit
from BioRad (Hercules, CA). Equal amounts of protein were
fractionated by SDS-polyacrylamide gel electrophoresis, and
transferred to nitrocellulose membrane (BioRad). Blots were
blocked in 5% nonfat dry milk/tris-buffered saline (pH 7.6) plus
0.1% Tween-20 (ITBS-T) for 1 h and then incubated overnight at
4°C with various primary antibody in TBS-T plus 1% milk. The
dilution of 1:1000 was used for most primary antibodies except for
anti-Rgs4 (1:10,000) and B-actin (1:100,000). After incubation for
1 h with horseradish peroxidase-conjugated corresponding sec-
ondary antibody (1/2,000; 10 pg/ml, Pierce) in TBS-T plus 1%
milk, immunoreactive proteins were visualized using SuperSignal
Femto maximum sensitivity substrate kit (Pierce, Rocjford, IL). All
washing steps were performed with TBS-T.

Electrophoretic Mobility Shift Assay (EMSA)

Rabbit colonic SMC were cultured into full confluency and
starved with serum-free culture media for 24 h. Cells were
pretreated with vehicle (DMSQO), JNK inhibitor SP600125 or
IKK2 inhibitor IKK2-IV for 1 h before treatment with IL-1f for
1 h. Nuclear extracts were prepared using NE-PER Nuclear and
Cytoplasmic Extraction Reagent Kit (Pierce, Rockfold, IL). The
oligonucleotide probe covering the predicted AP1 binding site
within the promoter of rabbit Rgs4 was used. Synthesized sense (5'-
tcgaCATTTGTAGAGATATTGAGTCACTTT-3") and anti-
sense 5'-tcgaAAAGTGACTCAATATCTCTACAAATG-3') oli-
gonucleotides were annealed to generate a double-strand DNA
probe with an overhang TCGA for end-labeling. The probe was
labeled with y-**P-ATP and T4 polynucleotide kinase (Promega),
and added to the binding reactions in the presence of poly(dl-
dC):poly(dI-dC) (Sigma), herring sperm DNA (Invitrogen, Carls-
bad, CA), and nuclear extracts. Equal amounts of extracts (10 pg)
were loaded for each binding reaction. After 30 min incubation at
room temperature, samples were loaded onto a pre-electropho-
resed 0.5 X tris-borated EDTA buffer (I'BE), 6% polyacrylamide
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gel and run at 150 V for approximately 1.5 h. The gels were then
fixed and dried, and autoradiographs obtained.

Chromatin immunoprecipitation (CHIP) assay

CHIP assay was performed according to the manufacture’s
protocol (Upstate Biotechnology Inc., Lake Placid, NY). Cells were
cultured in 10-cm dishes until full confluence was established and
then serum-starved overnight. Cells were treated with IL-1B
(10 ng/ml) for 3 h. The DNA-chromatin of cells were cross-linked
by the addition of 280 ul of 37% formaldehyde to 10 ml of culture
medium for 10 min at room temperature and stopped with
0.125 M glycine. Cells were washed twice with PBS and harvested
with 1 ml of SDS lysis buffer (20 mM Tris-HCI, pH 8.0, 140 mM
NaCl, 1% Triton X-100, 1% SDS, 1% deoxycholic acid, 2 mM
EDTA, and freshly added protease inhibitors). After sonication
and centrifugation, the supernatants were used for standard
immunoprecipitation with anti-c-Fos antibody or control IgG and
protein A/G agarose bead (Santa Cruz). The immune complexes
were eluted, reverse cross-linked using 5 M NaCl, and purified by
phenol/chloroform extraction. Ethanol-precipitated DNA pellets
were dissolved in Tris-EDTA buffer. The supernatant of an
immunoprecipitation reaction carried out in the absence of
antibody was purified and diluted 1:100 as total input DNA
control. PCR was carried out on 1 ul of each sample using sense
and anti-sense primers against the cloned promoter region of
rabbit Rgs4. PCR products were analyzed on 1% agarose gels and
images were analyzed with NIH Image] densitometric measure-
ments. Relative changes were calculated using the mean density
after background subtraction.

Statistical analysis

The images from Western blot, EMSA and CHIP assays were
scanned and analyzed with NIH Image] (1.46a version) densito-
metric measurements. The data were expressed as integrated
density and presented as relative fold in comparison with the
corresponding control. Quantitative data were expressed as means
* SE of n experiments and statistical significance was determined
using Student’s ftest for unpaired values or ANOVA and
Newman-Keuls comparison.
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